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Coffee production is a global industry with roasteries throughout the world. Workers

in this industry are exposed to complex mixtures of gases, dusts, and vapors

including carbon monoxide, carbon dioxide, coffee dust, allergens, alpha-diketones,

and other volatile organic compounds (VOCs). Adverse respiratory health outcomes

such as respiratory symptoms, reduced pulmonary function, asthma, and obliterative

bronchiolitis can occur among exposed workers. In response to health hazard

evaluations requests received from 17 small- to medium-sized coffee facilities across

the United States, the National Institute for Occupational Safety and Health conducted

investigations during 2016–2017 to understand the burden of respiratory abnormalities,

exposure characteristics, relationships between exposures and respiratory effects, and

opportunities for exposure mitigation. Full-shift, task-based, and instantaneous personal

and area air samples for diacetyl, 2,3-pentanedione and other VOCs were collected,

and engineering controls were evaluated. Medical evaluations included questionnaire,

spirometry, impulse oscillometry, and fractional exhaled nitric oxide. Exposure and health

assessments were conducted using standardized tools and approaches, which enabled

pooling data for aggregate analysis. The pooled data provided a larger population to

better address the requestors’ concern of the effect of exposure to alpha-diketones

on the respiratory heath of coffee workers. This paper describes the rationale for the

exposure and health assessment strategy, the approach used to achieve the study

objectives, and its advantages and limitations.

Keywords: data pooling, harmonization, coffee roasting and packaging, alpha-diketones, respiratory health,

exposure assessment

INTRODUCTION

Coffee production is a global industry with roasteries located throughout the world.
Production involves receiving green (raw) beans, roasting green beans, grinding
roasted beans, in some facilities flavoring roasted ground or whole beans, weighing
and packaging roasted and ground, flavored or unflavored coffee, and shipping (1).
Workers in this industry are exposed to complex mixtures of gases, dusts, and vapors
including carbon monoxide, carbon dioxide, coffee dust, allergens, alpha-diketones, and
other VOCs (1). Adverse respiratory health outcomes such as respiratory symptoms,
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decreased pulmonary function, asthma, and obliterative
bronchiolitis (OB), a rare, irreversible lung disease, can occur
among exposed workers (2). OB is found among workers
exposed to flavoring chemicals in a variety of food processing
and flavoring-manufacturing industries (3). Inhalation exposure
to alpha-diketones including 2,3-butanedione (diacetyl) and
2,3-pentanedione (acetyl propionyl) in flavorings or natural
sources is associated with the development of OB, based on
human epidemiologic and animal studies. Mitigating these
exposures offers the best opportunity to prevent these adverse
respiratory health outcomes (4, 5).

Between 2008 and 2012, two cases of OB were identified in
coffee production co-workers exposed to flavoring chemicals (6).
Subsequently, three additional cases were diagnosed in former
flavoring room workers of the same facility (7). These five cases
of OB prompted a request in 2012 to the National Institute
for Occupational Safety and Health (NIOSH) to conduct a
health hazard evaluation (HHE) to investigate exposures and
respiratory effects during coffee production (7, 8). Subsequently,
NIOSH received 17 additional HHE requests during 2015–
2017 from small- to medium-sized coffee workplaces throughout
the United States. HHE requestors expressed concerns about
exposure to alpha-diketones and the potential respiratory health
effects. The HHE investigations were conducted with a focus on
quantifying exposures and adverse respiratory health, evaluating
exposure-response relationships and identifying opportunities
for exposure mitigation.

HHEs are public health responses to emerging health and
safety issues in workplaces mandated by the Occupational
Safety and Health Act of 1970 and the Mine Safety and
Health Act of 1977, with advantages and some limitations.
Their narrowed focus on a particular workplace issue facilitates
in-depth investigation that can lead to a resolution of the
issue that triggered the investigation, however, the information
generated may not always be generalizable knowledge that
can be applied more broadly for prevention. Moreover, HHE
investigations are constrained by time and resources dedicated
to any one investigation. In the coffee industry (North American
Industry Classification System code 311920) in 2016, 93% of
the establishments were small- (<20 workers) to medium-
sized (≥20–<500 workers) workplaces employing 48% of the
workforce (9). Individually, these facilities would not have a large
enough workforce to provide sufficient power to detect subtle
health risks; pooling data across facilities could provide a large
enough population to explore exposure-response relationships.

Harmonization of data collection is challenging (10–15) but
is required to enable pooling of data for aggregate analysis.
A primary challenge is the balance between recording data
unique to a particular worksite and collecting data that
fit into predetermined standardized categories. With greater
standardization and uniformity of data collection, the uniqueness
and specificity of each facility may be lost, resulting in exposure
or health misclassification, causing loss of any potential gain in
statistical power from increase in sample size. There are many
examples of successful pooling of data from multiple sources for
epidemiologic or exposure studies within an industry, such as
the studies in the asphalt and rubber manufacturing industries

that pooled exposure data from several European countries
(16, 17). However, pooling data across industries is challenging,
as highlighted by the numerous calls and proposals over the
past three decades for standardization and the development of
exposure surveillance databases (18–26); these efforts have failed
to gain traction in part because of the complexity and number
of data elements to be uniformly collected (27). Within the
NIOSH HHE Program, there are some examples of data pooling
such as in the microwave popcorn industry where health and
exposure data were combined from six plants (28). Additionally,
a noise exposure dataset was created by pooling data from 77
HHE reports across various industries, and a dataset of exposure
to three solvents, methylene chloride, 1,1,1-trichloroethane, and
trichloroethylene was created by pooling data from 63 to 89
HHE and 6-22 Industry Wide Studies reports for the different
solvents, which included data elements such as industry, job,
hearing protection use, activity, ventilation, and sampling details
(29, 30). Some of the variables in the solvents dataset were
created after data collection from details in the reports such
as the process condition, proximity to source, and ventilation.
To ensure systematic collection of contextual information, data
elements can be gathered in a tiered approach from more
general information collected for all investigations in the first
tier that can be pooled across investigations, to more specific
information collected in higher tiers targeting nuanced aspects
of each facility, and may not always be amenable to pooling,
or may be standardized post collection. Such a tiered approach
ensures standardized data collection for some basic variables to
enable pooling, at the same time enabling the collection of facility
specific details to achieve the objectives of the investigation.

PROJECT OVERVIEW AND OBJECTIVES

NIOSH conducted HHEs at 17 coffee facilities in several
geographical locations across the United States during different
seasons in 2016–2017. After the HHE investigations were
completed and facility-specific reports issued, data from the 17
investigations were pooled to better address HHE requestors’
primary concern of whether exposure to alpha-diketones was
associated with adverse respiratory effects. At each facility,
all workers were invited to participate; 229 (35%) workers
participated in the exposure survey and 384 (58%) participated
in the health investigation. The analysis of the pooled data was
approved by the NIOSH Institutional Review Board (IRB). The
specific objectives of the pooled analysis were to (1) quantify
full-shift, short-term task-based, and instantaneous exposures
to alpha-diketones, (2) identify and quantify factors affecting
short-duration and full-shift exposures to alpha-diketones,
(3) characterize the respiratory health of workers including
pulmonary function and symptomology, (4) evaluate exposure-
response relationships with exposuremetrics and surrogates such
as tasks or proximity to process, and (5) evaluate emission
sources and recommend exposure control options.

The objective of this paper is to describe the rationale for the
exposure and health assessment strategy, the approach used to
achieve the study objectives, and its advantages and limitations.
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METHODS AND DISCUSSION

Approach
The investigations focused on characterizing both long-term
average exposures and high-intensity, short-duration “peak”
exposures to diacetyl and 2,3-pentanedione, because these
exposures may be associated with small airways damage related
to OB; peak exposures can potentially overwhelm the capacity
of normal defense mechanisms and induce adverse health effects
(31, 32). Peak exposures to diacetyl have been documented in the
microwave popcorn industry and at the sentinel coffee facility
and may have contributed to disease in OB cases with relatively
lower average exposures (28, 33, 34); the role of peak exposure is
asthma is also well recognized (35), though relevant exposure to
asthmagens such as green coffee dust and allergens could not be
assessed quantitatively due to limited time and resources.

Exposure Measurement Strategy
To understand personal exposures and characterize emission
sources, both personal and area sampling was conducted for
alpha-diketones (1). Personal full-shift, short-duration task,
and instantaneous peak exposures were collected to better
understand their influence on the disease process, while full-
shift and instantaneous area samples were collected to identify
sources of emissions to prioritize opportunities to control
exposures. Instantaneous samples were also analyzed for 18
additional VOCs including: acetaldehyde, acetonitrile, ethanol,
isopropyl alcohol, acetone, n-hexane, chloroform, methylene
chloride, methyl methacrylate, benzene, ethylbenzene, toluene,
styrene, m, p-xylene, o-xylene, a-pinene, and d-limonene. Repeat
measurements were collected for all sample types whenever
possible to better capture exposure variability. This sampling
and analysis approach enabled: (1) characterization of exposure
variability through repeated measurements, (2) quantification
of multiple alpha-diketones to evaluate their individual and
combined effect on respiratory health, (3) development of
multiple current or worklife exposure metrics to test different
hypotheses of the effect of peak, average, cumulative exposure
or exposure duration on health, (4) identification of mixed
exposures, albeit limited to VOCs, and their role in the
disease process, (5) better understanding of factors affecting
exposures by collecting contextual information as described in
the next section, and (6) characterization of emission sources
to better guide various exposure mitigation strategies. Although
the exposure monitoring was comprehensive, it was time and
resource intensive to collect five different types of samples,
i.e., personal full-shift, short-duration tasks, and instantaneous
samples, and area full-shift and instantaneous samples, but
necessary to achieve the investigation objectives.

Exposure Factors, Database Development,
and Modeling Exposure Determinants
An integral component of exposure assessment is evaluating
exposure variability and understanding factors affecting
exposures. Statistical modeling of exposure factors requires
the collection of both exposure measurements and detailed
contextual information on workplace characteristics such as:

processes, control measures, environmental conditions, jobs,
tasks, source materials, worker activities, and other relevant work
environment factors (18, 36–40). The source-receptor model
is a conceptual model that describes the physical pathway of
exposure from its generation at the source through different
transport compartments and mechanisms to the route of entry at
the receptor, and provides a framework to systematically evaluate
and collect information on potential micro-level exposure
determinants (36–38). At each stage, numerous factors can
influence exposure which have been well documented in the
literature and should be considered for data collection (36, 40).
These within-facility micro-level factors explain differences in
exposure caused by tasks or source characteristics. However,
differences in exposure can also arise from differences among
facility characteristics not directly associated with the physical
path of exposure, i.e., higher level factors such as size of the
facility, number of workers, production volumes, worker
health and safety training, facility safety culture and other
organizational factors (37, 38). These higher-tiered factors are
particularly important when data are pooled across workplaces
or multiple industries. Some factors may be constant within
a facility and gathered anytime during the exposure survey
(such as general exhaust ventilation parameter), while others
may vary in time requiring collection during air sampling
(such as tasks, tools, amount of time in different locations)
(41). Whereas, attempts to standardize the collection and
storage of contextual information have not gained traction
(15, 18, 21, 22, 25, 26, 41, 42), numerous studies have successfully
collected and used contextual information specific to their
research to better understand the causes of variation or to predict
exposures (41–43).

In this study, collecting the desired information on exposure
determinants during sampling was challenging because of
limited time, staff, and resources available to conduct the
assessments at each facility. Table 1 presents a list of the
key determinants along the source-receptor pathway and
some higher-level facility related factors that were collected.
Information on facility level determinants which did not vary
within a worksite was systematically collected on forms prior
to or at some point during the site visit. However, only
a handful of time varying factors were gathered during the
survey mostly as notes, but which may have the greatest
potential for explaining exposure variability within a facility.
Determining a priori the time-varying factors to systematically
capture during sampling was challenging as there were
numerous short-lived activities which would require continuous
observation of the monitored workers to capture accurately.
The workers performed numerous tasks and were highly
mobile making their continuous observation not practicable.
Nevertheless, the contextual information collected will be
used in multiple regression models of full-shift and task-
based diacetyl and 2,3-pentanedione exposure using advanced
Bayesian methods that simultaneously account for repeated
measures, measurements below the limit of detection, correlation
among predictor variables, variable selection for multiple
regression modeling and model averaging of multiple final
models (44).
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TABLE 1 | Data elements collected during the 17 HHEs to describe exposures.

Variables Value and description

Facility level information

• Region

• Total employees

• Production employees

• Building size

• Production ares size

• Building type

• US geographical region of facility

• Total number of employees on site

• Number of production employees

on site

• Size in square feet

• Size in square feet

• Production, café, administration

Source characteristics

• Production rate/capacity

• Percentage source material

• Exposure sources

• Open containers

• Flavoring

• Amount of material processed per

day or capacity

• Percent whole bean or ground

coffee

• Number of sources within 10 ft

• Number of open containers of

products stored

• Flavoring added to coffee beans or

ground coffee

Work organization

• Department

• Location/work area

• Job title

• Shift

• Task/activity

• Department or work unit

• Worker or area sampler location

• Worker job title sampled

• Work shift and shift hours

• Task or activity sampled

Sampling and analysis

• Date

• Season

• Sample type 1/ 2

• Sampler type

• Method

• Analyte

• Concentration/unit

• LOD

• Duration

• Sampling date

• Sampling season

• Area, personal/full-shift,

task-based, instantaneous

• Silica gel tube, canister

• Analytical methods numbers

• Analytes quantified, e.g., diacetyl,

ethanol, etc.

• Concentration value and units

• Limit of detection concentration and

sample ID

• Sample duration or duration

of tasks

Exposure controls

• Process isolation

• Natural ventilation

• GEV

• Makeup air

• Fans

• Machine LEV

• Machine enclosure

• Automation

• Cleaning method

• PPE

• Isolated area or process from other

areas

• Open windows or doors

• General exhaust ventilation present

and working

• Mechanical makeup air

• Fans used

• Local exhaust ventilation of

machines/processes

• Enclosure of machines/processes

• Automation of machines/processes

• Vacuum, dry sweep, compressed

air, wet cleaning

• Type of respirator used

Exposure Modules and Job/Task Exposure
Matrix
Exposure assessment is a critical component of epidemiologic
studies, but can present a significant challenge (45, 46). Many
epidemiologic studies use exposure proxies such as job or

task exposure matrices (J/TEM), expert judgment, or self-
reports (47, 48). Poor exposure characterization can lead to
exposure misclassification and attenuation of exposure-response
relationships (49) and improper intervention (50). Although
personal exposure data are rare in epidemiologic studies,
exposure measurements and their determinants collected for
jobs or tasks on a subset of workers can be used to create
quantitative J/TEM. The J/TEM can be combined with frequency
and duration of job or task reported in a questionnaire to
calculate exposures for individual study participants (51–53).
This approach has been used successfully in several studies
(54–56). In situations where job-related exposures are highly
variable and depend on tasks performed, a TEM may be
preferable (57–59). Under these circumstances, TEMs can result
in stronger associations with respiratory health outcomes in
different industries compared to JEMs (60–63). Thus, combining
worker-specific data (e.g., frequency and duration of tasks
performed) from a questionnaire with a J/TEM can result in
more accurate estimate of worker exposures compared to a
generic J/TEM as it takes into account worker-specific exposure
circumstances (64–66). Quantitative exposures are essential to
minimize exposure misclassification and obtain quantitative
exposure-response relationships to support the development of
exposure limits and design of optimal prevention strategies (67).

In this study, information on jobs performed and tenure
in the coffee or flavoring industry was gathered in the work
history questionnaire. The exposure module elicited information
on the frequency and duration of tasks performed in current
job, which captures and reflects worker-specific exposure
circumstances (Table 2). However, the duration and frequency
of tasks performed in previous jobs was not gathered because
of the potential for error or bias in recalling such detailed
information about tasks in past jobs (68). Full-shift and task-
based exposure measurements enabled the construction of JEM
and TEM. Furthermore, J/TEM cells included average (the
minimum variance unbiased estimator of arithmetic mean) and
95th percentile (P95) job or task exposures as well as measures
of peak exposures (P95) from instantaneous sampling. The
exposure profiles from multiple tasks and jobs held by workers
can be summarized to obtain current or worklife highest, average,
and cumulative exposure summary metrics to explore multiple
hypotheses about exposure-response relationships. Specifically,
these metrics include: the highest instantaneous P95 exposure
for current activities; the highest P95 and the average short-
duration exposures for current tasks, weighted or unweighted by
task duration and frequency; the highest (P95) and average full-
shift exposure for current job; and highest (P95), average and
cumulative exposures for all jobs as worklife metrics. Worklife
metrics based on task-based sampling could not be calculated
as historical task information was not gathered. These summary
metrics can be calculated for the measured alpha-diketones, as
well as their combination as a sum of total alpha-diketones
concentration. Additionally, information on the frequency and
duration of current tasks can be used as qualitative or quantitative
surrogate of total exposure experienced during a task, which
includes the combination of alpha-diketones, other VOCs, dusts
and allergens depending on the task. The frequency and duration

Frontiers in Public Health | www.frontiersin.org 4 November 2021 | Volume 9 | Article 705225

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Virji et al. Exposures, Health in Coffee Production

of task information can be combined to obtain the hours per
week a task is performed. Performing the task of handling green
coffee beans can be a surrogate for exposure to dust and allergens
that were not quantified. These wide range of metrics offer the
opportunity to fully examine the effects of current or worklife
exposure to specific alpha-diketones and their sum, other VOCs,
dust, and allergens, peak or cumulative exposure metrics on
various respiratory health outcomes of interest ranging from
current symptoms to lung function parameters.

Health Assessment Strategy
Cross-sectional surveys were conducted to investigate evidence
of OB, asthma and other respiratory diseases using a combination
of novel and established methods described in detail by
Harvey et al. (2). The questionnaire included modules on
irritation, upper and lower respiratory symptoms, disease
diagnoses, smoking history, work history, and exposure modules;
the respiratory health questions were based on validated
survey instruments. Spirometry testing was conducted following
American Thoracic Society (ATS) guidelines (69) to identify
functional respiratory abnormalities, and obstructive, restrictive
and mixed pattern were recorded. Impulse oscillometry (IOS)
was conducted according to manufacturer instructions and
published experience to augment spirometry as a more sensitive
metric of small airways dysfunction that may serve as an early
indicator by identifying abnormalities in workers with normal
spirometry (70, 71). Bronchodilator was administered for those
with abnormal spirometry or IOS to evaluate whether these
abnormalities were fixed or reversible. Testing for fractional
exhaled nitric oxide (FeNO) was conducted following ATS
guidelines (72) to identify those with eosinophilic airway
inflammation, commonly seen in allergic or Immunoglobulin E
mediated asthma.

The health effects of concern in the coffee production facilities
include asthma and OB, which may manifest with a range of
overlapping respiratory symptoms and functional abnormalities.
The objective of the health investigation was to assess the
burden of respiratory abnormalities, in particular early markers
of disease that could inform prevention. For instance, spirometry
provides objective measures of functional abnormalities and their
severity, but may be normal in early OB or mild asthma on
account of insensitivity to changes in the small airways (73–
75). The addition of IOS was thus intended to capture small
airways dysfunction that can occur in both OB and asthma
and may precede spirometric detection. For those participants
with functional abnormalities, performing lung function testing
before and after administration of bronchodilator can help
identify workers with reversible abnormalities likely related to
asthma from those with fixed abnormality likely associated with
OB. Test of FeNO may further distinguish those with allergic
asthma from those with irritant asthma (72).

IOS is not a new technology (76), but more recent portable
units facilitate its use beyond the pulmonary function laboratory,
including field studies of the workplace. IOS measures the
mechanical properties of the respiratory system including upper
and intrathoracic airways, lung tissue and chest wall, specifically

TABLE 2 | Questions used in the exposure module of the questionnaire to

assess exposures.

What is your current job?

Job title, tenure years, hours worked/day, days worked/week

What are your past jobs in this facility?

Job title, tenure years, hours worked/week, tasks performed

What are your past jobs in other coffee or flavoring facilities?

Facility, job title, tenure years

Production area work or by-stander

Location, hours in the area/week, production area worker or passer-by

Do you work with green beans?

Do you work in the warehouse or where finished goods are stored?

Location of warehouse (on site/off site)

Do you roast coffee beans?

Number of days/week, number of hours/day, roaster ID, collect roast sample

and smell beans

Do you grind coffee beans?

Number of days/week, number of hours/day, grinder ID, grind

flavored/unflavored beans

Do you move roasted beans or ground coffee?

Number of days/week, number of hours/day

Do you flavor coffee (whole bean or ground coffee)?

Number of days/week, number of hours/day, use liquid/powder flavoring, flavor

whole bean/ground coffee

Do you package coffee (whole bean or ground coffee)?

Number of days/week, number of hours/day, packaging machine/ by hand,

machine ID, package machine ID, package flavored/unflavored, repackage faulty

packaging

Do you clean containers of roasted coffee?

Number of days/week, number of hours/day, clean storage

container/roaster/grinder/packaging machine

Do you perform maintenance on coffee production machines?

Number of days/week, number of hours/day

Do you perform any quality control activities?

QC green beans/roast beans, number of days/week, number of hours/day

Do your grind coffee beans as part of quality control?

Number of days/week, number of hours/day, grind flavored/unflavored coffee,

flavor coffee

Do you flavor coffee as part of quality control?

Number of days/week, number of hours/day, use liquid/powder flavoring, flavor

whole bean/ground coffee

Do you perform quality control checks such as brewing, cupping, and tasting?

Number of days/week, number of hours/day

Do you work in the café?

Number of days/week, number of hours/day

Do you grind coffee beans in the café?

Number of days/week, number of hours/day, grind flavored/unflavored beans

Do you flavor brewed coffee in the café?

Number of days/week, number of hours/day, use liquid/powder flavoring

Are you ever within an arm’s length of these locations/units?

Coffee roaster, cooling bins of roasted coffee, grinder, hoppers or containers of

roasted coffee, coffee being packaged, packaged coffee, flavoring is being added

or mixed

respiratory impedance, and is thought to be sensitive for
dysfunction of the small airways (77, 78). Histopathological
changes in small airways of workers exposed to alpha-diketones
are characterized by bronchiolar wall fibrosis, leading to luminal
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narrowing and obliteration that obstructs airflow (79). A growing
body of literature, particularly from the experience with lung
transplant patients and survivors of the World Trade Center
disaster, indicates that oscillometry can detect this small airway
obstruction at an earlier stage than spirometry (73, 80).

Despite these advantages, IOS does pose challenges.
Normative values to aid in the interpretation of IOS parameters
are not robust and available for only select small sub populations
(74, 81). Additionally, little to no research has explored the
underlying patterns in the IOS parameters that may identify new
markers of early pathophysiologic changes that may be linked
to different disease outcomes. There is a potential wealth of
information locked in the numerous IOS parameters and flow
and volume parameters from spirometry that are not regularly
used, such as forced expiratory volume in 3 s (FEV3). If these
IOS and spirometry parameters are combined with symptoms,
disease diagnoses, demographics, and exposure data to explore
patterns, they may provide invaluable insights into early markers
of adverse health outcomes (82). Underlying patterns in these
complex set of variables can be brought to light by advanced
machine learning methods, which may help identify subgroups
of workers at different stages of disease development (83), and
enable timely intervention to prevent progression of adverse
respiratory health outcomes. The combination of these tests
along with advanced data analyses will be used to potentially
separate those with asthma from those with effects consistent
with OB and to potentially identify early markers of adverse
health outcomes.

The health assessment strategy, while extensive and thorough,
has several limitations with some that are inherent in the
nature of HHE mechanism including: (1) inability to assess
longitudinal change in symptoms or lung function because
of the cross-sectional nature of the study, (2) potential for
healthy worker survivor effect because of enrolling current
workers only, (3) potential for bias if differential participation
by health status occurred as participation was not 100%, and (4)
potential for underestimation of exposure and respiratory health
burden in the industry as the HHE requests were often made
by management at facilities without known health problems.
Additionally, despite the extensive respiratory health evaluations,
additional medical testing such as collecting blood samples for
immune response to allergens and potential novel biomarkers
of early pathophysiologic changes, radiographic imaging that
may be more sensitive than lung function for small airway
diseases and performing challenge testing to assess for airways
hyperresponsiveness could result in better characterization of
respiratory health.

Exposure-Response Modeling
A variety of standard and advanced statistical models will
be fit for the various outcome measures of interest with the
many quantitative exposures to alpha-diketones and quantitative
and qualitative metrics of task exposure surrogates. Least-
square regression will be used to fit models for continuous
outcomes from FeNO, spirometry and IOS parameters. Logistic
regression models will be used to model polytomous outcomes
from multiple categories of IOS, spirometry, asthma and

subgroups identified by machine learning, and binary outcomes
from symptoms, chronic disease diagnoses, and other asthma
variables. All models will include adjustment for age, sex, race,
body mass index, height, weight, smoking status, allergic status,
and tenure as appropriate. Model with continuous exposure
metrics will be evaluated for non-linearity through fitting
restricted cubic splines (84). The various tasks as exposure
surrogates are not mutually exclusive thus not independent and
cannot be modeled separately or put in the same model due
to correlation among tasks. These associations will be explored
using advanced statistical methods to account for the effects of
multiple correlated exposures and their interactions (85–88).

Anticipated Outcomes of the Study
The exposure assessment strategy facilitates several exposure
metrics to be generated to explore multiple questions on the
nature of the exposure-response relationships. The respiratory
health outcomes include upper or lower respiratory symptoms,
disease diagnoses, spirometry and IOS parameters, and FeNO
values. Thus, a spectrum of adverse health effects can be explored,
including those that may be related to flavoring chemicals and
those that may be related to allergen and irritant exposures such
as green coffee bean and dust exposures. The analyses using
machine learning methods may identify underlying patterns of
various health measures parameters that may represent new
markers of early health effects. The various exposure-response
relationships can address: (1) the relevance of peak, average,
cumulative intensity or duration of exposure, (2) the role of
individual or combined alpha-diketones or mixed VOC and
dust exposures, and (3) the shape of the exposure-response
relationship for the various health outcomes.

Results of exposure modeling can identify the effects of
contextual information on full-shift and task-based exposures to
enable identification and prioritization of exposure mitigation
options. The use of the advanced Bayesian modeling method
facilitates the evaluation of all determinants that make it into the
numerous (could be as high as one thousand) final models which
are then averaged to summarize the importance (% presence in
final models) and effect (parameter estimate) of each variable;
in traditional modeling, such decisions are made based on a
single final model fit using a statistically convenient strategy
of forward selection or backward elimination (44). The set of
important exposure determinants can inform controls selection
by identifying factors with the greatest potential impact on
exposure to prioritize.

Challenges, Limitations and Reflections on
the Approach
With any approach, there are trade-offs and limitations of
selected study design or strategy. Primary limitations of exposure
assessment were: (1) not measuring exposure to dust and
allergens that are important for asthma outcomes (though
exposure surrogate of the task of handling green beans may
provide some insights), (2) difficulty in collecting adequate
detail on time-varying contextual information during exposure
monitoring, and (3) impracticality of collecting task duration
and frequency information for historical jobs. Job titles in
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the coffee workplaces were often non-specific and did not
clearly distinguish among workers and their tasks. Task-based
sampling offers the opportunity to directly identify high exposure
tasks for targeted controls, may provide more precise estimates
of the long-term average exposures for epidemiologic studies
under some circumstances when exposures are highly variable
(57, 89, 90), can be used to compare calculated full-shift
exposure to exposure limits through full or partial period
consecutive or grab samples (91), and can provide a range of
exposure metrics from average to peak exposure that can be
summarized to cumulative, average or highest exposure summary
metrics for epidemiologic analysis. Despite some advantages,
there are a number of challenges associated with task-based
sampling, including task definition, extensive sampling effort,
accurately collecting information on the frequency and duration
of current and historical tasks, and collecting adequate mass
for quantification (68, 92–94). Personal real-time monitoring of
alpha-diketones and other VOCs would have been ideal, but
currently available technology, e.g., a portable Fourier Transform
Infrared Spectrometer is an area sampler not suited for personal
monitoring (95). With advances in sensor technologies, real-
time wearable sensors may be available in the future to capture
instantaneous, short-duration and full-shift exposures with one
sampler to greatly reduce monitoring effort.

Collecting contextual information is challenging as it entails
accounting for time over which innumerable factors may change
causing measured exposures to vary considerably. Collecting
time-varying contextual information requires direct observation
or worker-recording of tasks, duration or frequency, and other
factors along the source-receptor pathway, which is challenging
and time and resource intensive (56, 96–98). Factors that are
constant within a facility and do not vary over time are easier
to collect but may explain limited within-facility variability.
Contextual variables for task-based samples taken over a shorter
period can be short lived and highly variable, and may be best
recorded as present or absent to minimize error in estimating
duration. New sensor technologies may make it easier to capture
contextual information in real-time more accurately without
having to continuously observe workers (99). For example, the
Dutch Institution of Applied Science, TNO is piloting the use of
sensors to detect and record proximity of workers to different
sources of exposure, or placing sensors on tools or machines to
record their operational information such as vibration sensors on
tools or machines to indicate when in use.

While the health assessment was extensive, a comprehensive
health assessment is time and resource prohibitive and not
practicable for HHEs. Additionally, some potential biases could
have beenminimized by including former workers and recruiting
additional worksites with potentially more varied burden of
respiratory disease and exposure experiences, but this was not

feasible. Likewise, longitudinal follow-up study design would
be ideal but not typical within the HHE Program context.
Nevertheless, the combination of several tests with advanced
machine learning methods holds promise for the potential
identification of early markers of respiratory effects.

CONCLUSION

The overall goal of the study was to characterize exposure
conditions, respiratory health, and exposure-response
relationships among coffee production workers, ultimately
leading to exposure mitigation and prevention of adverse
respiratory health outcomes. To achieve these goals, extensive
exposure and health assessments were conducted within the
confines of the HHE Program. Data were pooled to provide
a large enough population to explore exposure-response
relationships to address one of the requestors’ primary concerns
about the effect of exposure to alpha-diketones on the respiratory
heath of coffee workers. Strengths and limitations of the
approaches used are discussed. It must also be emphasized that
when use of secondary data from individual HHEs is deemed
to constitute human subjects research, all regulations governing
human subjects research must be followed including approval
from the NIOSH IRB.
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