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ABSTRACT In Neurospora crassa, genes lacking a pairing partner during meiosis are suppressed by a pro-
cess known as meiotic silencing by unpaired DNA (MSUD). To identify novel MSUD components, we have
developed a high-throughput reverse-genetic screen for use with the N. crassa knockout library. Here we
describe the screening method and the characterization of a gene (sad-3) subsequently discovered. SAD-3
is a putative helicase required for MSUD and sexual spore production. It exists in a complex with other
known MSUD proteins in the perinuclear region, a center for meiotic silencing activity. Orthologs of SAD-3
include Schizosaccharomyces pombe Hrr1, a helicase required for RNAi-induced heterochromatin forma-
tion. Both SAD-3 and Hrr1 interact with an RNA-directed RNA polymerase and an Argonaute, suggesting
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that certain aspects of silencing complex formation may be conserved between the two fungal species.

In the filamentous fungus Neurospora crassa, the incomplete nature of
septa (cross walls) allows organelles and other cytoplasmic factors to
spread throughout the entire colony (Glass et al. 2000). This lifestyle
makes N. crassa especially vulnerable to attack by viruses and other
repetitive elements. Perhaps for this reason, several surveillance sys-
tems have been established in this fungus. These include quelling
(Romano and Macino 1992), repeat-induced point mutation (RIP;
Cambareri et al. 1989), and meiotic silencing by unpaired DNA
(MSUD; Shiu et al. 2001).

MSUD occurs when homologous genes are not paired during
prophase I of meiosis. Such unpairing events can be caused by gene
deletions, duplications, and transpositions, for example. Since its
discovery, only five MSUD proteins have been identified, and all of
them localize in the perinuclear region. These are SAD-1, an RNA-
directed RNA polymerase (RdRP); DCL-1, a Dicer-like RNase III
enzyme; SMS-2, an Argonaute-family protein; SAD-2, a protein
regulating SAD-1 localization; and QIP, an exonuclease (Shiu and
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Metzenberg 2002; Alexander et al. 2008; Lee et al. 2003; Shiu et al.
2006; Xiao et al. 2010; Lee et al. 2010b; Kelly and Aramayo 2007).
MSUD appears to involve the production of a single-stranded aber-
rant RNA from an unpaired segment. This RNA is exported to the
perinuclear region where it acts as a template for the SAD-1-mediated
double-stranded (ds)RNA synthesis. DCL-1 then processes the
dsRNA into small interfering (si)RNA, which guide SMS-2 to identify
and slice complementary mRNA. In our working model, SAD-2 is
a protein that interacts with SAD-1 and helps transport it to the
perinuclear region, whereas QIP is an exonuclease that removes the
passenger strand of an siRNA duplex.

MSUD efficiency can be assayed by certain ascus (spore sac) or
ascospore (meiotic spore) phenotypes in specifically designed test-
crosses. Two commonly used phenotypes are ascospore shape and
color, which can be manipulated through MSUD with artificial un-
pairing of the Round spore (1*) gene and the Ascospore maturation-1
(asm-1%) gene, respectively (Shiu et al. 2001). Expression of r* is re-
quired for the production of American football-shaped ascospores,
and its unpairing/suppression produces round ascospores. On the
other hand, silencing of the asm-1* gene results in white (inviable)
ascospores instead of the normal black-pigmented ones.

In previous attempts to identify MSUD suppressors, UV and
insertional mutageneses were used in forward genetic screens for
mutants that suppress the silencing of unpaired r* and asm-I1* (Shiu
and Metzenberg 2002; Shiu et al. 2006). The two genes discovered
through these efforts were sad-1* and sad-2*. The mutants identified
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by these methods have a modified sequence of a sad gene that fails to
pair with its homolog, thereby creating a self-silencing effect and com-
promising the silencing mechanism. The identification of SAD-1 as
an RARP pointed to the other hallmark RNAi proteins as potential

Table 1 Strains used in this study

Strain Genotype
F2-01 fl A (FGSC 4317)
F2-14 fla
F2-23 rid; fl A
F2-26 rid; fl a
F2-27 rid r®:hph; fl a
F2-29 rid ra::hph; fl A
F2-37 his-3*::act*; fl a
F2-38 his-3*::BmlR; fl a
F3-23 rid his-3*::asm-1; fl; asm-14::hph A
F3-24 rid his-3*::asm-1; fl; asm-14::hph a
F4-31 rid gfp-sad-3::hph; fl A
F5-22 rid his-3 yfpn-sad-3::hph; fl A
F5-23 flA
F5-24 sad-12:hph; fl A
F5-25 sad-3*:hph; fl A
F5-26 fl; gde-12::hph A
P3-07 Oak Ridge wild type A (FGSC 2489)
P3-08 Oak Ridge wild type a (FGSC 2490)
P3-25 mep sad-1%::hph a
P7-26 sad-124::hph rid his-3*::sad-1-yfpc a
P8-01 sad-22::hph A
P8-02 sad-2*:hph a
P8-18 mep sad-14::hph A
P8-42 rid his-3; mus-512::bar a
P8-43 rid his-3; mus-522::bar A
P8-65 csr-14::hph a
P10-15 rid his-3 A
P13-19 rid his-3*::rfp-qgip; qip®::hph; mus-514::bar a
P13-59 sad-12::hph rid his-3*::sad-1-rfp a
P14-27 sad-3*::hph a (FGSC 19729)
P14-28 sad-3*:hph A (FGSC 19730)
P15-06 rid his-3*::rfp-sad-2 sad-3-gfp::hph a
P15-07 rid his-3*::rfp-sad-2 sad-3-gfp::hph A
P15-08 rid his-3*::rfp-sms-2 sad-3-gfp::hph a
P15-09 rid his-3*::rfp-sms-2; sms-2%::hph A
P15-71 rid his-3*::sad-2-yfpc yfpn-sad-3::hph a
P15-72 rid his-3*::sad-2-yfpc yfpn-sad-3::hph; inv sad-2RP32 A
P16-01 rid his-3*::yfpc yfon-sad-3::hph; mus-512::bar A
P16-12 rid yfon-sad-3::hph; mus-52*::bar; yfpc-sms-2::hph A
P16-13 rid yfon-sad-3::hph; mus-52*::bar; yfpc-sms-2::hph a
P16-14 rid yfon-sad-3::hph; mus-522::bar qip-yfoc::hph A
P16-15 rid yfpn-sad-3::hph; mus-52*::bar qip-yfoc::hph a
P16-16 rid his-3*::yfpoc yfon-sad-3::hph; mus-512::bar a
P16-17 a
P16-18 a
P16-19 sad-3*:hph a
P16-20 sad-3*:hph a
P16-21 sad-12:hph a
P16-22 qde-14::hph a
P16-23 sad-3:hph A
P16-24 sad-3:hph A
P16-25 A
P16-26 A
P16-27 his-3 sad-3%::hph; mus-514::bar a
P16-28 his-3 sad-3%::hph A

Description of genetic loci can be found in the N. crassa e-Compendium (http://
bmbpcu3é.leeds.ac.uk/~genébar/newgenelist/genes/gene_list.htm).
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MSUD players, leading to the discovery of other members of the
silencing machinery (SMS-2, DCL-1, and QIP). All of the aforemen-
tioned MSUD proteins are required for sexual development, although
some are needed at earlier time points than others (e.g, DCL-1 and
QIP; Alexander et al. 2008; Xiao et al. 2010).

To increase the pace of our MSUD gene discovery, we have utilized
an alternative screening method. This system uses a high-throughput
reverse-genetic approach, which has been made possible by the
construction of the N. crassa knockout library (Colot et al. 2006). This
library consists of a genome-wide collection of knockout strains, each
represented by a conidial (asexual spore) suspension in 1-2 wells
(single or both mating types) of a 96-well microtiter plate. The screen-
ing of the knockout library for MSUD suppressors involves the trans-
ferring of conidia from a library plate to a tester strain cultured in
a 96-well plate. The resulting miniature crosses can be analyzed di-
rectly with low magnification microscopy. By using this method, it is
possible to systematically screen most of the genome for genes that are
important for MSUD. Here we present our screening method and its
utility with the identification and characterization of a novel MSUD
gene sad-3.

MATERIALS AND METHODS

Strains and culture media

The fungal strains used in this study are listed in Table 1. The N.
crassa knockout library was obtained from the Fungal Genetics Stock
Center (FGSC; McCluskey et al. 2010). N. crassa sequences can be
found at http://www.broadinstitute.org/annotation/genome/neurospora/
MultiHomehtml. MSUD tester strains were designed to unpair
and silence genes that are important for the ascospore phenotype.
Vegetative cultures were maintained on Vogel’s medium (Vogel
1956), and crosses were performed on synthetic crossing medium
(SC) of Westergaard and Mitchell (1947). Growth media for strains
with auxotrophic markers were supplemented as required (Perkins
et al. 2001).

Library screening protocol

To prepare the female testers, 96-well V-bottom microtiter plates
(Corning, Lowell, MA) were first filled with molten SC (200 wl per

Table 2 Mating and cross efficiency between knockout strains
from a library plate and a r* tester (F2-27 or F2-29)

57 mat a strains crossed to the r® A tester

No. of strains at a
given ascospore level

No. of strains at a
given perithecial level

P=so = 44 A=200 = 53
Poso = 11 Asz00 =1
Po2o =2 Asso =3
PO = O Ao = O

39 mat A strains crossed to the r a tester

No. of strains at a
given ascospore level

No. of strains at a
given perithecial level

P=so =37 As200 = 38
Peso =1 As200=0
Pooo =1 Asso =0
Po=0 Ao =1

Perithecial and ascospore productivity were scored on a 4-level scale. For
example, 44 mat a knockout strains yielded >50 perithecia when mated with the
™ A tester.
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Figure 1 Deletions of sad-3* (NCU09211) correlate with an MSUD-
deficient phenotype. (A) An r tester (F2-29) was used as the desig-
nated female in crosses with eight strains (three replicas each). The
four MSUD-proficient controls include two wild-type (WT) siblings (sib)
of sad-32 (P16-17 and P16-18), a standard wild-type strain (P3-08), and
an hph-based (hygromycin-resistant) deletion strain (csr-14; P8-65).
The two experimental strains are sad-3* siblings (P16-19 and P16-
20). The two MSUD-deficient controls are sad-12 and sad-2* (P3-25
and P8-02). A normal cross produces black American football (spindle)-
shaped ascospores. When MSUD is active, crosses involving an r®
tester yield nearly 100% round spores (i.e., r* is silenced). When MSUD
is suppressed (e.g., in crosses involving sad-1, 2, and 3 mutants), the
percentage of round spores decreases. Three replicate crosses were
performed for each male-female combination. Error bars represent the
standard deviation. (B) An asm-12 tester (F3-23) was used as the des-
ignated female. When MSUD s active, crosses involving an asm-14
tester yield nearly 100% white (inviable) spores (i.e., asm-1* is si-
lenced). When MSUD is suppressed (e.g., in crosses involving sad-1,
2, and 3 mutants), the percentage of white spores decreases. The
results demonstrate that sad-32, like sad-12 and sad-22, decreases
the efficiency of MSUD.

well). After solidification, a 96-pin replicator was used to transfer
mycelia (vegetative cells) from a water suspension of the desired tester
strain. The plates were incubated at room temperature, and protoper-
ithecia (female mating structures) were allowed to develop for five
days. With the aid of a replicator, protoperithecia were fertilized by
transferring conidia from a slightly thawed library plate to the wells of
the tester plate. Plates were then placed in humid chamber at room
temperature until ascospores could be seen on the lids (~11 days). A
dissecting microscope was then used to determine the ascospore

phenotype.
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Quantitative analysis of MSUD suppression and
ascospore production

A (F2-29) and asm-12 (F3-23) testers, as well as other control strains,
were cultured for 6 days on SC in 60 mm culture plates at room
temperature for use as designated females. Conidia from each male
were suspended in sterile water and adjusted to a concentration of
1000 counts per microliter. For fertilization, 3 x 33 wl aliquots of the
conidial suspensions were inoculated across the surface of a female
tester (in three replicas, each covering roughly the same amount of
area). Ascospores were collected from the lids 21 days postfertilization
(dpf) and analyzed on a hemocytometer under magnification.

N. crassa transformations

Transformations were performed by electroporation of conidia using
standard techniques (Margolin et al. 1997). For localization studies,
a fluorescent protein tagging protocol based on double-joint PCR was
used to construct the sad-3 tagging vectors (Hammond et al. 2011).
The primers used in this process are listed in supporting information,
Table S1. P8-42 or P8-43 was used as a background strain to create
transformants expressing SAD-3 tagged with the green-fluorescent
protein (GFP), the N-terminal fragment of the yellow-fluorescent pro-
tein (YFPN), or the C-terminal fragment of the YFP (YFPC).

Genotype screening and strain confirmation

Genomic DNA was isolated with the DNeasy Plant Mini Kit (Qiagen,
Valencia, CA). PCR-based confirmation of genotypes was performed
with the Expand Long Range dNTPack (Roche Applied Science,
Indianapolis, IN).

Photography and microscopy

A Canon Power Shot S3 IS digital camera was used to take pho-
tographs. The camera was combined with a VanGuard 1231CM or
1274ZH microscope when a sample (e.g., rosettes of asci) required
magnification. For fluorescent microscopy, asci were harvested
from perithecia (fruiting bodies) and prepared as previously reported
(Alexander et al. 2008). Prescreening of crosses for fluorescent signal
generation was typically performed with a Zeiss Universal microscope.
Confocal microscopy was performed on a Zeiss LSM710 microscope.
Visualization of the YFP was achieved by using a 514 nm Argon laser
line for excitation, and the detector was set to collect emission at 535—
600 nm. Protocols for GFP, RFP, and DAPI visualization were essen-
tially as described (Xiao et al. 2010).

RESULTS

Library screening links NCU09211 deletions to

MSUD suppression

The high-throughput screen for gene deletions that suppress MSUD is
robust, with most crosses producing ascospore levels sufficient for the
analysis. Essentially, this method allows up to 96 unique strains to be
assayed on a single crossing plate. As an example, Table 2 summarizes
the mating success (perithecial level) and cross productivity (asco-
spore level) between candidates from a library plate and an r* tester.
Most of the wells on this plate yielded high levels (~100%) of round
ascospores, typical of an r-silenced cross. However, crosses in wells E8
and E9 each produced low levels of ascospores, with a relatively high
percentage (>80%) of American football-shaped progeny. Accord-
ingly, in crosses to an asm-1* tester, where MSUD-proficient strains
produced ~100% white inviable ascospores, wells E8 and E9 yielded
a relatively high percentage (>25%) of black ascospores. The two posi-
tive wells in this case contain opposite mating types of NCU092112.
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Table 3 Silencing by ectopic transgenes and its suppression

Parent 1 Parent 2
(mat A): (mat a):
mutation ectopic ) Ascospore
at sad-1 insertion Unpaired count
or sad-3 at his-3 () gene (x 10
Wild type No insertions - 415
sactt actin 28.8
:BmlR B-tubulin 0.612
sad-12 No insertions - 209
;actt actin 358
:BmlR B-tubulin 399
sad-3 No insertions - 29.9
cact* actin 74.3
:BmlR B-tubulin 59.7

Meiotic silencing of unpaired actin or B-tubulin leads to the reduced production
of ascospores. Such reduction is not observed in crosses carrying sad-14 or sad-
3A. Strains used in this experiment include F2-14, F2-37, F2-38, P3-07, P8-18,
and P14-28.

On the off chance that contamination of wells E8 and E9 could have
occurred, the NCU09211* strains were crossed to standard wild-type
strains to obtain pure homokaryotic progeny. These pure cultures
were subsequently used in a thorough characterization.

NCU092114 is a suppressor of MSUD

To determine if NCU092112 is truly a suppressor of MSUD, progeny
from a cross of NCU09211” a x fl A were used in a quantitative assay
of MSUD suppression. As expected, all MSUD-proficient (negative
control) strains yielded nearly 100% round ascospores when crossed
to an r® tester (Figure 1A). These include a standard wild-type strain,
two wild-type NCU09211* siblings, and a strain deleted for a non-
MSUD gene, csr-1 (Bardiya and Shiu 2007). On the other hand, the
two MSUD-deficient (positive control) strains, sad-1* and sad-2*,
produced mostly American football-shaped ascospores in the same
test cross. Crosses of the NCU092112 strains to an r* tester yielded
~20% round spores, a level significantly lower than that of a negative
control. Similar results were obtained for crosses of the same strains to
an asm-12 tester (Figure 1B). Furthermore, crosses of the NCU092114
strain to two additional MSUD testers, ::act* and :bmlIR (which induce
the unpairing of actin and B-tubulin by an ectopic transgene, respec-
tively), show that it can dominantly suppress their silencing (Table 3).
These results demonstrate that the NCU09211* strains used in this
study are indeed suppressors of MSUD. NCU09211 is referred to as
sad-3* (suppressor of ascus dominance-3) hereafter.

sad-3 encodes a putative eukaryotic helicase
Three of the previously discovered MSUD proteins (DCL-1, SAD-1,
and SMS-2) have orthologs in other eukaryotes (e.g., Caenorhabditis

H. sapiens -

M. musculus —

D. melanogaster —{E 503

elegans and Schizosaccharomyces pombe), possibly because they are
core components of RNA silencing. Like the aforementioned,
SAD-3 also has related proteins in a wide range of organisms
(Figure 2). However, except for S. pombe Hrrl (Motamedi et al.,
2004), none of the indicated orthologs has been extensively char-
acterized. A search of NCBI's conserved domain database with the
predicted SAD-3 sequence finds two helicase domains, suggesting
that SAD-3 may possess the ability to unwind nucleic-acid
strands.

SAD-3 is required for sexual development

The previously characterized MSUD genes are all required for sexual
development. For example, when both parents of a cross carry either
sad-1* or sad-2*, perithecia with normal beaks and rosettes with
elongated asci are produced, but no ascospores are made (Shiu
et al. 2001, 2006). Crosses lacking a functional dcl-1 or gip gene are
also barren, but the resulting perithecia have underdeveloped beaks
and no recognizable asci (Alexander et al. 2008; Xiao et al. 2010).
Our analysis of sad-3* suggests that it is also required for sexual
development. Crosses homozygous for sad-3* produce perithecia
with normal beaks and elongated asci but no ascospores (Figure 3).
In other words, SAD-3 plays an important role in ascospore
development.

To determine the effect of sad-3* on sexual development in het-
erozygous crosses, ascospore levels were quantified in crosses between
sad-3* and wild-type strains. As expected, wild-type crosses yielded
abundant ascospores, all within a similar range of 2.4-3.3 million
ascospores per cross (Figure 4A, B). In contrast, a sad-3* x WT (wild
type) cross produced far fewer progeny (~0.5 million or 18% of WT
level). As a low number of recoverable ascospores in a cross could be
due to a defect in spore ejection (and not spore production), rosettes
of sad-3* x WT asci were analyzed.

Compared with wild-type crosses, rosettes heterozygous for sad-34
produce mostly aborted asci. Asci that are not aborted sometimes
contain four large or otherwise deformed ascospores, instead of the
normal eight (Figure 4C). This indicates that the low ascospore count
in heterozygous crosses is due to a combination of ascus abortion
and a reduction in the number of ascospores per ascus. This aspect
of sad-3* is interesting in light of the fact that the other characterized
MSUD mutant alleles do not appear to affect sexual development
dramatically in heterozygous crosses. To ensure these unique results
were not due to an unknown (and closely linked) mutation in the
sad-3 strains, sad-3* was deleted independently in two additional
strains. Analysis of the new deletion strains showed similar results,
confirming that the aberrant sexual phenotypes were due to sad-3*
and not to a closely linked mutation (Figure S1). sad-3* strains are
normal during the vegetative phase. Linear growth and vegetative
morphology assays revealed no significant differences between sad-
32 and wild-type strains (Figure 4D and Figure S2).

Figure 2 SAD-3 is a putative eukaryotic helicase.
GenBank identification numbers and BLASTP E-values
for each protein (relative to Neurospora crassa SAD-3)
are as follows: Homo sapiens, GI:28626521, 1e-46; Mus
musculus, Gl:124487311, 3e-49; Drosophila mela-

5. pombe —— - 1015
N. crassa ———E—— 1150

C. elegans
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2219 nogaster, Gl:24649577, 4e-09; Caenorhabditis elegans,
Gl:17538027, 5e-21; Schizosaccharomyces pombe,
Gl:19075911, 6e-68. Purple and gray, helicase domains;
yellow, zinc finger; green, SMC (structural maintenance
of chromosomes) domain.
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Figure 3 sad-3% x sad-3* crosses produce perithecia with normal
beaks and pigmentation, but no ascospores. Perithecia (left) and their
contents (right) are shown for various homozygous crosses (sad-3* and
three controls). (A) A WT cross (F5-23 x P16-17) produces normal
perithecia and rosettes of ascospores. (B) A sad-14 cross (F5-24 x
P16-21) produces elongated asci with no ascospores. (C) A sad-3*
cross (F5-25 x P16-20) also produces elongated asci with no asco-
spores. (D) A gde-14 cross (F5-26 x P16-22) produces perithecia with
underdeveloped beaks and no recognizable asci (right: contents
scraped from the inside of the perithecial walls are shown.) gde-1
encodes an RNA polymerase required for vegetative silencing
(Quelling; Lee et al. 2010a).

SAD-3 colocalizes with other members of the

MSUD machinery

To determine the subcellular localization of its protein product, sad-3
was tagged with the GFP sequence at its native locus. The sad-3-gfp
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strains are fertile, suggesting the tag does not affect the normal func-
tion of SAD-3. Microscopic analysis revealed that SAD-3 is localized
in the perinuclear region, similar to the previously characterized
MSUD proteins (Figure 5A). To determine if SAD-3 colocalizes with
these proteins, an analysis was performed by expressing sad-3-gfp with
rfp-tagged versions of sad-1, sad-2, sms-2, and qip in a cross. The
results demonstrate that SAD-3 indeed colocalizes with other compo-
nents of the MSUD machinery (Figure 5). It is conceivable that SAD-3
physically interacts with these proteins and is part of a meiotic silenc-
ing complex.

Interaction study suggests that SAD-3 is part of an
MSUD protein complex

Bimolecular fluorescence complementation (BiFC) analysis is an
in vivo assay of protein-protein interactions (Hu et al. 2002). Essen-
tially, two proteins of interest are tagged with nonfunctional fragments
of a fluorescent protein (e.g., YFP). If the two tagged proteins are in
close proximity (e.g., in the same complex), a functional fluorophore
may be reconstituted. Using BiFC, we demonstrated the direct inter-
action between SAD-1 and SAD-2 (Bardiya et al. 2008), and between
QIP and SMS-2 (Hammond et al. 2011). In this study, we have found
that SAD-3 interacts with SAD-1, SAD-2, SMS-2, and QIP (Figure 6),
giving credence to the notion that these proteins form an RNA-
processing complex in the perinuclear region.

DISCUSSION
In this study, we have developed a high-throughput reverse-genetic
screen to identify suppressors of MSUD. The methodical gene-by-
gene nature of this approach has several advantages over a forward
genetic screen (e.g., in time and labor costs). However, this screening
method does come with several caveats. First, only annotated genes
are included in the knockout library, limiting what can be discovered
by this method. Second, some deletions may not suppress MSUD
dominantly to a level that is sufficient for detection. Finally, not every
compatible fertilization on each plate results in the production of
enough ascospores for the visual assay (Table 2). Poor mating or low
ascospore count can sometimes result from random technical prob-
lems, such as a low medium level in (or poor conidial transfer to)
a given well. These potential problems suggest that there may be con-
siderable value in performing multiple screens for each library plate.
SAD-3 is a helicase-domain protein required for MSUD. Loss of
sad-3* by gene deletion is sufficient to induce a dominant MSUD
suppression phenotype in crosses to four different MSUD tester
strains (each containing a rearranged sexual development gene). This
dominant suppression can be explained by the “silencing-the-silencer”
model first proposed by Shiu et al. (2001). In this case, a sad-3* X
sad-3* cross results in the unpairing of sad-3* during meiosis, which
makes it a target for silencing by the MSUD machinery. Because
sad-3* is part of the MSUD machinery, its suppression leads to a neg-
ative feedback and the eventual defeat of the silencing mechanism.
The finding of sad-3* being an overall weaker dominant suppressor of
MSUD (compared with sad-14 and sad-2*) may suggest that sad-3*
is a less capable “self-silencer” than the others are. However, suppres-
sion strength in the “silencing-the-silencer” assay may be related to
the expression profile of each MSUD gene and its product, including
protein/mRNA turnover rates and expression timing. It is not neces-
sarily an indicator of the importance of a SAD protein to the mech-
anism. Interestingly, despite the lower strength of MSUD suppression,
dramatic sexual defects were observed in heterozygous sad-3* x
sad-3* crosses, an observation unique among all reported MSUD
genes to date.
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All of the MSUD proteins characterized thus far, including SAD-3,
show a perinuclear localization pattern. It seems possible that they
form a silencing complex in the perinuclear region, which inspects
(and if necessary, processes) RNA molecules as they exit the nucleus.
This hypothesis is consistent with the colocalization and BiFC results
demonstrated in this and previous studies. Based on the identity of the
proteins involved and what we have learned to date, a simple model
for MSUD is depicted as follows (Figure 7A). Briefly, recognition of
unpaired DNA leads to the production of an aberrant RNA, which is
made double-stranded (by SAD-1) and processed into siRNA (by
DCL-1) capable of directing mRNA degradation (by SMS-2). SAD-3,
a putative helicase, may assist SAD-1 in dsRNA synthesis by in-
creasing its processivity on RNA templates. QIP functions to de-
grade the passenger strand of an siRNA duplex, whereas SAD-2 may
serve as a scaffolding protein and assemble the necessary compo-
nents in the perinuclear region.

S. pombe Hrrl is a SAD-3 ortholog required for RNAi-mediated
heterochromatin formation (Motamedi et al. 2004). It is a component
of the RNA-directed RNA polymerase complex (RDRC) that also
includes Rdpl (an RdRP) and Cidl2 (a polyA polymerase family
member). RDRC interacts with the RNA-induced transcriptional si-
lencing complex (RITS), which is comprised of the Agol Argonaute
(an SMS-2 ortholog) and two other proteins. The model for RDRC/
RITS assembly involves an RARP-helicase-Argonaute interaction. This
mirrors our BiFC results, which suggest an interaction between SAD-1
and SAD-3, and between SAD-3 and SMS-2. It seems plausible that
the complex formations that mediate MSUD and RNAi-induced het-
erochromatin assembly are related to some degree.
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Figure 5 SAD-3 colocalizes with SAD-1, SAD-2, SMS-2, and QIP in the
perinuclear region. Micrographs illustrate prophase asci expressing
(A-D) sad-3-gfp and sad-1-rfp (F4-31 x P13-59), (E-H) sad-3-gfp and
sad-2-rfp (P15-06 x P15-07), (I-L) sad-3-gfp and sms-2-rfp (P15-08 x
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Figure 6 SAD-3 interacts with SAD-1, SAD-2, SMS-2, and QIP in the
perinuclear region. BiFC experiments were performed between SAD-3
(tagged with YFPN, the N-terminal fragment of YFP) and other MSUD
proteins (tagged with YFPC). In each case, fluorescent signal was
observed in the perinuclear region, suggesting that the tagged MSUD
proteins have intimate interaction in vivo that allows the formation of
a functional fluorophore. SAD-3-YFPN does not yield a fluorescent
signal when YFPC is not attached to a SAD-3-interacting protein.
Micrographs illustrate prophase asci expressing (A-C) sad-3-yfpn and
sad-1-yfpc (F5-22 x P7-26), (D-F) sad-3-yfpn and sad-2-yfpc (P15-71 x
P15-72), (G-I) sad-3-yfon and sms-2-yfoc (P16-12 x P16-13), (J-L) sad-
3-yfon and gip-yfoc (P16-14 x P16-15), and (M-0) sad-3-yfpn and yfpc
(P16-01 x P16-16). The chromatin was stained with DAPI. Bar, 5 um.
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