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L-leucine (Leu), as one of the effective amino acids to activate the mTOR signaling
pathway, can alleviate transmissible gastroenteritis virus (TGEV) infection. However, the
underlying mechanism by which Leu alleviates the virus infection has not been fully
characterized. In particular, how Leu impacts TGEV replication through mTOR signaling
has yet to be elucidated. In the present study, we found that TGEV proliferated efficiently in
intestinal porcine epithelial cells (IPEC-J2 cells) as evidenced by the increase in viral
contents by flow cytometry, the inhibition of cell proliferation by CCK-8 assay as well as
the reduction of PCNA level by western blot. Besides, western blot analysis showed that
STAT1 expression was markedly reduced in TGEV-infected cells. The results of ELISA
revealed the inhibition of ISGs (ISG56, MxA, and PKR) expressions by TGEV infection.
TGEV-induced mTOR and its downstream p70 S6K and 4E-BP1, STAT1 and ISGs
downregulation were blocked by an mTOR activator-MHY1485 but not by an mTOR
inhibitor-RAPA. Concurrently, mTOR activation by MHY1485 reduced the contents of
TGEV and vice versa. Furthermore, Leu reversed the inhibition of STAT1 and ISGs by
activating mTOR and its downstream p70 S6K and 4E-BP1 in TEGV-infected cells. Our
findings demonstrated that Leu promoted the expressions of STAT1 and ISGs via
activating mTOR signaling in IPEC-J2 cells, aiming to prevent TGEV infection.

Keywords: L-leucine, transmissible gastroenteritis virus, mammalian target of rapamycin, signal transducer and
activator of transcription 1, IPEC-J2 cells
INTRODUCTION

Transmissible gastroenteritis virus (TGEV), which belongs to the genus Alphacoronavirus, is an
enveloped, single-stranded, positive-sense RNA virus (1, 2). TGEV replicates in the cytoplasm of
differentiated enterocytes covering the small intestinal villi and causes acute enteritis in swine of all
ages (3, 4). The common clinical manifestations are anorexia, vomiting, watery diarrhea,
dehydration, and weight loss in piglets. Specifically, the mortality rate of seropositive suckling
piglets may reach up to 100% during epidemics (5). Despite the availability of vaccines, outbreaks
can be encountered globally and cause great economic losses in the swine industry (6).
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In the process of viral infection and replication, innate
immunity, as the first line of defense, detects pathogen-
associated molecular patterns (PAMPs) of invading viruses by
different pattern recognition receptors (PRRs) and responds
accordingly by producing a series of effector molecules or
inflammatory elements against viral invasion (7, 8). Among
most innate immune responses, IFN-I signaling is one of the
most important antiviral innate immunity to antagonize virus
infection. Phosphorylation of STAT1 on tyrosine 701 plays a
pivotal role in activating the IFN-I signaling pathway (9–11).
Even though IFNs exert antiviral activity during viral infection,
the ability to suppress innate immune responses provides
invading viruses with the opportunity to replicate and establish
a productive infection (12–14). A previous study revealed that
porcine epidemic diarrhea virus (PEDV), which is genetically
related to TGEV, can inhibit STAT1 expression through the
ubiquitin-proteasome targeting degradation system (15).

A great deal of evidence supports the notion of mTOR
function in maintaining the structure of the intestinal mucosa
and in the self-renewal of stem cells. Emerging studies have
begun to shed light on the interplay between mTOR signaling
and innate immune signaling transductions, arguing for their
possible roles in the regulation of host antiviral responses
(16, 17). Several studies have indicated that mTOR could
regulate STAT1 expression (18–20). However, how mTOR
regulation influences STAT1 expression in TGEV-infected cells
remains unknown.

In the meantime, identifying an effective treatment for TGEV
pathogens is of utmost importance in terms of the antibiotic
prohibition. Because the possibility of viral gene mutation,
general therapeutic drawbacks of vaccines, and effects of
prescription drugs only on clinical symptoms still put the host
at risk, the development of effective nutritional regimens
targeting mTOR/STAT1 activation has become one of the
integral means to antagonize TGEV infection (21). Recent
studies on pigs have shown that branched-chain amino acids
(BCAAs) improve intestinal integrity and function and modify
the production of immunoregulatory cytokines to protect the
host from different diseases (22, 23). Among the three BCAAs,
L-leucine (Leu) earns the greatest reputation for its unique
function of activating the mTOR signaling pathway (24, 25). In
the present study, we investigated the role of mTOR in regulating
the IFN-I response. Our results clearly demonstrated that TGEV
inhibited the expressions of mTOR, p70 S6K, 4E-BP1, STAT1
and ISGs. Mechanistically, mTOR activity regulation both by its
own activator and Leu could alleviate TGEV infection via
increasing in STAT1 and ISGs expression. On the contrary, the
specific inhibitor of mTOR promoted TGEV replication by
reducing STAT1 and ISGs expressions.
MATERIALS AND METHODS

Cells and Virus
TGEV strain WH-1 (GenBank accession no. HQ462571.1) was
kindly offered from the College of Veterinary Medicine, Sichuan
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Agricultural University (26). Virus titers were determined by
50% tissue culture infective doses (TCID50) assay. Intestinal
porcine epithelial cells (IPEC-J2 cells) were cultured and
maintained in Dulbecco’s modified Eagle’s F12 Ham medium
(DMEM-F12; Gibco, USA) supplemented with 10% heat-
inactivated fetal bovine serum (FBS; Gibco, USA) and 1%
penicillin–streptomycin (Gibco, USA) at 37°C in a humidified
5% CO2 incubator. The swine testis cells (ST-0746) were cultured
and maintained in DMEM (Gibco, USA) and used to
amplify TGEV.

Reagents and Antibodies
Polyclonal antibodies against STAT1, phospho-STAT1 (Tyr701)
Rabbit mAb, PCNA antibody Mouse mAb, and the b-actin
antibody were purchased from Cell Signaling Technology,
USA. Recombinant human IFN-b was purchased from
Peprotech, USA. Rapamycin (RAPA) and MHY1485 were
purchased from Selleck Chemicals, USA. Leu was purchased
from Sigma-Aldrich, USA. Before TGEV infection, IPEC-J2 cells
were pretreated with 10 nM RAPA or 10 mM MHY1485 for
30 min. Differently, the cells were starved for 3 h in the Earle’s
Balanced Salt Solution (EBSS; Gibco, USA) and then pretreated
with 10 mM Leu before TGEV infection. TGE Virus Antibody
(1-Q-17) was purchased from Santa Cruz Biotechnology, USA.
Goat Anti-Mouse IgG H&L (Alexa Fluor® 488) was purchased
from Abcam, USA.

CCK-8 Assay
IPEC-J2 cells were seeded on glass coverslips (Corning, USA) in
96-well plates (1 × 104 cells per well). After reaching 80%
confluence, the medium was replaced with IPEC-J2 cell
starvation medium, followed by infection with TGEV (MOI = 5)
for 1 h. Then, the virus culture medium was replaced by IPEC-J2
cell starvation medium. The cells were cultured for 0, 6, 12, 24, 36,
and 48 h, respectively. After that, 10 ml of CCK-8 solution was
added into each well and then cultured in the cell incubator for 2 h.
The absorbance at 450 nm was determined by enzyme-linked
immunosorbent assay.

The Kinetic Curve of TGEV Replication in
IPEC-J2 Cells
ST cells were infected with TGEV (MOI = 5) at different time
points (6, 12, 24, 36, 48 h). The virus was harvested at different
time points by repeated freezing and thawing for 3 times,
followed by centrifugation at 3,000 r/min for 10 min. Then,
the supernatant was filtered with a 0.22 mm filter to preserve at
−80°C. The virus titers were measured in IPEC-J2 cells. TCID50

was calculated by the Reed–Muench method to draw the kinetic
curve of TGEV replication.

Flow Cytometry Analysis
IPEC-J2 cells were collected in the EP tubes with 1 ml PBS and
centrifuged for 5 min at 4°C in 350 relative centrifugal force (rcf).
Then we removed the supernatant and resuspended and fixed
cells with 4% paraformaldehyde for 15 min. After 500 rcf
centrifugation at 4°C for 5 min, 100 ml TGEV primary
antibody (0.05% Titonx-100: primary antibody = 100: 1 v/v)
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was added. Two hours later at room temperature, cells were
centrifuged for 5 min at 4°C in 500 rcf. Next, the supernatant was
removed and we added 100 ml second antibody (PBS: second
antibody = 1,000:1) in the dark condition. After storage at room
temperature for 1 h, we added 900 ml PBS for centrifugation.
Then the supernatant was removed and 500 ml PBS was added to
resuspend cells for detection.

RT-qPCR
Total cellular RNA was extracted with TRIzol Reagent
(Invitrogen, USA) from TGEV-infected IPEC-J2 cells and an
aliquot (1 mg) was reverse-transcribed into cDNA using a
PrimeScript™ RT Reagent Kit with gDNA Eraser (TaKaRa,
Japan). The obtained cDNA was then used as the template in
the SYBR Green I PCR assay (Applied Biosystems, CA). Real-
time qPCR was performed for STAT1 and a house-keeping gene
(GAPDH) according to standard protocols with the primers
indicated in Table S1.

Western Blot Analysis
Briefly, IPEC-J2 cells were collected in the 1.5 ml EP tube for
centrifugation at 500 rcf for 5 min at 4°C. After removing the
supernatant, cells were mixed with RIPA lysis buffer (Beyotime,
China) containing PMSF (Sigma-Aldrich, US) and kept on the
ice for 30 min. Ultrasonication was then performed to break cells,
followed by centrifugation at 10,000 rcf for 15 min at 4°C. The
proteins in the supernatant containing with 4× Laemmli Sample
Buffer (Bio-Rad, USA) were denatured in the 98°C-metal bath
for 10 min. Equal amounts of samples were then subjected to
SDS-PAGE, and the expressions of STAT1 and p-STAT1 protein
were examined by western blot analysis using the indicated
antibodies. The expression of b-actin was detected to verify
equal protein sample loading.
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Enzyme-Linked Immunosorbent Assay
(ELISA)
The supernatants of different treatments were collected to
determine the concentrations of ISGs (ISG15, ISG56, MxA and
PKR) using spectrophotometric kits in line with the
manufacturer’s instructions (MEIMIAN, Jiangsu, China). The
protein concentrations were expressed pg/ml or ng/ml.

Statistical Analysis
All data were expressed as means ± standard error of means
(SEMs). The statistical significance was tested by unpaired two-
tailed Student’s T test and/or one-way analysis of variance
(ANOVA) using IBM SPSS Statistics version 20.0 (IBM, USA).
When there was a significant interaction, post hoc testing was
conducted using Tukey’s multiple comparison test. A p-value
of <0.05 was considered statistically significant.
RESULTS

IPEC-J2 Cells Are Susceptible to TGEV
Firstly, to determine whether TGEV could proliferate in IPEC-J2
cells, cells were incubated with TGEV (MOI = 5) for 0, 6, 12, 24,
36, and 48 h. We observed a massive viral replication at 24 h
post-infection (hpi). Moreover, the contents of TGEV increased
in a time-dependent manner (Figure 1A). Then, the percentage
of TGEV infected IPEC-J2 cells was examined. At first, virus
particles were assembled and released into the extracellular
matrix; however, the titer of TGEV was very low. During 24 to
48 h, the virus replicated rapidly. In particular, at 48 hpi, the
TCID50 of virus reached the highest level (10−6.57/100 ml), which
is close to the TCID50 (10

−6.8/100 ml) measured by TGEV in ST
cells (Figure 1B).
A B

D E

C

FIGURE 1 | TGEV infection in IPEC-J2 cells. (A) The contents of TGEV at 0, 6, 12, 24, 36, and 48 hpi were analyzed via flow cytometry. (B) The viral titers of TGEV
infected IPEC-J2 cells at 6, 12, 24, 36, and 48 hpi. (C) CCK-8 assay was used to detect the cell proliferation after TGEV infection at 6, 12, 24, 36, and 48 hpi. Data
express the mean ± SEM (n = 3). (D) The PCNA level was detected by western blot. (E) Quantitation of bands to demonstrate the protein level of PCNA. Data
express the mean ± SEM (n = 3). The symbol * indicates statistically significant differences (P < 0.05), and the symbol ** indicates statistically very significant
differences (P < 0.01).
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Next, CCK-8 assays were performed to assess cell proliferation
at different time points after TGEV infection (MOI = 5). The
results revealed that cell proliferation was boosted at 12 hpi, but
was remarkably suppressed afterward (Figure 1C). Besides, the
protein expression of PCNA was dramatically inhibited by TGEV
infection at 48 hpi (Figures 1D, E).

TGEV Replication Counteracts IFN-I
Signaling Pathway
To assess the effect of TGEV infection on STAT1 activation, the
levels of phosphorylated STAT1 (p-STAT1) and STAT1 were
examined in TGEV-infected cells. Since the ability of IFN-b to
induce STAT1 phosphorylation has been well documented
previously, recombinant IFN-b was exogenously administered
in the positive control (27). Western blot analysis revealed that
compared with the positive control, TGEV significantly decreased
the expressions of p-STAT1 and STAT1 (Figures 2A, B).
Similarly, the concentrations of ISGs (ISG56, MxA, and PKR)
related to STAT1 activation were also decreased by TGEV
(Figure 2C). Taken together, TGEV could inhibit the activation
of STAT1 regulated by IFN-b and its downstream ISGs to block
the IFN-I signaling pathway.

mTOR Regulation Is Involved in Control of
TGEV Replication
Our research demonstrated that the level of phosphorylation of
mTOR and its downstream p70 S6K and 4E-BP1 was generally
turned down by TGEV infection (Figure 3A). Given that mTOR
acts as the regulatory centerofvarious innate immune responses,we
wonder whether mTOR could modulate TGEV replication. IPEC-
J2 cells were treated with mTOR specific activator-MHY1485 and
inhibitor-RAPA, followed by infection with TGEV. We observed
that the inhibition of cell proliferation induced by TGEV was
alleviated by MHY1485 pretreatment (Figure 3A), but not RAPA
pretreatment (Figure 4A). At the same time, MHY1485
pretreatment markedly curbed the replication of TGEV
(Figure 3B). By contrast, RAPA pretreatment promoted the viral
replication at 48 hpi in IPEC-J2 cells (Figure 4B).
Frontiers in Immunology | www.frontiersin.org 4
With further research, we found that the protein expression of
p-mTOR and its downstream p-p70 S6K and p-4E-BP1 significantly
increased with MHY1485 pretreatment (Figures 3C, D), while
RAPA inhibited the p-mTOR, p-p70 S6K and p-4E-BP1 protein
expressions regardless of the presence or absence of viral infection
(Figures 4C, D). These data indicated that pharmacological
manipulation of mTOR could control the yield of TGEV.

mTOR Activator Augments STAT1 and
ISGs Expressions in TGEV-Infected
IPEC-J2 Cells
To investigate how mTOR modulates STAT1 activity, IPEC-J2
cells were pretreated with mTOR activator-MHY1485, followed
by TGEV infection. Western blot analysis revealed that 10 mM
MHY1485 significantly elevated the protein expression of
p-STAT1 (Figures 5A, B). Similarly, the concentrations of
ISGs, including ISG15, ISG56, MxA, and PKR, increased under
MHY1485 pretreatment (Figure 5C). The evidence showed that
mTOR activation could upregulate the expressions of p-STAT1
and downstream ISGs.

mTOR Inhibitor Reduces STAT1 and
ISGs Expressions in TGEV-Infected
IPEC-J2 Cells
Considering the promotion of TGEV replication triggered by
mTOR inhibitor-RAPA, we clarified whether RAPA could
suppress STAT1 and ISGs expressions to interrupt innate
immune response against TGEV infection. It is shown that p-
STAT1 level was not decreased by 10 nM RAPA pretreatment in
TGEV-infected cells (Figures 6A, B). However, compared with
the control group, 10 nM RAPA significantly inhibited p-STAT1
expression with non-infection (Figures 6A, B). To further
confirm the effect of RAPA on STAT1 expression, 1,000 U/ml
IFN-b was treated in the IPEC-J2 cells. The result showed that
10 nM RAPA markedly blocked the STAT1 activation by IFN-b
(Figure 6C). Similarly, the concentrations of ISG56, PKR, and
MxA were significantly decreased in RAPA-pretreated cells in
A B

C

FIGURE 2 | IFN-I signaling pathway was blocked by TGEV infection. (A) Both p-STAT1 and T-STAT1 levels were detected by western blot. (B) Quantitation of
bands to demonstrate the protein level of p-STAT1 and T-STAT1. Data express the means ± SEMs (n = 3). (C) The expressions of ISGs (ISG15, ISG56, MxA and
PKR) were analyzed via ELISA. Data express the means ± SEMs (n = 3). The symbol * indicates statistically significant differences (P < 0.05), **P < 0.01, ***P < 0.001
and ****P < 0.0001.
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A B

DC

FIGURE 3 | MHY1485 attenuated the TGEV infection by activating mTOR signaling. (A) CCK-8 assay was used to detect the proliferation of IPEC-J2 cells
pretreated with 10 mM MHY1485, followed by TGEV infection. Data express the mean ± SEM (n = 3). (B) The contents of TGEV were analyzed via flow cytometry in
the IPEC-J2 cells pretreated with 10 mM MHY1485, followed by TGEV infection. (C) The protein levels of p-mTOR, mTOR, p-p70 S6K, p70 S6K, p-4E-BP1 and 4E-
BP-1 were detected by western blot. (D) Quantitation of bands to demonstrate the protein level of p-mTOR/mTOR, p-p70 S6K/p70 S6K and p-4E-BP1. Data
express the means ± SEMs (n = 3). The symbol * indicates statistically significant differences (P < 0.05), **P < 0.01 and ***P < 0.001.
A B

DC

FIGURE 4 | RAPA promoted the TGEV replication by inhibiting mTOR signaling. (A) CCK-8 assay was used to detect the proliferation of IPEC-J2 cells pretreated
with 10 nM RAPA, followed by TGEV infection. Data express the mean ± SEM (n = 3). (B) The contents of TGEV were analyzed via flow cytometry in the IPEC-J2
cells pretreated with 10 nM RAPA, followed by TGEV infection. (C) The protein levels of p-mTOR, mTOR, p-p70 S6K, p70 S6K, p-4E-BP1 and 4E-BP-1 were
detected by western blot. (D) Quantitation of bands to demonstrate the protein level of p-mTOR/mTOR, p-p70 S6K/p70 S6K and p-4E-BP1. Data express the
means ± SEMs (n = 3). The symbol * indicates statistically significant differences (P < 0.05), **P < 0.01 and ***P < 0.001.
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response to IFN-b (Figure 6D). These observations suggested
that mTOR inhibition could downregulate the expressions of p-
STAT1 and downstream ISGs.

Leu Activated mTOR Signaling and
Prevents TGEV Replication
As shown in Figure 7A, Leu pretreatment mitigated the
reduction of cell proliferation by TGEV infection. At the same
time, we observed that Leu significantly reduced the contents of
TGEV (Figure 7B) and alleviated the inhibition of p-mTOR, p-
p70 S6K and p-4E-BP1 with TGEV infection (Figures 7C, D).
Therefore, Leu may protect IPEC-J2 cells from TGEV replication
by activating mTOR signaling.

Leu Boosts STAT1 and ISGs Expressions
in TGEV-Infected IPEC-J2 Cells
In this study, we investigated whether Leu could increase the
STAT1 and ISGs expressions to counteract virus infection.
Frontiers in Immunology | www.frontiersin.org 6
As shown in Figures 8A, B, the reduction of p-STAT1 was
significantly alleviated by Leu in TGEV-infected cells under the
RAPA pretreatment. As expected, Leu remarkably enhanced the
concentrations of ISG56, MxA, and PKR in infected IPEC-J2
cells (Figure 8C).
DISCUSSION

TGEV is known to the main etiological agent to cause diarrhea,
dehydration, and high mortality of piglets, and leads to
devastating economic losses in the swine industry. Once piglets
are infected, the virus enters the digestive tract and destroys the
small intestinal epithelial cells of piglets, affecting the absorption
of nutrients (28). The construction of TGEV-infected IPEC-J2
cells, which emulates the in vivo intestinal environment of piglets
infected by TGEV, is an ideal model for studying the mechanism
of viral infection (29). In the present study, a large number of
A B

D

C

FIGURE 6 | The expressions of STAT1 and ISGs was lessened by RAPA pretreatment. (A) Both p-STAT1 and T-STAT1 levels were detected by western blot.
(B) Quantitation of bands to demonstrate the protein level of p-STAT1/STAT1. Data express the means ± SEMs (n = 3). (C) The mRNA expression of STAT1 were
analyzed via RT-qPCR. Data express the means ± SEMs (n = 4). (D) The expressions of ISGs (ISG15, ISG56, MxA and PKR) were detected by ELISA. Data express the
means ± SEMs (n = 3). The symbol * indicates statistically significant differences (P < 0.05), **P < 0.01 and ***P < 0.001.
A B

C

FIGURE 5 | The inhibition of STAT1 and ISGs induced by TGEV infection was alleviated by MHY1485 pretreatment. (A) Both p-STAT1 and STAT1 levels were
detected by western blot. (B) Quantitation of bands to demonstrate the protein level of p-STAT1/STAT1. Data express the means ± SEMs (n = 3). (C) The
expressions of ISGs (ISG15, ISG56, MxA and PKR) were detected by ELISA. Data express the means ± SEMs (n = 3). The symbol * indicates statistically significant
differences (P < 0.05), **P < 0.01 and ****P < 0.0001.
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necrotic cells were observed in the culture plate, and virulence
reached the highest level at 48 hpi. Moreover, the results of flow
cytometry showed that the contents of TGEV increased in a
time-dependent manner. Consequently, it provides a reference
for the selection of appropriate time points for our
subsequent experiments.

Virus infection activates the host innate and adaptive
immunity to resist virus invasion. Innate immunity is the first
Frontiers in Immunology | www.frontiersin.org 7
line of defense in host protection (30). The host utilizes PRRs to
detect the PAMPs of the invading virus and induces the
expressions of some effector molecules through a series of
signal transduction (14). ISGs play an important role in the
process of direct resistance to viral infection, and JAK/STAT
signaling pathway mediates the expressions of ISGs (31). STAT1,
a member of the STAT family, is an important effector molecule
that mediates type I IFN response (32). However, IFN-b has
A B

C

FIGURE 8 | The expressions of STAT1 and ISGs increased by Leu and RAPA pretreatment in TGEV-infected cells. (A) Both p-STAT1 and T-STAT1 levels were
detected by western blot. (B) Quantitation of bands to demonstrate the protein level of p-STAT1/STAT1. Data express the means ± SEMs (n = 3). (C) The
expressions of ISGs (ISG15, ISG56, MxA and PKR) were detected by ELISA. Data express the means ± SEMs (n = 3). The symbol * indicates statistically significant
differences (P < 0.05), **P < 0.01 and ***P < 0.001.
A B

DC

FIGURE 7 | TGEV replication was regulated by Leu treatment. (A) CCK-8 assay was used to detect the proliferation of IPEC-J2 cells pretreated with 10 mM Leu,
followed by TGEV infection. Data express the mean ± SEM (n = 3). (B) The contents of TGEV were analyzed via flow cytometry in the IPEC-J2 cells pretreated with
10 mM Leu, followed by TGEV infection. (C) The protein levels of p-mTOR, mTOR, p-p70 S6K, p70 S6K, p-4E-BP1 and 4E-BP-1 were detected by western blot.
(D) Quantitation of bands to demonstrate the protein level of p-mTOR/mTOR, p-p70 S6K/p70 S6K and p-4E-BP1. Data express the means ± SEMs (n = 3). The
symbol * indicates statistically significant differences (P < 0.05), **P < 0.01 and ***P < 0.001.
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multi-function of antiviral infection and immunosuppression
but shows less cytotoxicity. Thus, IFN-b is inclined to clinical
application (33). Considering its superiority, IFN-b was selected
as a positive control to activate STAT1. In order to circumvent
the host innate immunity, the virus has developed a variety of
strategies to inhibit the activation of antiviral effector molecules,
especially to reduce the expressions of IFNs and inhibit the IFN
signaling pathway (34, 35). In the present study, TGEV infection
significantly inhibited the expression of STAT1 under normal
conditions and the expressions of p-STAT1 and STAT1 induced
by IFN-b at 48 hpi. At the same time, the expressions of ISGs,
including ISG56, MxA, PKR, and OASL were also inhibited.
Therefore, these results indicate that STAT1 is a vital signal
transduction target against TGEV infection. TGEV invasion can
block IFN signal transduction by suppressing STAT1 activity.

The mTOR signaling pathway, as the center of various
important physiological processes, has been a research hotspot
(36). A great deal of evidence supports the notion that the mTOR
signaling pathway plays an important role in viral infection,
replication, particle assembly and release (37, 38). Our study
showed that the mTOR activator (MHY1485) markedly
inhibited TGEV contents and mitigated the suppression of p-
mTOR, p-p70 S6K and p-4E-BP1 induced by TGEV infection.
Conversely, mTOR inhibitor (RAPA) promoted the TGEV
infection and has an adverse impact on the expressions of p-
mTOR, p-p70 S6K and p-4E-BP1 induced by TGEV infection.
Frontiers in Immunology | www.frontiersin.org 8
In addition, recent reports have revealed the points that mTOR is
able to regulate STAT1 activity, suggesting the possibility of a
specific cell type cascade between mTOR and STAT1 pathways
to synergistically regulate the host immune response (39, 40). A
recent study demonstrated that RAPA pretreatment could
inhibit STAT1 nuclear translocation in primary human fetal
astrocytes infected with neurotropic polyomavirus JC (JCV) (41).
Therefore, we hypothesize that the resistance of TGEV infection
by mTOR upregulation is mediated by STAT1 regulation. In this
study, IPEC-J2 cells were pretreated with mTOR specific
activator and inhibitor, respectively, to detect the STAT1
activity and the concentrations of downstream ISGs in TGEV-
infected cells. It is reported that mTOR activator-MHY1485
significantly alleviated the inhibitory effect of TGEV on p-
STAT1 expression, and increased the expressions of ISGs to
achieve the purpose of inhibiting TGEV proliferation. On the
contrary, compared with the control group, the mTOR inhibitor-
RAPA inhibited the expression of p-STAT1. However, p-STAT1
level was not decreased by RAPA pretreatment in TGEV-
infected cells. It is speculated that TGEV and RAPA both act
as antagonists of STAT1. Under the circumstances of STAT1
suppression by TGEV infection to evade innate immunity, the
negative effect of RAPA on STAT1 was not obvious in TGEV-
infected cells. Moreover, RAPA significantly inhibited the
expression of STAT1 in IFN-b-driven cells, consistent with the
trend of expressions of ISGs determined by ELISA. This is a
FIGURE 9 | The mechanisms by which Leu affects TGEV infection through regulating mTOR signaling in IPEC-J2 cells.
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unique example of the positive regulation of STAT1 activity by
mTOR, mechanistically highlighting the multifaceted control of
TGEV replication.

BCAAs enhance the intestinal immune defense system by
maintaining mucosal immune homeostasis and increasing the
level of immunoregulatory cytokines (42). Leu participates in
various cellular signal transduction mechanisms to regulate
intestinal growth, integrity and immune function against virus
invasion. Rag guanosine triphosphatases (GTPase) located on
lysosomes can sense the changes in amino acids and transfer
them to the mTORC1 pathway. With sufficient amino acids,
mTORC1 is recruited to play a role in lysosomes (43). Our
research showed that Leu could alleviate the inhibition of p-
mTOR, p-p70 S6K and p-4E-BP1 and reduce the content of
TGEV. The results above indicated that mTOR activation
significantly increased the expression of p-STAT1 and
attenuated the TGEV infection. Furthermore, we confirmed
that Leu could regulate the expressions of STAT1 and ISGs by
enhancing the activity of mTOR, which is coherent with the
results caused by MHY1485. Overall, our findings clearly
demonstrate that Leu may promote STAT1 and ISGs
expressions through activating mTOR signaling, with the
consequence of alleviation of TGEV infection in enterocytes.

In conclusion, mTOR regulation is involved in the process of
innate immunity against TGEV invasion. The ability of IPEC-J2
cells to prevent TGEV infection can be altered by regulating
mTOR signaling. The mechanism by which Leu alleviates TGEV
infection is related to its activation of mTOR signaling and
promotion of STAT1 and ISGs expressions (Figure 9).
Harnessing an effective nutrient strategy provides a novel
theoretical basis for targeting mTOR/STAT1 activation in the
prevention of transmissible gastroenteritis.
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