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The role of long non-coding RNA (lncRNA) in human tumors has gradually

received increasing attention in recent years. Particularly, the different

functions of lncRNAs in different subcellular localizations have been widely

investigated. The upregulation of lncRNA small nucleolar RNA host gene 17

(SNHG17) has been observed in various human tumors. Growing evidence has

proved that SNHG17 plays a tumor-promoting role in tumorigenesis and

development. This paper describes the molecular mechanisms by which

SNHG17 contributes to tumor formation and development. The different

functions of SNHG17 in various subcellular localizations are also emphasized:

its function in the cytoplasm as a competing endogenous RNA (ceRNA), its

action in the nucleus as a transcriptional coactivator, and its function through

the polycomb repressive complex 2 (PRC2)-dependent epigenetic

modifications that regulate transcriptional processes. Finally, the correlation

between SNHG17 and human tumors is summarized. Its potential as a novel

prognostic and diagnostic biomarker for cancer is explored especially.
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1 Introduction

The diversity of cancers increases the complexity of treatment. Hanahan andWeinberg

first summarized and classified the functional capabilities acquired by cancer cells that

facilitate cell survival, proliferation, and dissemination into six cancer hallmarks in 2000,

which include the following: (1) sustaining proliferative signaling, (2) evading growth

suppressors, (3) enabling replicative immortality, (4) activating invasion and metastasis, (5)

inducing/accessing vasculature, and (6) resisting cell death (1). The following four cancer

hallmarks were later added in 2011: deregulating cellular metabolism, avoiding immune

destruction, tumor-promoting inflammation, and genome instability/mutation (2).
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Hanahan (2022) proposed that unlocking phenotypic plasticity,

nonmutational epigenetic reprogramming, polymorphic

microbiomes, and senescent cells may also be emerging

hallmarks of cancer (3). Tumor features in the hallmarks could

enable tumors to acquire hallmark capabilities called enabling

characteristics, including tumor-promoting inflammation,

genome instability/mutation, nonmutational epigenetic

reprogramming, and polymorphic microbiomes.

A growing stream of research has focused on the role of non-

coding RNAs in tumors. Among them, long non-coding RNAs

(lncRNAs) have been found to regulate genomic expression

through transcriptional and post-transcriptional levels (4). The

function of lncRNA correlates with subcellular localization.

LncRNAs can function as competing endogenous RNA

(ceRNAs) in the cytoplasm and regulate gene transcription in

the nucleus through cis- or trans-regulation (5, 6). This review

mainly focuses on the different roles of SNHG17 in various

localizations and finds that the effects of SNHG17 emphasized

the role of ceRNA in the cytoplasm and regulated transcription

in the nucleus as a transcriptional co-activator or through

transcriptional repressive chromatin modifications. The vital

role of epigenetic modifications has been gaining attention in

recent years. Thus, the role of the epigenetic modification

function of SNHG17 in promoting tumorigenesis and

progression is also discussed.

SNHG is the small nucleolar host gene and belongs to

lncRNA. Several SNHG family members, such as SNHG1 (7,

8), SNHG20 (9), SNHG3 (10, 11), SNHG5 (12, 13), and

SNHG16 (14), are recently closely associated with tumors.

Meanwhile, as the homolog of SNHG, snoRNA has a

connection with SNHG. snoRNA plays a role in ribosomal

RNA modification, stress response, and tumor development.

However, but the relationship between snoRNA and SNHG is

unclear. Previous literature describes that SNHG17 in prostate

cancer increases the expression of its homolog snoRA71B

through a positive feedback loop, which promotes tumor

progression (15). The regulatory relationship between SNHG

and snoRNA is also investigated in a new insight.

This paper discusses the correlation between SNHG17 and

tumors by describing the molecular mechanisms by which

SNHG17 contributes to the formation of cellular hallmark

capabilities and the enabling characteristics. The paper also

focuses on its different functions in various subcellular

localizations and finally discusses the potential of SNHG17 as

a new prognostic and diagnostic biomarker for cancer.
2 Materials and methods

2.1 Raw data

The data samples of the differentially expressed genes of

LUAD after SNHG17 knockdown were downloaded from
Frontiers in Oncology 02
GSE131543. The immune-related genes were acquired from

the ImmPort database.
2.2 GO analyze

GO analyze was performed using Metascape (http://

metascape.org/). Terms with p-value cutoff of 0.01, min

overlap of 3, and min enrichment of 1.5 were considered. The

top 20 enriched terms are displayed in Figure 4B.
2.3 Immune and stromal
infiltration analysis

ssGSEA was applied to explore the infiltration degrees of

immune cell types in LUAD of the TCGA database using the

GSVAR package in R (version 1.34.0). The estimated package

was used to generate ImmuneScore, StromalScore, and

ESTIMATEScore. R language version 3.6.3 loaded with ggplot2

package (version 3.3.3) was used to demonstrate the correlation

between SNHG17 and PD-L1. All the correlation between

SNHG17 and others were studied using Spearman

correlation analysis.
3 Results

3.1 Association of SNHG17 in the
acquisition of hallmark capabilities

3.1.1 Role of SNHG17 in sustaining
proliferative signaling

SNHG17 is associated with increased cell proliferation

capacity in various types of cancers. The mechanisms that

promote the formation of this phenotype include the activation

of cyclin-dependent kinases (CDKs), phosphoinositide-3 kinase/

protein kinase B (PI3K/Akt) and Wnt/b-catenin signaling

pathway, and the inhibition of cyclin-dependent kinase inhibitor

(CKI) (Figure 1).

3.1.1.1 SNHG17 regulates CKI, CDK, and c-Myc

Ma Z et al. (16), first identified the relevance between SNHG17

and tumor cell proliferation in colorectal cancer, and revealed that

SNHG17 epigenetically targets p57 by binding to enhancers on zeste

homolog 2 (EZH2). As a well-known CKI, p57 plays a vital role in

regulating the cell cycle. Briefly, the cell cycle regulatory machinery

comprises three major types of proteins: cyclin, CDK, and CKI. The

bindingof cyclinwithCDKpromotes cell cycle progression, andCKI

hinders this effect by inhibiting the cyclin-CDK complex. The tumor

suppressor-like properties of CKI have been reported in recent years

(17), and lncRNAs can promote cancer cell proliferation and

migration by decreasing CKI expression (18). SNHG17 acts as a
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suppressor of multiple CKIs in tumors; in addition to p57, SNHG17

can also inhibit p15 and p16, and this CKI inhibitory property

contributes to increasing cell proliferation capacity (19, 20).

Moreover, RNA sequencing predicts that SNHG17 can interact

with the transcription factor krupple-like factor 6 (KLF6) (21). p21

may also exist downstream of SNHG17 considering the regulatory

relationshipbetweenKLF6andp21 (22). Furthermore, SNHG17can

enhance the expression of CDK4 and CDK6, promoting cell cycle

progression (20, 23).

The role of SNHG17 in the cell cycle also involves the

ubiquitin–proteasome system (UPS). As a considerably

method for intracellular protein degradation, the UPS is one

of the essential mechanisms controlling the levels of MYC

protein (24). A recent study in hepatocellular carcinoma found

that SNHG17 can reduce c-Myc ubiquitination, increase c-Myc

levels, and promote G1/S phase transition (25). SNHG17 can

play multiple roles through UPS. For example, in colorectal

cancer, SNHG17 competes with the E3 ligase Trim23 to bind

Pescadillo (PES1), protecting PES1 from degradation (26). In

non-tumor diseases, SNHG17 reduces MST ubiquitination and

degradation and regulates the apoptosis of podocytes and

Parkin-dependent mitophagy in diabetic nephropathy (27).

However, the relationship between SNHG17 and UPS

currently needs rigorous experimental data support, and this

area of research requires further exploration.
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3.1.1.2 SNHG17 regulates PI3K/AKT signaling pathway

PI3K/AKT signaling, one of the critical intracellular

pathways, is also involved in the mechanism of how SNHG17

enables tumor cells to obtain the capacity of sustained

proliferation. STAT3 and transforming growth factor-b (TGF-

b) are located upstream of SNHG17, which contribute to activate

the PI3K/AKT signaling pathway by increasing SNHG17 levels

(28, 29). In addition, SNHG17 may indirectly activate the PI3K/

AKT signaling pathway through its regulatory effects on NETO2

and PES1 (26, 30–32).

3.1.1.3 SNHG17 regulates Wnt/b-catenin
signaling pathway

SNHG17 acts as the ceRNA for miR-506-3p and miR-384 in

the cytoplasm to exert pro-proliferative effects through the Wnt/

b-catenin pathway (33, 34). For the specific mechanism,

SNHG17 affects the CTNNB1 gene, which encodes b-catenin
by targeting miR-506-3p (33) and miR-384 to act on the

transcription factor ELF1 (34) to promote the transcription of

the CTNNB1 gene. Moreover, transcription factor yin-yang 1

(YY1) facilitates this upstream regulation of SNHG17 (33).

Intriguingly, Wnt ligand secretion mediator (WLS) and

stanniocalcin 2 (STC2) are involved in the pro-proliferative

effects of SNHG17 as downstream targets (35, 36), which are

both closely related to the Wnt/b-catenin signaling pathway (37,
FIGURE 1

Schematic representation of the mechanisms by which SNHG17 plays in sustaining proliferative signaling. In the cytoplasm, SNHG17 acts as the
ceRNA for miR-506-3 and miR-384 to activate the Wnt/b-catenin pathway and enhance the expression of CDK6 by targeting miR-214-3p.
Moreover, STAT3 and TGF-b activate the PI3K/AKT signaling pathway by increasing SNHG17 levels. By interacting with LRPPRC, SNHG17 can
also reduce c-Myc ubiquitination. In nucleus, SNHG17 targets p57 and p15 by binding to EZH2 and PRC2. p21 may also exist downstream of
SNHG17 considering the regulatory relationship between KLF6 and SNHG17. And transcription factor YY1 upregulate the transcription of
SNHG17. SNHG17, lncRNA small nucleolar RNA host gene 17; CDK6, Cyclin-dependent kinase 6; STAT3, Signal transducer and activator of
transcription 3; TGF-b, Transforming growth factor b; PI3K, Phosphoinositide-3 kinase; AKT, Protein kinase B; LRPPRC, Leucine-rich
pentatricopeptide repeat-containing protein; EZH2, enhancers on zeste homolog 2; PRC2, Polycomb repressive complex 2; KLF6: Krupple-like
factor 6; YY1, Yin-yang 1.
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38). However, additional research needs to verify whether

SNHG17 can activate the Wnt/b-catenin pathway and thus

promote tumor progression through WLS and STC2.

3.1.2 Role of SNHG17 in forming death-
resistant phenotype

The forms of cell death include accidental cell death (ACD)

and regulatory cell death (RCD). Apoptosis has been widely

investigated as the first identified regulatory cell death in tumors;

some non-apoptotic regulatory cell deaths, such as autophagic

cell death, pyroptosis, and ferroptosis, are also currently gaining

attention. Cancer cells can resist cell death through multiple

pathways, which is also one of the hallmark capabilities.

Interestingly, the upregulation of SNHG17 is associated with

increased drug resistance in astrocytoma and prostate cancer

(39, 40). Furthermore, several studies have shown the formation

mechanisms of the death-resistant phenotype. Herein, several

reported mechanisms are introduced, and examples for known

modes of action are provided.

3.1.2.1 SNHG17 regulates apoptosis-related proteins

Multiple innate tumor suppressive mechanisms exist in

mammals to ensure that cells have normal levels of

proliferation, and these mechanisms are activated when cells

show aberrant proliferation, leading to apoptosis or senescence

(41). Thus, resistance to apoptosis is a barrier that must be

breached for tumor formation. The anti-apoptotic effect of

SNHG17 on tumor cells has been currently observed in a

variety of tumors, including cervical cancer, pancreatic cancer,

astrocytoma, hepatocellular carcinoma, oral squamous cell

carcinoma, prostate cancer, ovarian cancer, gastric cancer,

melanoma, and colorectal cancer (15, 16, 19, 23, 28, 39, 42–

45). This anti-apoptotic mechanism was associated with

increased anti-apoptotic protein Bcl-2 and the decreased

activity of the pro-apoptotic proteins caspase3, caspase8,

caspase9, and Bax (33, 35, 36, 40, 46, 47). In addition, RNA-

seq analysis performed in non-small cell lung cancer revealed

that the genes of the pro-apoptotic proteins BIK and XIAP-

associated factor 1 (XAF1) are the downstream targets of

SNHG17 (48).

In addition, IGF binding protein 3 (IGFBP3) may act as a

bridge linking SNHG17 to p53-dependent apoptosis in

colorectal cancer (21). IGFBP3 promotes colorectal cancer

progression through p53-dependent apoptosis (49). Notably,

Parkin protein was recently found to be regulated by SNHG17

in non-tumor diseases (27). Parkin is a ubiquitin-protein ligase

(E3), which can be involved in the regulation of apoptosis by

ubiquitinating various apoptosis-related proteins. Notably,

studies on whether SNHG17 can regulate apoptosis through

Parkin protein in tumors, which may become a director in future

SNHG17 investigations, are lacking.
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3.1.2.2 SNHG17 regulates autophagy-related protein

Autophagy plays a role in the maintenance of normal

cellular homeostasis-like apoptosis. Interestingly, as with TGF-

b, cellular autophagy plays a dual role in tumor progression,

inhibiting early tumor formation and promoting late tumor

progression (50–52). Increased mitochondrial autophagy in

tumors leads to high chemo- and radiotherapy resistance by

increasing metabolic plasticity in cancer cells (53–55). This

section further described cellular metabolism deregulation

below. Overall, mitochondrial autophagy has a vital role in

tumorigenesis and development.

SNHG17 was screened as an effective autophagy-related

lncRNA signature closely associated with prognosis in ovarian

cancer and renal clear cell carcinoma (56, 57). Intriguingly,

SNHG17 has been shown to reduce Parkin-dependent

mitochondrial autophagy by regulating Parkin proteins in

non-tumor diseases (27). Parkin is known to act as a

mitophagy initiator, and Parkin-dependent mitochondrial

autophagy is downregulated in various tumors and has been

suggested to belong to a tumor suppressor mechanism (58).

Studies on whether SNHG17 can regulate Parkin-dependent

mitochondrial autophagy and affect tumor progression, which

requires further experimental verification in the future, are

still unavailable.
3.1.2.3 SNHG17 is associated with ferroptosis

Ferroptosis is an iron-dependent oxidative cell death (59),

and this cell death pathway could be one of the directions for

tumor therapy (60). SNHG17 is involved in tumor progression

as a ferroptosis-associated lncRNA. Risk assessment and

diagnostic models constructed with ferroptosis-associated

lncRNAs, such as SNHG17, have shown excellent prognostic

and diagnostic values in renal cancer (61). However, further

studies are still needed to elucidate the mechanistic role of

SNHG17 in ferroptosis.
3.1.3 Role of SNHG17 in accelerating
EMT process

Concerning the studies on the relationship between

SNHG17 and tumors, the most significant relationship is the

promotion of tumor proliferation, invasion, and metastasis.

Several studies have shown that the high-level expression of

SNHG7 correlates with lymph node metastasis, distant

metastasis, and tumor invasion depth in various tumors (19,

29, 42, 44, 46). Spreading to distant organs is recognized to be

the most prominent hallmark of cancer cells. A primary

biological process that sustains invasion and 1metastasis is the

epithelial–mesenchymal transition (EMT), wherein cells gain the

mesenchymal phenotypes, such as high migration and invasion

and the capability to degrade extracellular matrix.
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SNHG17 can have different functions in various subcellular

localizations. The best-known capability of SNHG17 lies in its

function as ceRNA in the cytoplasm. In esophageal squamous

and hepatocellular carcinomas, SNHG17 can promote EMT by

targeting miR-338-3p/SOX4 and miR-3180-3p/regulatory factor

X-box 1 (RFX1) axes, respectively (62, 63).

The presence of positive feedback regulatory loop SNHG17/

miR-339-5p/STAT5A/SNHG17 and SNORA71B in prostate

cancer can promote cellular EMT and thus facilitate cancer

progress (15). Similarly, in castration-resistant prostate cancer,

SNHG17 regulates CD51 and thus promotes tumor EMT via

sponge miR-144 (64) (Figure 2).

3.1.3.1 SNHG17 regulates EMT process via TGF-b, Twist
1 and c-Myc

TGF-b is widely known to play an important role in cancer.

In the early stages, TGF-b exerts an oncogenic effect by

inhibiting the cell cycle process; in the late stages, it can

induce invasion and metastasis and promote EMT (65).

TGF-b-induced SNHG17 hyperactivation promotes EMT.

Unlike in the cytoplasm, lncRNAs can regulate the

transcriptional process of some oncogenes by binding to

transcription factors while in the nucleus (66). Shen S et al.

(29), recently demonstrated that SNHG17 is involved in TGF-

b1-mediated EMT in esophageal squamous cell carcinoma.

Mechanistically, SNHG17 acts in the nucleus by recruiting the

transcription factor c-Jun to the c-Myc promoter region, which

increases the transcriptional activity of the c-Myc promoter.

Furthermore, SNHG17 promotes the expression of the EMT-

associated transcription factor Twist1 via c-Myc (29).
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3.1.3.2 SNHG17 regulates EMT process via
matrix metalloproteinases

Matrix metalloproteinases (MMPs) belong to the family of

extracellular proteases and promote tumor progression through

tumor microenvironment (TME) regulation. MMPs are not only

known as a marker of EMT but also induce EMT. Exosomes can

act as tools for cancer cells to regulate the TME and promote

proliferation and invasion. As the lncRNA released from tumor-

derived exosome, SNHG17 is crucial in promoting tumor

migration by increasing MMP2 levels through sponge miR-

2861 (47).

3.1.3.3 SNHG17 regulates EMT process via Wnt/b-
catenin signaling pathway

The role of the Wnt/b-catenin signaling pathway in EMT is

widely recognized. However, the relationship between SNHG17

and Wnt/b-catenin signaling pathway is yet to be investigated.

For reference, STC2, a downstream target of miR-361-3p, was

shown to promote tumor invasion and migration via the Wnt/b-
catenin signaling pathway in vivo experiments (38), while

SNHG17 acts as a ceRNA for miR-361-3p (36).

3.1.4 Role of SNHG17 in increasing
tumor angiogenesis

The pro-angiogenic effect of SNHG17 can be achieved by

sponging miR-23a-3p and thus regulating the chemokine

CXCL12 (67). In addition, SNHG17 can target miR-942 to

regulate vascular endothelial growth factor (VEGF) expression

(43), but the exact mechanism needs further exploration. H2AX,

which can be regulated by SNHG17, also plays an essential role
FIGURE 2

The role SNHG17 plays in activating invasion and metastasis. SNHG17 acts as a transcriptional co-activator by recruiting the transcription factor
c-Jun to the c-Myc promoter region, and promotes the expression of the EMT-associated transcription factor Twist1 via c-Myc. In the
Extracellular, SNHG17 can be secreted by tumor-associated fibroblasts and target MMP2 in the form of exosomes. EMT, Epithelial-mesenchymal
transition; MMP2, Matrix metalloproteinases 2.
frontiersin.org

https://doi.org/10.3389/fonc.2022.974939
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.974939
in tumor angiogenesis (46, 68). Intriguingly, CDK6 can promote

tumor angiogenesis through kinase-independent function; the

transcriptional regulator activity of CDK6 provides new ideas for

the functional exploration of SNHG17 (23, 69).
3.1.5 Role of SNHG17 in deregulating
cellular metabolism

Although no studies in tumors have confirmed the direct

effect of SNHG17 on regulating cellular metabolism, a regulatory

relationship may exist between SNHG17 and deregulating

cellular metabolism according to the mechanism exploration

of SNHG17 in some studies.
3.1.5.1 SNHG17 regulates abnormal
glucose metabolism

Considering the non-negligible role of cellular metabolism

in cancer development, deregulating cellular metabolism was

included in the cancer hallmarks as an emerging hallmark by

Hanahan andWeinberg (2, 70). OttoWarburg first identified the

Warburg effect regarding cancer cells having different energy

metabolism from normal cells even under the aerobic

environment; cancer cells still prefer to obtain energy through

the glycolytic pathway (71, 72). This metabolic mechanism is

seemingly counterintuitive because glycolysis is much less

efficient than mitochondrial oxidative phosphorylation.

However, this particular metabolic is conducive to rapid cell

proliferation (73), and metabolic plasticity can act as a survival

mechanism of tumors under cancer treatment (53).

Mitochondrial autophagy proves tumors with metabolic

plasticity by degrading cellular structures and recycling

metabolites in response to environmental stress (54, 55). As

described in the resisting cell death section above, SNHG17

reduces mitochondrial autophagy by downregulating Parkin in

non-tumor diseases (27), and Parkin plays a role in glucose

metabolism and the Warburg effect as a p53 target gene (74).

Furthermore, as the E3 ubiquitin ligase, Parkin can promote

hypoxia inducible factor-1a (HIF-1a) degradation through

ubiquitination and proteasomal degradation (75). HIF-1a is

known to act as a hypoxia-inducible transcription factor and

can promote the Warburg effect by regulating cellular

metabolism (76).

Several transcription factors are involved in establishing

the Warburg effect. One factor, namely c-Myc, can confer

metabolic advantages to tumor cells by regulating the

expression of multiple genes (77, 78). Interestingly, SNHG17

has been demonstrated in several studies to increase c-Myc

levels by promoting transcription with inhibition of

ubiquitination and degradation (25, 26, 29). c-Myc may also

serve as a bridge for SNHG17 to establish the Warburg effect in

cancer cells.
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3.1.5.2 SNHG17 modulates lipid metabolism

Previous interest in tumor metabolic abnormalities has

focused on glucose metabolism. However, recent studies have

shown that abnormalities in lipid metabolism are also present in

tumors. Reprogramming of lipid metabolism can contribute to

tumorigenesis and drug resistance (79–81). Low-density

lipoprotein cholesterol (LDL-C) levels are positively associated

with increased cancer risk (82). Relevant studies on tumors are

lacking. However, SNHG17 was found to be negatively

associated with high-density lipoprotein cholesterol (HDL-C)

levels in a study on diabetes and may be involved in the

formation of type 2 diabetes (83). This study demonstrates a

regulatory relationship between SNHG17 and HDL-C and the

possible involvement of SNHG17 in tumor progression through

lipid metabolism. Moreover, lipid metabolism may become a

new direction to explore the tumor-promoting mechanism

of SNHG17.

3.1.6 Role of SNHG17 in regulating
telomerase activity

The contribution of SNHG17 to achieving replicative

immortality has not been fully investigated. However, the

telomerase regulatory activity of the SNHG17-associated

protein pescadillo (PES1) deserves consideration. Telomeres,

which protect the ends of the chromosome, are closely

associated with the capability of tumor cells to proliferate

indefinitely. Consequently, telomerase, specifically expressed in

most tumors, plays an important role and prevents telomere

shortening. Telomerase is an attractive target for tumor therapy.

Its catalytic core includes telomerase reverse transcriptase and

telomerase RNA. SNHG17-related protein PES1 can promote

tumor progression in multiple ways. As a key component of

telomerase composition, PES1 promotes telomerase assembly by

facilitating the direct interaction between telomerase reverse

transcriptase and telomerase RNA. The increased expression

of PES1 can also lead to enhanced telomerase activity and affect

telomere length maintenance (26, 84).

3.1.7 Role of SNHG17 in avoiding
immune destruction

Hanahan and Weinberg (2011) introduced immune

destruction avoidance as another hallmark capability (2). The

extensive crosstalk between the tumor microenvironment

(TME) and the tumor promotes the capability of avoiding

immune destruction.

Cancer-derived exosomes have been of broad interest as the

tumor TME component, which plays a vital role in tumor

occurrence and development (85). They have recently been

proposed to have the potential to become emerging enabling

characteristics (86). SNHG17 can be secreted by tumor-

associated fibroblasts in the form of exosomes and targets

MMP2 (47). Matrix metalloproteinases 2 (MMP2) promotes
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immunosuppressive TME formation by reducing anti-tumor-

associated immune cells (CD4+ and CD8+ T cells, NK cells, and

CD103+ DCs) and increasing M2-like macrophages (87).
3.1.8 Role of SNHG17 in unlocking
phenotypic plasticity

According to “Hallmarks of Cancer: New Dimensions”

reported by Hanahan in 2022, unlocking phenotypic plasticity

may be included in the hallmark capabilities (3). Unlocking

phenotypic plasticity is mainly manifested by blocking normal

cell differentiation in developmental lineages. Notably, as cell

development-related transcription factors involved in this

process, SOX2, SOX4, and homeobox A1 (HOXA1) can be

regulated by SNHG17 (3, 30, 39, 62, 88).
3.1.9 Role of SNHG17 in regulating
senescent cells

Many studies have shown that senescent cells promote

tumor proliferation, migration, and other malignant behaviors

through senescence-associated secretory phenotype (89–93).

Therefore, senescent cells are also classified as potential

emerging tumor markers (3). Genomic instability is one of the

significant causes of senescence, and the relationship between

SNHG17 and genomic instability will be described in the

genome instability/mutation section; meanwhile, the

senescence-associated secretory phenotype regulator NF-kB is

involved in maintaining high levels of SNHG17 expression (94).
3.2 Association of SNHG17 in the
development of enabling characteristics

3.2.1 Role of SNHG17 in induces genome
instability/mutation

The formation of most cancer hallmarks is associated with

genome dysfunction. Genome maintenance systems provide

numerous contributions to maintain the stability of the genome.

The impairment of caretaker mechanisms, such as DNA

repair defect, aberrant cell cycle regulation, and abnormal

telomere DNA maintenance mechanisms, can lead to genome

instability (95). As described in the sustaining proliferative

signaling section, SNHG17 has been found to inhibit cell cycle

protein-dependent kinase inhibitor (CKI) p15, 16, 57, and to

increase (16, 19, 20, 96) cell cycle protein-dependent kinase

CDK4 and CDK6 expression (20, 23) to involve in aberrant cell

cycle regulation.

3.2.1.1 SNHG17 affects the selection of DNA damage
repair pathway

Most cancers are characterized by genome instability/

mutation, giving cells a selective growth advantage (21, 97).

Multiple repair pathways are available after DNA damage;
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compared with homologous recombination, non-homologous

end joining leads to genomic instability and is conducive to

tumor development because it cannot guarantee repair accuracy

(98). Notably, SNHG17 can promote the non-homologous end

joining pathway by targeting non-POU domain-containing

octamer-binding protein and acts as a ceRNA to downregulate

the expression of the central homologous recombination protein

Rad51 (94), which predisposes DNA double-strand breaks to

select the non-homologous end joining repair pathway. The role

of SNHG17 in DNA repair makes it a potential biomarker for

cancer diagnosis and treatment (Figure 3).

3.2.1.2 SNHG17 affects telomerase activity

The relationship between SNHG17 and telomerase lacks

support from additional rigorous experimental data. For

reference, SNHG17 can regulate the ubiquitinate level of PES1

(26), and PES1 can interact with telomerase reverse transcriptase

to regulate telomerase activity (84).

3.2.2 Role of SNHG17 in tumor-promoting
inflammation

Appropriate inflammation has cancer-suppressing effects on

cancers as part of innate immunity, but chronic inflammatory

cell infiltration leads to an increased risk of tumor formation.

The inflammation that precedes tumor development promotes

tumorigenesis by causing genomic instability, recruiting growth
FIGURE 3

The role of SNHG17 plays in DNA repair.
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factors, and angiogenesis. By contrast, tumor-associated

inflammation can lead to immunosuppression addition

(99–101).

SNHG17 is a new link between inflammation and cancer.

In a study on h. pylori-induced gastric carcinogenesis,

SNHG17 was upregulated by the inflammation-associated

transcription factor NF-kB; as described in the genome

stability/mutation section, SNHG17 consequently affected the

selection of the DNA Damage Repair pathway, thereby

promoting gastric carcinogenesis (94).

Considering the extensive search for inflammation and

immunity in tumor formation and progression, the correlation

between SNHG17 and inflammation and immunity was further

explored. A set of differentially expressed genes was used after

knocking down SNHG17 in lung adenocarcinoma (LUAD) and

intersected them with immune-related genes downloaded from

the ImmPort database (Figure 4A) (Supplementary Data

Sheet 1). Gene ontology (GO) enrichment analysis indicated

that these intersected genes mainly focused on receptor ligand

activity, inflammatory response, positive regulation of response

to external stimulus, positive regulation of cytokine production,
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cell activation, and the regulation of immune effector process

(Figure 4B) (Supplementary Data Sheet 2). SNHG17 was almost

mapped to the inflammatory response in the innate immune

response. The relationship between SNHG17 expression levels

and immune infiltration was then explored. Figure 4 shows the

following: SNHG17 had a positive correlation with Th2 and NK

CD56 bright cells and a negative correlation with Macrophages,

DCs, Neutrophils, Th1 cells, T cells; it was negatively correlated

to ESTIMATEScore, ImmuneScore, StromalScore, and PD-L1

(Figures 4C-E) (Supplementary Data Sheet 3–5).

In addition, the SNHG17-associated protein MMP2 is

involved in the formation of the inflammatory TME through

TLR2 and TLR4 (47, 87).

3.2.3 New dimensions: Nonmutational
epigenetic reprogramming

Nonmutational epigenetic reprogramming is a possible

enabling characteristic newly proposed by Hanahan (3).

Epigenetic modifications are prevalent in many cancers and

facilitate cancer hallmark formation. SNHG17 is involved in

nonmutational epigenetic reprogramming mainly by interacting
A
B

D E

C

FIGURE 4

The relationship between SNHG17 and immune. (A) Venn diagram visualizing the overleaping genes between DEGs and IRGs. (B) Summary of
enrichment analysis across input the intersected genes of DEGs with IRGs. (C) The correlation between SNHG17 and immune cell infiltration,
respectively. (D) Correlation analysis between SNHG17 and immune-related scores (ESTIMATEScore, ImmuneScore, StromalScore).
(E) Correlation analysis between SNHG17 and PD-L1 expression. DEGs, Differentially expressed genes; IRGs, Immunity-related genes; PD-L1,
Programmed death ligand 1.
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with the chromatin-associated methyltransferase polycomb

repressive complex dependent 2 (16, 19) and blocking

ubiquitination and degradation (25, 26).

In addition, as the spliced transcripts of the same primary

transcript, SNHG and snoRNA theoretically have the same

promoter. A recent study demonstrated a positive feedback

loop between SNHG17 and its homolog snoRA71B, promoting

tumor progression. Specifically, SNHG17 can promote

transcription factor STAT5A expression by targeting miR-

339-5p, thereby increasing SNHG17 and cognate snoRA71B

levels (15). This finding further confirms the link between

SNHG and snoRNA. SnoRNA is known to play an oncogenic

role in a variety of tumors (102), and its broadest

function is the epigenetic modification of rRNA at the

post-transcriptional level through 2’-O-methylation and

pseudouridylation. The high relevance to the response to

immune therapy and the broad function beyond the

ribosome of snoRNA is recently gaining attention. The

relationship between SNHG and snoRNA is currently an

open question. However, SNHG promotes the expression of

its cognate snoRNA through the same promoter positive

feedback, thus exerting oncogenic effects through snoRNA.

The feedback may become a worthy direction for the

subsequent study of SNHG and snoRNA.

3.2.4 Investigating feature: Cancer-
derived exosomes

Cancer-derived exosomes can be observed in most cancers,

promoting the formation of multiple hallmarks, which is in line

with Hanahan’s definition of enabling features (3). Moreover,

Kok VC et al. (86), recently raised the possibility of cancer-

derived exosomes as an emerging enabling characteristic.
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Interestingly, SNHG17 can be released by cancer-associated

fibroblast as exosomal lncRNA in osteosarcoma to promote

tumor proliferation, migration, and apoptosis resistance (47).
4 Conclusion

SNHG17 has been found to be involved in forming cancer

hallmarks in numerous ways. SNHG17 acts as ceRNA in the

cytoplasm. Meanwhile, SNHG17 in the nucleus can act as a

transcriptional co-activator or repress chromatin modifications

transcriptionally to increase the malignant progression. These

different functions suggest that SNHG17 plays a diverse role in

tumorigenesis and progression. Thus, targeting SNHG17 may

become a promising strategy for tumor therapy. In addition,

SNHG17 can be an independent prognostic factor in

hepatocellular carcinoma, renal cell carcinoma, colorectal cancer,

gastric cancer, and melanoma (26, 28, 44, 46, 103) and a diagnostic

predictor in cervical and gastric cancers (19, 42) (Table 1).

Therefore, SNHG17 is an emerging biomarker for cancer

diagnosis and prognosis.

SNHG17 was highly expressed in many cancers.

Mechanistically, YY1 (33), TGF‐b1 (29), STAT3 (23, 28), and two

positive feedback loops: SNHG17/miR-339-5p/STAT5A/SNHG17

(15), SNHG17/miR-339-5p/FOSL2/SNHG17 (26) are upstream

regulators of SNHG17. This paper describes the mechanisms of

SNHG17 that enable cells to gain cancer hallmarks (Figure 5)

(Table 2). However, the relevance between SNHG17 and two

other hallmarks, namely evading growth suppressors and

polymorphic microbiomes, has been excluded due to the

limitations of the published literature. Some proposed potential

mechanisms of SNHG17 also require further experimental
TABLE 1 Expression and clinical significance of SNHG17 in human cancers.

Cancer
Types

SNHG17
Expression

Clinical Characteristics References

Kaplan-
Meier
Survival
Analysis

Independent
Prognosis
Predictor

Clinicopathological Characteristics Diagnostic
Value

Gastric Cancer Upregulated poorer
OS[94,103],
PFS[103]

yes[103] TNM stage[18,19,94,103], lymph node metastasis[18,19,103],
younger age[18], invasion depth[18], lymphovascular

invasion[19], distant metastasis[103], H.pylori infection[94]

plasma
SNHG17(AUC

0.748)[18]

(18, 19, 94,
103)

Hepatocellular
Carcinoma

Upregulated poorer OS[24,43],
DFS[43], RFS[24]

yes[43] Tumor size[43,63], poor differentiation[43], vascular invasion[43],
TNM stage[63], Edmonson-Steiner grades[63]

– (24, 43, 63)

Prostate Cancer Upregulated poorer OS[39],
PFS[45]

– Histological grade[39], tumor stage[39], metastasis[39] – (39, 45)

Esophageal
Squamous Cell
Carcinoma

Upregulated poorer OS yes TNM stage, grade, depth of invasion, tumor differentiation,
lymph node metastasis, mortality

– (28)

Renal Cell
Carcinoma

Upregulated poorer OS, RFS yes Tumor size, lymph node invasion, distant metastasis, relapse
status

– (46)

(Continued)
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FIGURE 5

The relationship between SNHG17 and cancer hallmark.
TABLE 1 Continued

Cancer
Types

SNHG17
Expression

Clinical Characteristics References

Kaplan-
Meier
Survival
Analysis

Independent
Prognosis
Predictor

Clinicopathological Characteristics Diagnostic
Value

Colorectal
Cancer

Upregulated poorer OS ,DFS yes Tumor stage – (25)

Lung
Adenocarcinoma

Upregulated poorer OS – higher in stages III and IV – (29)

Cervical Cancer Upregulated – – FIGO stage, lymph node metastasis, tumor diameter AUC 0.863 (41)

Ovarian Cancer Upregulated poorer OS – FIGO stage, histological grade, tumor size – (22)

Breast Cancer Upregulated poorer OS – TNM stages (III–IV stages), lymph node metastasis – (39)

Tongue
Squamous Cell
Carcinoma

Upregulated poorer OS – Tumor size, TNM stage, lymph node metastasis – (23)

Glioma Upregulated poorer OS – – – (27)

Osteosarcoma Upregulated poorer OS – – – (47)

Melanoma Upregulated poorer OS yes Tumor stage, lymph node metastasis, tumor stage – (27)
Frontiers in Onc
ology
 fr10
OS: shorter overall survival; DFS: disease-free survival; RFS, recurrence-free survival; AUC, area under the ROC curve; TNM, tumor node metastasis; PFS, progression-free survival; FIGO,
international federation of gynecology and obstetrics.
TABLE 2 The targets and mechanisms underlying the effects of SNHG17.

Cancer Types Target/Regulatory Axis Target
Type

Action Mechanism References

Cervical Cancer SNHG17/miRNA-375-3p miRNA post-transcriptional regulation of genes as ceRNA (42)

Pancreatic Carcinoma SNHG17/miR-942 miRNA post-transcriptional regulation of genes as ceRNA (43)

Astrocytoma SNHG17/miR-876-5p/ERLIN2 miRNA post-transcriptional regulation of genes as ceRNA (39)

(Continued)
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validation, which will be essential in future SNHG17 explorations.

Meanwhile, SNHG17 regulation of its homolog snoRA71B through

a positive feedback loop provides a new idea for the regulatory

relationship between SNHG and snoRNA.
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TABLE 2 Continued

Cancer Types Target/Regulatory Axis Target
Type

Action Mechanism References

Oral Squamous Cell Carcinoma SNHG17/miR-384/ELF1/CTNNB1
SNHG17/miR-375/PAX6

miRNA post-transcriptional regulation of genes as ceRNA (34, 45)

Renal Cell Carcinoma SNHG17/miR-328-3p/H2AX axis miRNA post-transcriptional regulation of genes as ceRNA (46)

Esophageal Squamous Cell
Carcinoma

SNHG17/miR-338-3p/SOX4 miRNA post-transcriptional regulation of genes as ceRNA (62)

Lung Adenocarcinoma SNHG17/miR-193a-5p/NETO2
SNHG17/miR-485-5p/ WLS

miRNA post-transcriptional regulation of genes as ceRNA (30, 35)

Rectal Cancer SNHG17/ miR-361-3p/STC2 miRNA post-transcriptional regulation of genes as ceRNA (36)

H. pylori-related Gastric
Cancer

SNHG17/miR-3909/RING1/Rad51 miRNA post-transcriptional regulation of genes as ceRNA (94)

Colorectal Adenocarcinoma SNHG17/miR-23a-3p/CXCL12 miRNA post-transcriptional regulation of genes as ceRNA (67)

Colorectal Cancer SNHG17/miR-339-5p/FOSL2/SNHG17 positive
feedback loop

miRNA post-transcriptional regulation of genes as ceRNA (26)

Ovarian Cancer STAT3 /SNHG17/ miR-214-3p/CDK6 miRNA post-transcriptional regulation of genes as ceRNA (23)

Prostate Cancer SNHG17/miR-339-5p/STAT5A/SNHG17 and
SNORA71B

miRNA post-transcriptional regulation of genes as ceRNA (15)

Castration-Resistant Prostate
Cancer

SNHG17/miR-144/CD51 miRNA post-transcriptional regulation of genes as ceRNA (64)

Hepatocellular Carcinoma SNHG17 /miR-3180-3p/RFX1
SNHG17/LRPPRC/c-Myc

MiRNA
protein

post-transcriptional regulation of genes as ceRNA
reduce the ubiquitination and degradation

(63)
(25)

Glioma YY1/SNHG17/miR-506-3p/CTNNB1/Wnt/b-
catenin

miRNA post-transcriptional regulation of genes as ceRNA (33)

Osteosarcoma SNHG17 /miR-2861 /MMP2 miRNA post-transcriptional regulation of genes as ceRNA (47)

Colorectal Cancer SNHG17/Trim23/PES1
SNHG17/EZH2/P57

protein reduce the ubiquitination and degradation
guide protein–RNA interaction as transcriptional
co-repressor

(16, 26)

Gastric Cancer SNHG17/EZH2/p15 and p57 protein guide protein–RNA interaction as transcriptional
co-repressor

(19)

Esophageal Squamous Cell
Carcinoma

SNHG17/c-Jun/c-Myc protein guide protein–RNA interaction as transcriptional
co-repressor

(29)
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