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Abstract

In standard attractor neural network models, specific patterns of activity are stored in the synaptic matrix, so that they
become fixed point attractors of the network dynamics. The storage capacity of such networks has been quantified in two
ways: the maximal number of patterns that can be stored, and the stored information measured in bits per synapse. In this
paper, we compute both quantities in fully connected networks of N binary neurons with binary synapses, storing patterns
with coding level f , in the large N and sparse coding limits (N??, f?0). We also derive finite-size corrections that
accurately reproduce the results of simulations in networks of tens of thousands of neurons. These methods are applied to
three different scenarios: (1) the classic Willshaw model, (2) networks with stochastic learning in which patterns are shown
only once (one shot learning), (3) networks with stochastic learning in which patterns are shown multiple times. The storage
capacities are optimized over network parameters, which allows us to compare the performance of the different models. We
show that finite-size effects strongly reduce the capacity, even for networks of realistic sizes. We discuss the implications of
these results for memory storage in the hippocampus and cerebral cortex.
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Introduction

Attractor neural networks have been proposed as long-term

memory storage devices [1,2,3]. In such networks, a pattern of

activity (the set of firing rates of all neurons in the network) is said

to be memorized if it is one of the stable states of the network

dynamics. Specific patterns of activity become stable states thanks

to synaptic plasticity mechanisms, including both long term

potentiation and depression of synapses, that create positive

feed-back loops through the network connectivity. Attractor states

are consistent with the phenomenon of selective persistent activity

during delay periods of delayed response tasks, which has been

documented in numerous cortical areas in behaving monkeys

[4,5,6,7]. A long standing question in the field has been the

question of the storage capacity of such networks. Much effort has

been devoted to compute the number of attractor states that can

be imprinted in the synaptic matrix, in networks of binary neurons

[8,9,10,11]. Models storing patterns with a covariance rule

[12,1,8,11] were shown to be able to store a number of patterns

that scale linearly with the number of synapses per neuron. In the

sparse coding limit (in which the average fraction of selective

neurons per pattern f goes to zero in the large N limit), the

capacity was shown to diverge as 1=(f D log (f )D). These scalings

lead to a network storing on the order of 1 bit per synapse, in the

large N limit, for any value of the coding level. Elizabeth Gardner

[10] computed the maximal capacity, in the space of all possible

coupling matrices, and demonstrated a similar scaling for capacity

and information stored per synapse.

These initial studies, performed on the simplest possible

networks (binary neurons, full connectivity, unrestricted synaptic

weights) were followed by a second wave of studies that examined

the effect of adding more neurobiological realism: random diluted

connectivity [9], neurons characterized by analog firing rates [13],

learning rules in which new patterns progressively erase the old

ones [14,15]. The above mentioned modifications were shown not

to affect the scaling laws described above. One particular

modification however was shown to have a drastic effect on

capacity. A network with binary synapses and stochastic on-line

learning was shown to have a drastically impaired performance,

compared to networks with continuous synapses [16,17]. For finite

coding levels, the storage capacity was shown to be on the order offfiffiffiffiffi
N
p

, not N stored patterns, while the information stored per

synapse goes to zero in the large N limit. In the sparse coding limit

however (f* log (N)=N), the capacity was shown to scale as 1=f 2,

and therefore a similar scaling as the Gardner bound, while the

information stored per synapse remains finite in this limit. These

scaling laws are similar to the Willshaw model [18], which can be

seen as a particular case of the Amit-Fusi [17] rule. The model was

then subsequently studied in greater detail by Huang and Amit

[19,20] who computed the storage capacity for finite values of N,

using numerical simulations and several approximations for the

distributions of the ‘local fields’ of the neurons. However,

computing the precise storage capacity of this model in the large

N limit remains an open problem.

In this article we focus on a model of binary neurons where

binary synapses are potentiated or depressed stochastically
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depending on the states of pre and post synaptic neurons [17]. We

first introduce analytical methods that allow us to compute the

storage capacity in the large N limit, based on a binomial

approximation for the synaptic inputs to the neurons. We first

illustrate it on the Willshaw model and to recover the well-known

result on the capacity of this model [18,21,22]. We then move to a

stochastic learning rule, in which we study two different scenarios:

(i) in which patterns are presented only once - we will refer to this

model as the SP (Single Presentation) model [17]; (ii) in which

noisy versions of the patterns are presented multiple-times - the

MP (Multiple presentations) model [23]. For both models we

compute the storage capacity and the information stored per

synapse in the large N limit, and investigate how they depend on

the various parameters of the model. We then study finite size

effects, and show that they have a huge effect even in networks of

tens of thousands of neurons. Finally we show how capacity in

finite size networks can be enhanced by introducing inhibition, as

proposed in [19,20]. In the discussion we summarize our results

and discuss the relevance of the SP and MP networks to memory

maintenance in the hippocampus and cortex.

Results

Storage capacity in the N?? limit
The network. We consider a network of N binary (0,1)

neurons, fully connected through a binary (0,1) synaptic

connectivity matrix. The activity of neuron i (i~1:::N) is

described by a binary variable, si~0,1. Each neuron can

potentially be connected to every other neurons, through a binary

connectivity matrix W. This connectivity matrix depends on P

random uncorrelated patterns (‘memories’) ~jju, m~1, . . . ,P that

are presented during the learning phase. The state of neuron

i~1, . . . ,N in pattern m~1, . . . ,P is

jm
i ~

1 with probability f

0 with probability1{f

�
ð1Þ

where f is the coding level of the memories. We study this model

in the limit of low coding level, f?0 when N??. In all the

models considered here, P scales as 1=f 2 in the sparse coding limit.

Thus, we introduce a parameter a~Pf 2 which stays of order 1 in

the sparse coding limit.

After the learning phase, we choose one of the P presented

patterns~jjm0 , and check whether it is a fixed point of the dynamics:

si(tz1)~H½hi(t){fNh�, ð2Þ

where

hi(t)~
XN

j~1

Wijsj(t) ð3Þ

is the total synaptic input (‘‘field’’) of neuron i, h is a scaled

activation threshold (constant independent of N), and H is the

Heaviside function.

Field averages. When testing the stability of pattern~jjm0 after

learning P patterns, we need to compute the distribution of the

fields on selective neurons (sites i such that j
m0

i ~1), and of the

fields on non-selective neurons (sites i such that j
m0

i ~0). The

averages of those fields are fNgz and fNg respectively, where

gz~P(Wij~1Djm0
i ~j

m0
j ~1) ð4Þ

and

g~P(Wij~1D (jm0
i ,j

m0
j )=(1,1)): ð5Þ

Pattern ~jjm0 is perfectly imprinted in the synaptic matrix if

gz~1 and g~0. However, because of the storage of other

patterns, gz and g take intermediate values between 0 and 1. Note

that here we implicitly assume that the probability of finding a

potentiated synapse between two neurons i,j such that

j
m0

i ~j
m0

j ~0 or j
m0

i =j
m0

j is the same. This is true for the models

we consider below. gz and g are function of a, f , and other

parameters characterizing learning.

Information stored per synapse. One measure of the

storage capability of the network is the information stored per

synapse:

i~
PmaxN({f log2 f {(1{f ) log2 (1{f ))

N2
ð6Þ

^
f?0

a
D log2 f D

fN
ð7Þ

where Pmax is the size of a set of patterns in which each pattern is a

fixed point of the dynamics with probability one. When a is of

order one, for the information per synapse to be of order one in

the large N limit, we need to take f as

Author Summary

Two central hypotheses in neuroscience are that long-term
memory is sustained by modifications of the connectivity
of neural circuits, while short-term memory is sustained by
persistent neuronal activity following the presentation of a
stimulus. These two hypotheses have been substantiated
by several decades of electrophysiological experiments,
reporting activity-dependent changes in synaptic connec-
tivity in vitro, and stimulus-selective persistent neuronal
activity in delayed response tasks in behaving monkeys.
They have been implemented in attractor network models,
that store specific patterns of activity using Hebbian
plasticity rules, which then allow retrieval of these patterns
as attractors of the network dynamics. A long-standing
question in the field is how many patterns (or equivalently,
how much information) can be stored in such networks?
Here, we compute the storage capacity of networks of
binary neurons and binary synapses. Synapses store
information according to a simple stochastic learning
process that consists of transitions between synaptic states
conditioned on the states of pre- and post-synaptic
neurons. We consider this learning process in two limits:
a one shot learning scenario, where each pattern is
presented only once, and a slow learning scenario, where
noisy versions of a set of patterns are presented multiple
times, but transition probabilities are small. The two limits
are assumed to represent, in a simplified way, learning in
the hippocampus and neocortex, respectively. We show
that in both cases, the information stored per synapse
remains finite in the large N limit, when the coding is
sparse. Furthermore, we characterize the strong finite size
effects that exist in such networks.

Memory Capacity of Networks with Stochastic Binary Synapses
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f ~b
ln N

N
: ð8Þ

In this case the information stored per synapse has the simple

expression:

i~
a

b ln 2
ð9Þ

Computing the storage capacity. Our goal here is to

compute the size Pmax~a=f 2 of the largest set of patterns that can

be stored in the connectivity matrix. The criterion for storage that

we adopt is that if one picks a pattern in this set, then this pattern is

a fixed point of the dynamics with probability 1. We thus need to

compute the probability Pne of no error in retrieving a particular

pattern m0. To compute this probability, we first need to estimate

the probabilities that a single selective/non-selective neuron is in

its right state when the network is initialized in a state

corresponding to pattern m0. For a pattern with M selective

neurons, and neglecting correlations between neurons (which is

legitimate if f%1=
ffiffiffiffiffi
N
p

[17]), we have

Pne~

1{P(hiƒfNhjjm0
i ~1)

� �M
1{P(hi§fNhjjm0

i ~0)
� �N{M

ð10Þ

Clearly, for Pne to go to 1 in the large N limit, the probabilities

for the fields of single neurons to be on the wrong side of the

threshold have to vanish in that limit. A first condition for this to

happen is gzwhwg - if these inequalities are satisfied, then the

average fields of both selective and non-selective neurons are on

the right side of the threshold. When gz and g are sufficiently far

from h, the tail probabilities of the distribution of the fields are

P hiƒfNhDjm0
i ~1

� �
~ exp {MW(gz,h)zo(M)ð Þ ð11Þ

P hi§fNhDjm0
i ~0

� �
~ exp {MW(g,h)zo(M)ð Þ ð12Þ

where W(gz,h), W(g,h) are the rate functions associated with the

distributions of the fields (see Methods). Neglecting again

correlations between inputs, the distributions of the fields are

binomial distributions, and the rate functions are

W(x,h)~h ln
h

x
z(1{h) ln

1{h

1{x
ð13Þ

Inserting Eqs. (11,12,13,8) in Eq. (10), we find that

Pne~ exp { exp Xsð Þ{ exp Xnð Þ½ � ð14Þ

where

Xs~{bW(gz,h) ln Nz ln ln Nzo( ln ln N)

Xn~{bW(g,h) ln Nz ln Nzo( ln N): ð15Þ

For Pne to go to 1 in the large N limit, we need both Xs and Xn

to go to {? in that limit. This will be satisfied provided

W(gz,h)w
ln ln N

b ln N
ð16Þ

W(g,h)w
1

b
ð17Þ

These inequalities are equivalent in the large N limit to the

inequalities

gzwhwgzf ð18Þ

where f is given by the equation W(gzf,h)~1=b.

The maximal information per synapse is obtained by saturating

inequalities (16) and (17), and optimizing over the various

parameters of the model. In practice, for given values of a, and

parameters of the learning process, we compute g and gz; we can

then obtain the optimal values of the threshold h and the rescaled

coding level b as

h ?
N?z?

gz ð19Þ

b ~
1

W(g,h)
, ð20Þ

and compute the information per synapse using Eq. (9). We can

then find the optimum of i in the space of all parameters.

Before applying these methods to various models, we would like

to emphasize two important features of these calculations:

N In Eq. (16), note that the r.h.s. goes to zero extremely slowly as

N goes to ? (as ln ln N= ln N) - thus, we expect huge finite size

effects. This will be confirmed in section ‘Finite-size networks’

where these finite size effects are studied in detail.

N In the sparse coding limit, a Gaussian approximation of the

fields gives a poor approximation of the storage capacity, since

the calculation probes the tail of the distribution.

Willshaw model
The capacity of the Willshaw model has already been studied by

a number of authors [18,21,22]. Here, we present the application

of the analysis described in the previous section to the Willshaw

model, for completeness and comparison with the models

described in the next sections. In this model, after presenting P

patterns to the network, the synaptic matrix is described as follows:

Wij~1 if at least one of the P presented patterns had neuron i and

j co-activated, Wij~0 otherwise. Thus, after the learning phase,

we have,

gz~1

Memory Capacity of Networks with Stochastic Binary Synapses
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g~1{(1{f 2)P^1{ exp ({a) for small f ð21Þ

Saturating the inequalities (19,20) with g fixed, one obtains the

information stored per synapse,

iopt~ ln (1{g) ln g
1

ln 2
ð22Þ

The information stored per synapse is shown as a function of g
in Figure 1a. A maximum is reached for g~0:5 at

iW ~ ln 2~0:69bits=synapse, but goes to zero in both the g?0
and g?1 limits. The model has a storage capacity comparable to

its maximal value, ioptw0:5iW in a large range of values of g

(between 0:1 and 0:9). We can also optimize capacity for a given

value of b, as shown in Figure 1b. It reaches its maximum at

b~1:4, and goes to zero in the small and large b limits. Again, the

model has a large storage capacity for a broad range of b,

ioptw0:5iW for b between 0:4 and 10.

Previous studies [18,21] have found an optimal capacity of

0:69bits=synapse. Those studies focused on a feed-forward

network with a single output neuron, with no fluctuations in the

number of selective neurons per pattern, and required that the

number of errors on silent outputs is of the same order as the

number of selective outputs in the whole set of patterns. In the

calculations presented here, we have used a different criteria,

namely that a given pattern (not all patterns) is exactly a fixed

point of the dynamics of the network with a probability that goes

to one in the large N limit. Another possible definition would be to

require that all the P patterns are exact fixed points with

probability one. In this case, for patterns with fixed numbers of

selective neurons, the capacity drops by a factor of 3,

ln (2)=3~0:23 bits=synapse, as already computed by Knoblauch

et al [22].

Amit-Fusi model
A drawback of the Willshaw learning rule is that it only allows

for synaptic potentiation. Thus, if patterns are continuously

presented to the network, all synapses will eventually be

potentiated and no memories can be retrieved. In [17] Amit and

Fusi introduced a new learning rule that maintains the simplicity

of the Willshaw model, but allows for continuous on-line learning.

The proposed learning rule includes synaptic depression. At each

learning time step m, a new pattern ~jjm with coding level f is

presented to the network, and synapses are updated stochastically:

N for synapses such that jm
i ~jm

j ~1:

if Wij(m{1)~0, then Wij(m) is potentiated to 1 with probability

qz; and if Wij(m{1)~1 it stays at 1.

N for synapses such that jm
i =jm

j :

if Wij(m{1)~0, then Wij(m) stays at 0; and if Wij(m{1)~1 it is

depressed to 0 with probability q{.

N for synapses such that jm
i ~jm

j ~0, Wij(m)~Wij(m{1).

The evolution of a synapse Wij during learning can be described

by the following Markov process:

P(W
mz1
ij ~0)

P(W
mz1
ij ~1)

" #
~

1{a b

a 1{b

� �
|

P(W
m
ij ~0)

P(W
m
ij ~1)

" #
ð23Þ

where a~f 2qz is the probability that a silent synapse is

potentiated upon the presentation of pattern m and

b~2f (1{f )q{ is the probability that a potentiated synapse is

depressed. After a sufficient number of patterns has been

presented the distribution of synaptic weights in the network

reaches a stationary state. We study the network in this stationary

regime.

For the information capacity to be of order 1, the coding level

has to scale as
ln N

N
, as in the Willshaw model, and the effects of

potentiation and depression have to be of the same order [17].

Thus we define the depression-potentiation ratio d as,

d~
2f (1{f )q{

f 2qz

ð24Þ

We can again use Eq. (9) and the saturated inequalities (19,20)

to compute the maximal information capacity in the limit N??.

This requires computing g and gz, defined in the previous section,

as a function of the different parameters characterizing the

network. We track a pattern ~jjm0 that has been presented P time

steps in the past. In the following we refer to P as the age of the

pattern. In the sparse coding limit, g corresponds to the probability

that a synapse is potentiated. It is determined by the depression-

potentiation ratio d,

g~
1

1zd
ð25Þ

and

gz~gzqz(1{g)(1{a{b)P

^gzqz(1{g) exp ({
qza

g
) for f%1

ð26Þ

where a~Pf 2. Our goal is to determine the age P of the oldest

pattern that is still a fixed point of the network dynamics, with

probability one. Note that in this network, contrary to the

Willshaw model in which all patterns are equivalent, here

younger patterns, of age P’vP, are more strongly imprinted in

the synaptic matrix, gz(P’)wgz(P), and thus also stored with

probability one.

Figure 1. Optimized information capacity of the Willshaw
model in the limit N ? + ?. Information is optimized by saturating
(19) (h ~ 1) and (20): a. iopt as a function of g, b. iopt as a function of
b ~ fN= ln N .
doi:10.1371/journal.pcbi.1003727.g001
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Choosing an activation threshold and a coding level that

saturate inequalities (19) and (20), information capacity can be

expressed as:

iopt~
g

qz

ln qz

1{g

gz{g

� �
gz log2

gz

g
z(1{gz) log2

1{gz

1{g

� �

~
a

1zd
1zdqze{a(1zd)qz
� �

log2 1zdqze{a(1zd)qz
� ��

zd 1{qze{a(1zd)qz
� �

log2 1{qze{a(1zd)qz
� �	 ð27Þ

The optimal information iSP~0:083 bits=synapse is reached

for qz~1, h~0:72, b~2:44, a~0:14, d~2:57 which gives

g~0:28, gz~0:72.

The dependence of iopt on the different parameters is shown in

Figure 2. Panel a shows the dependence on g the fraction of

activated synapses in the asymptotic learning regime. Panels b, c
and d show the dependence on d, b and qz. Note from panel c
that there is a broad range of values of b that give information

capacities similar to the optimal one. One can also observe that the

optimal information capacity is about 9 times lower in the SP

model than in the Willshaw model. This is the price one pays to

have a network that is able to continuously learn new patterns.

However, it should be noted that at maximal capacity, in the

Willshaw model, every pattern has a vanishing basin of attraction

while in the SP model, only the oldest stable patterns have

vanishing basins of attraction. This feature is not captured by our

measure of storage capacity.

Multiple presentations of patterns, slow learning regime
In the SP model, patterns are presented only once. Brunel et al

[23] studied the same network of binary neurons with stochastic

binary synapses but in a different learning context, where patterns

are presented multiple times. More precisely, at each learning time

step t, a noisy version ~jjm(t),t of one of the P prototypes ~jjm is

presented to the network,

P(jm(t),t
i ~1)~1{(1{f )x and

P(j
m(t),t
i ~0)~(1{f )x for j

m(t)
i ~1

P(j
m(t),t
i ~1)~fx and

P(jm(t),t
i ~0)~1{fx for jm(t)

i ~0

8>>>><
>>>>:

ð28Þ

Here x is a noise level: if x~0, presented patterns are identical

to the prototypes, while if x~1, the presented patterns are

uncorrelated with the prototypes. As for the SP model this model

achieves a finite non-zero information capacity iopt in the large N

limit if the depression-potentiation ratio d is of order one, and if

the coding level scales with network size as f!
ln N

N
. If learning is

slow, qz,q{%1, and the number of presentations of patterns of

each class becomes large the probabilities g and gz are [23]:

g~
Xz?

P~0

(1{x)2Pzax(2{x)

(1{x)2Pza(dzx(2{x))

aP exp ({a)

P !
ð29Þ

and

gz~
Xz?

P~0

(1{x)2(Pz1)zax(2{x)

(1{x)2(Pz1)za(dzx(2{x))

aP exp ({a)

P !
ð30Þ

We inserted those expressions in Eqs. (19,20) to study the

maximal information capacity of the network under this learning

protocol. The optimal information iMP~0:69 bits/synapse is

reached at x~0 for h?1, b?1:44, d?0, a?0:69 which gives

g?
1

2
, gz?1. In this limit, the network becomes equivalent to

the Willshaw model.

The maximal capacity is about 9 times larger than for a network

that has to learn in one shot. On Figure 3a we plot the optimal

capacity as a function of g. The capacity of the slow learning

network with multiple presentations is bounded by the capacity of

the Willshaw model for all values of g, and it is reached when the

depression-potentiation ratio d?0. For this value, no depression

occurs during learning: the network loses palimpsest properties, i.e.

the ability to erase older patterns to store new ones, and it is not

able to learn if the presented patterns are noisy. The optimal

capacity decreases with d, for instance at d~1 (as many

potentiation events as depression events at each pattern presen-

tation), iopt~0:35 bits=synapse. Figure 3c shows the dependence

as a function of b~f
N

ln N
. In Figure 3d, we show the optimized

capacity for different values of the noise x in the presented

patterns. This quantifies the trade-off between the storage capacity

and the generalization ability of the network [23].

Finite-size networks
The results we have presented so far are valid for infinite size

networks. Finite-size effects can be computed for the three models

we have discussed so far (see Methods). The main result of this

section is that the capacity of networks of realistic sizes is very far

from the large N limit. We compute capacities for finite networks

in the SP and MP settings, and we validate our finite size

calculations by presenting the results of simulations of large

networks of sizes N~10,000, N~50,000.

Figure 2. Optimized information capacity for the SP model in
the limit N ? + ?. a. iopt as a function of g, b. iopt as a function of d ,
the ratio between the number of depressing events and potentiating

events at pattern presentation, c. iopt as a function of b ~ f
N

ln N
, d.

iopt as a function of the LTP transition probability qz.
doi:10.1371/journal.pcbi.1003727.g002
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We summarize the finite size calculations for the SP model (a

more general and detailed analysis is given in Methods). In the

finite network setting, conditional on the tested pattern m0 having

Mz1 selective neurons, the probability of no error Pne is given by

Pne~ exp { exp Xsð Þ{ exp Xnð Þ½ �

with

Xs~{bMW gz,hMð Þ ln Nz
1

2
ln ln N

{
1

2
ln

1{ exp (
LW
Lh

(gz,hM ))


 �2

2phM (1{hM )

bM

2
6664

3
7775zo(1)

Xn~ {bMW(g,hM )z1ð Þ ln N{
1

2
ln ln N

{
1

2
ln 1{ exp ({

LW
Lh

(g,hM ))


 �2

2phM (1{hM )bM

" #
zo(1)

ð31Þ

where bM~
M

ln N
,hM~h

fN

M
and W is given by Eq. (13). In the

calculations for N?z? discussed in the previous sections we kept

only the dominant term in ln N, which yields Eqs. (19) and (20).

In the above equations, the first order corrections scale as
ln ln N

ln N
, which has a dramatic effect on the storage capacity of

finite networks. In Figure 4a,b, we plot Pne (where the bar denotes

an average over the distribution of M ) as a function of the age of

the pattern, and compare this with numerical simulations. It is plotted

for N~10,000 and N~50,000 for learning and network parameters

chosen to optimize the storage capacity of the infinite-size network

(see Section ‘Amit-Fusi model’). We show the result for two different

approximations of the field distribution: a binomial distribution

(magenta), as used in the previous calculations for infinite size

networks; and a gaussian (red) approximation (see Methods for

calculations) as used by previous authors [19,20,24]. For these

parameters the binomial approximation gives an accurate estimation

of Pne, while the gaussian calculation overestimates it.

The curves we get are far from the step functions predicted for

N?z? by Eq. (45). To understand why, compare Eqs. (15),

and (31): finite size effects can be neglected when

D({bW(gz,h))D&
ln ln N

ln N
and D({bW(g,h)z1)D&

ln ln N

ln N
. Because

the finite size effects are of order
ln ln N

ln N
, it is only for huge values

of N that the asymptotic capacity can be recovered. For instance

if we choose an activation threshold h slightly above the

optimal threshold given in Section ‘Amit-Fusi model’

(h~hoptz0:01~0:73), then {bW(g,h)z1~{0:06, and for

N~10100 we only have D{bW(g,h)z1D^3
ln ln N

ln N
. In Figure 4c

we plot Pne as a function of
a

aopt

where aopt~0:14 is the value of a

that optimizes capacity in the large N limit, h~0:73 and the other

parameters are the one that optimizes capacity. We see that we are

still far from the large N limit for N~10100. Networks of sizes

104{106 have capacities which are only between 20% and 40%

of the predicted capacity in the large N limit. Neglecting

fluctuations in the number of selective neurons, we can derive

an expression for the number of stored patterns P that includes the

leading finite size correction for the SP model,

P(N)~c1
N2

( ln N)2
1{c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln N

ln N

r
zo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln N

ln N

r !" #
ð32Þ

where c1 and c2 are two constants (see Methods).

If we take fluctuations in the number of selective neurons

into account, it introduces other finite-size effects as can be

seen from Eqs. (43) and (44) in the Methods section. These

fluctuations can be discarded if D({bW(gz,h))D&
ffiffiffi
b
pffiffiffiffiffiffiffiffiffi
ln N
p 1{h

1{gz

and D(1{bW(g,h))D&
ffiffiffi
b
pffiffiffiffiffiffiffiffiffi
ln N
p 1{h

1{g
. In Figure 4d we plot Pne for

different values of N. We see that finite size effects are even

stronger in this case.

To plot the curves of Figure 4, we chose parameters to be those

that optimize storage capacity for infinite network sizes. When N

is finite, those parameters are no longer optimal. To optimize

parameters at finite N, since the probability of error as a function

of age is no longer a step function, it is not possible to find the last

pattern stored with probability one. Instead we define the capacity

Pc as the pattern age for which Pne~
1

2
. Using Eqs. (31) and

performing an average over the distribution of M, we find

parameters optimizing pattern capacity for fixed values of b.

Results are shown on Figure 5a,b for N~10,000 and N~50,000.

We show the results for the different approximations used to

model the neural fields: the blue line is the binomial approxima-

tion, the cyan line the gaussian approximation and the magenta

one is a gaussian approximation with a covariance term that takes

into account correlations between synapses (see Methods and

Figure 3. Optimized information capacity for the MP model in
the limit N ? z ?. a. Optimal information capacity as a function of
g, the average number of activated synapses after learning. Optimal
capacity is reached in the limit d ? 0 and at x~ 0 where the capacity is
the same as for the Willshaw model. b. Dependence of information
capacity on d, the ratio between the number of depressing events and
potentiating events at pattern presentation. c. Dependence on

b ~ f
N

ln N
. d. Dependence on the noise in the presented patterns,

x. This illustrates the trade-off between the storage capacity and the
generalization ability of the network.
doi:10.1371/journal.pcbi.1003727.g003

Memory Capacity of Networks with Stochastic Binary Synapses

PLOS Computational Biology | www.ploscompbiol.org 6 August 2014 | Volume 10 | Issue 8 | e1003727



[19,20]). For f v

1ffiffiffiffiffi
N
p the storage capacity of simulated networks

(black crosses) is well predicted by the binomial approximation

while the gaussian approximations over-estimates capacity. For

f w

1ffiffiffiffiffi
N
p , the correlations between synapses can no longer be

neglected [17]. The gaussian approximation with covariance

captures the drop in capacity at large f .

For N~10,000, the SP model can store a maximum of

Pc~7,800 patterns at a coding level f ~0:0015 (see blue curve in

figure 5c). As suggested in Figures 4c,d, the capacity of finite

networks is strongly reduced compare to the capacity predicted for

infinite size networks. More precisely, if the network of size

N~10,000 had the same information capacity as the infinite size

network (27), it would store up to P~70,000 patterns at coding

level f ~0:0007. Part of this decrease in capacity is avoided if we

consider patterns that have a fixed number fN of selective

neurons. This corresponds to the red curve in figure 4c. For fixed

sizes the capacity is approximately twice as large. Note that finite-

size effects tend to decrease as the coding level increases. In

Figure 5c, f ~5:10{4, and the capacity is 3% of the value

predicted by the large N limit calculation. The ratio of actual to

asymptotic capacities increases to 10% at f ~1:10{3 and 21% at

f ~1:10{2. In Figure 5d, we do the same analysis for the MP

model with N~10,000. Here we have also optimized all the

parameters, except for the depression-potentiation ratio which is

set to d~1, ensuring that the network has the palimpsest property

and the ability to deal with noisy patterns. For N~10,000, the MP

model with d~1 can store up to Pc~70,000 patterns, at f ~0:001
(versus Pc~7,800 at f ~0:0015 for the SP model). One can also

compute the optimized capacity for a given noise level. At x~0:1,

Pc~20,900 for f ~0:0012 and d~4:3 or at x~0:2, Pc~8,900
for f ~0:0018 and d~6:9.

Storage capacity with errors
So far, we have defined the storage capacity as the number of

patterns that can be perfectly retrieved. However, it is quite

common for attractor neural networks to have stable fixed point

attractors that are close to, but not exactly equal to, patterns that

are stored in the connectivity matrix. It is difficult to estimate

analytically the stability of patterns that are retrieved with errors as

it requires analysis of the dynamics at multiple time steps. We

therefore used numerical simulations to check whether a tested

pattern is retrieved as a fixed point of the dynamics at a sufficiently

low error level. To quantify the degree of error, we introduce the

overlap m ~ss�,~jjm0

� 

between the network fixed point ~ss� and the

tested pattern ~jjm0 , with M selective neurons

Figure 4. Finite size effects. Shown is Pne, the probability that a tested pattern of a given age is stored without errors, for the SP
model. a. Pne as a function of the age of the tested pattern. Parameters are those optimizing capacity at N ? z ?, results are for simulations
(blue line) and calculations with a binomial approximation of the fields distributions (magenta) and a gaussian approximation (red); Pne is averaged
over different value of M , the number of selective neurons in the tested pattern (magenta line). b Same for N~ 50,000. c. Pne as a function of a
scaled version of pattern age (see text for details), fluctuations in M are discarded on this plot. d. Same as c with an average of Pne over different M .
doi:10.1371/journal.pcbi.1003727.g004
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m ~ss�,~jjm0

� 

~

1

M(1{f )

XN

i~1

j
m0
i {f

� �
s�i ð33Þ

In Figure 6a we show Pc(m), the number of fixed-point

attractors that have an overlap larger than m with the

corresponding stored pattern, for m~1, m~0:99 and m~0:7.

Note that only a negligible number of tested patterns lead to

fixed points with m smaller than 0:7, for N~10,000 neurons.

Considering fixed points with errors leads to a substantial

increase in capacity, e.g. for f ~0:0018 the capacity increases

from Pc(m~1)~7,800 to Pc(m~0:7)~10,400. In Figure 6b, we

quantify the information capacity in bits stored per synapse,

defined as in Eq. (6), i~Pc {f log2 f {(1{f ) log2 (1{f )ð Þ=N.

Note that in the situation when retrieval is not always perfect this

expression is only an approximation of the true information

content. The coding level that optimizes the information

capacity in bits per synapse i is larger (fopt^0:003) than the

one that optimizes the number of stored patterns Pc

(fopt^0:002), since the information content of individual patterns

decreases with f . Finally, note that the information capacity is

close to its optimum in a broad range of coding levels, up to

f*0:01.

Increase in capacity with inhibition
As we have seen above, the fluctuations in the number of

selective neurons in each pattern lead to a reduction in storage

capacity in networks of finite size (e.g. Figure 5c,d). The

detrimental effects of these fluctuations can be mitigated by

adding a uniform inhibition g to the network [19]. Using a simple

instantaneous and linear inhibitory feed-back, the local fields

become

hi~
XN

k~1

Wikj
m0
k {g

XN

k~1

j
m0
k ð34Þ

For infinite size networks, adding inhibition does not improve

storage capacity since fluctuations in the number of selective

neurons vanish in the large N limit. However, for finite size

networks, minimizing those fluctuations leads to substantial

increase in storage capacity. When testing the stability of pattern
~jjm0 , if the number of selective neurons is unknown, the variance of

the field on non-selective neurons is Nf (g{2ggzg2), and

Nf (gz{2ggzzg2) for selective neurons (for small f ). The

variance for non-selective neurons is minimized if g~g, yielding

the variance obtained with fixed size patterns. The same holds for

selective neurons at g~gz. Choosing a value of g between g and

Figure 5. Capacity at finite N . a,b. Pc as a function of f for the SP model and N~ 104, 5:104 Parameters are chosen to optimize capacity under
the binomial approximation. Shown are the result of the gaussian approximation without covariance (cyan) and with covariance (magenta) for these
parameters. c. Optimized Pc as a function of f for the SP model at N~ 10,000. The blue curve is for patterns with fluctuations in the number of
selective neurons. The red curve is for the same number of selective neurons in all patterns. The black curve is the number of patterns that would be
stored if the network were storing the same amount of information as in the case N ? z ?. d. Same for the MP model, where parameters have
been optimized, but the depression-potentiation ratio is fixed at d ~ 1.
doi:10.1371/journal.pcbi.1003727.g005
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gz brings the network capacity towards that of fixed size patterns.

In Figure 7a, we show the storage capacity as a function of f for

these three scenarios. Optimizing the inhibition g increases the

maximal capacity by 28% (green curve) compared to a network

with no inhibition (blue curve). Red curve is the capacity without

pattern size fluctuations. Inhibition increases the capacity from

Pc~7,800 at f ~0:0018 to Pc~12,000. In Figure 7b, information

capacity measured in bits per synapse is shown as a function of f in

the same three scenarios. Note again that for f ~
1ffiffiffiffiffi
N
p ~0:01, the

capacity is quite close to the optimal capacity.

Discussion

We have presented an analytical method to compute the storage

capacity of networks of binary neurons with binary synapses in the

sparse coding limit. When applied to the classic Willshaw model,

in the infinite limit, we find a maximal storage capacity of

ln 2~0:69 bits=synapse, the same than found in previous studies,

although with a different definition adapted to recurrent networks,

as discussed in the section ‘Willshaw model’. We then used this

method to study the storage capacity of a network with binary

synapses and stochastic learning, in the single presentation (SP)

Figure 6. Storage capacity with errors in the SP model. Instead of counting only patterns that are perfectly retrieved, patterns that lead to
fixed points of the dynamic overlapping significantly (see text for the definition of the overlap) with the tested memory pattern are also counted.
Simulations are done with the same parameters as in Figure 5a. a. Pc as a function of f . Blue crosses correspond to fixed points that are exactly the
stored patterns. Red triangles correspond to fixed points that have an overlap larger than 0:99, and brown circles an overlap larger than 0:7. b. Same

as a. but instead of quantifying storage capacity with Pc , it is done with i~
Pc {f log2 f {(1{ f ) log2 (1{f )ð Þ

N
.

doi:10.1371/journal.pcbi.1003727.g006

Figure 7. Storage capacity optimized with inhibition in the SP model. Blue is for a fixed threshold and fluctuations in the number of selective
neurons per pattern. Green, the fluctuations are minimized using inhibition. Red, without fluctuations in the number of selective neurons per pattern.
a. Number of stored patterns as a function of the coding level f . b. Stored information in bits per synapse, as a function of f .
doi:10.1371/journal.pcbi.1003727.g007
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scenario [17]. The main advantage of this model, compared to the

Willshaw model, is its palimpsest property, that allows it to do on-

line learning in an ever changing environment. Amit and Fusi

showed that the optimal storage capacity was obtained in the

sparse coding limit, f!
ln N

N
and with a balance between the effect

of depression and potentiation. The storage capacity of this

network has been further studied for finite size networks in

[19,20]. We have complemented this work by computing

analytically the storage capacity in the large N limit. The optimal

capacity of the SP model is 0:083 bits=synapse, which is about

9 times lower than the one of the Willshaw model. This decrease

in storage capacity is similar to the decrease seen in palimpsest

networks with continuous synapses - for example, in the

Hopfield model the capacity is about 0:14 bits=synapse,

while in a palimpsest version the capacity drops to about

0:05 bits=synapse. The reason for this decrease is that the most

recently seen patterns have large basins of attraction, while older

patterns have smaller ones. In the Willshaw model, all patterns are

equivalent, and therefore they all have vanishing basins of

attraction at the maximal capacity.

We have also studied the network in a multiple presentation

(MP) scenario, with in which patterns presented to the network are

noisy versions of a fixed set of prototypes, in the slow learning limit

in which transition probabilities go to zero [23]. In the extreme

case in which presented patterns are the prototypes, all synaptic

weights are initially at zero, and if the synapses do not experience

depression, this model is equivalent to the Willshaw model with a

storage capacity of 0:69 bits=synapse, which is about 9 times

larger than the capacity of the SP model. A more interesting

scenario is when depression is present. In this case then the

network has generalization properties (it can learn prototypes from

noisy versions of them), as well as palimpsest properties (if patterns

drawn from a new set of prototypes are presented it will eventually

replace a previous set with the new one). We have quantified the

trade-off between generalization and storage capacity (see

Figure 3d). For instance, if the noisy patterns have 80% of their

selective neurons in common with the prototypes to be learned,

the storage capacity is decreased from 0:69 to 0:12 bits=synapse.

A key step in estimating storage capacity is deriving an accurate

approximation for the distribution of the inputs neurons receive.

These inputs are the sum of a large number of binary variables, so the

distribution is a binomial if one can neglect the correlations between

these variables, induced by the learning process. Amit and Fusi [17]

showed that these correlations can be neglected when f%1=
ffiffiffiffiffi
N
p

.

Thus, we expect the results with the binomial approximation to be

exact in the large N limit. We have shown that a Gaussian

approximation of the binomial distribution gives inaccurate results in

the sparse coding limit, because the capacity depends on the tail of the

distribution, which is not well described by a Gaussian. For larger

coding levels (f*1=
ffiffiffiffiffi
N
p

), the binomial approximation breaks down

because it does not take into account correlations between inputs.

Following [19] and [20], we use a Gaussian approximation that

includes the covariance of the inputs, and show that this approxi-

mation captures well the simulation results in this coding level range.

We computed storage capacities for two different learning

scenarios. Both are unsupervised, involve a Hebbian-type plasticity

rule, and allow for online learning (providing patterns are

presented multiple times for the MP model). It is of interest to

compare the performance of these two particular scenarios with

known upper bounds on storage capacity. For networks of infinite

size with binary synapses such a bound has been derived using the

Gardner approach [25]. In the sparse coding limit, this bound is

^0:29 bits=synapse with random patterns (in which fluctuations

in the number of selective neurons per pattern fluctuates), and

^0:45 bits=synapse if patterns have a fixed number of selective

neurons [26]. We found a capacity of iSP~0:083 bits=synapse for

the SP model and iMP~0:69 bits=synapse for the MP model,

obtained both for patterns with fixed and variable number of

selective neurons. The result for the MP model seems to violate the

Gardner bound. However, as noticed by Nadal [21], one should

be cautious in comparing these results: in our calculations we have

required that a given pattern is stored perfectly with probability

one, while the Gardner calculation requires that all patterns are

stored perfectly with probability one. As mentioned in the section

‘Willshaw model’, the capacity of the Willshaw and MP models

drops to iopt~0:23 bits=synapse in the case of fixed-size patterns,

if one insists that all patterns should be stored perfectly, which is

now consistent with the Gardner bound. This means that the MP

model is able to reach a capacity which is roughly half the Gardner

bound, a rather impressive feat given the simplicity of the rule.

Note that supervised learning rules can get closer to these

theoretical bounds [27].

We have also studied finite-size networks, in which we defined

the capacity as the number of patterns for which the probability of

exact retrieval is at least 50%. We found that networks of

reasonable sizes have capacities that are far from the large N limit.

For networks of sizes 104{106 storage capacities are reduced by a

factor 3 or more (see Figure 4). These huge finite size effects can

be understood by the fact that the leading order corrections in the

large N limit are in
ln ( ln N)

ln N
- and so can never be neglected

unless N is an astronomical number (see Methods). A large part of

the decrease in capacity when considering finite-size networks is

due to fluctuations in the number of selective neurons from pattern

to pattern. In the last section, we have used inhibition to minimize

the effect of these fluctuations. For instance, for a network of

N~10,000 neurons learning in one shot, inhibition allows to

increase capacity from P~7,800 to P~12,000. For finite size

networks, memory patterns that are not perfectly retrieved can still

lead to fixed points where the activity is significantly correlated

with the memory patterns. We have investigated with simulations

how allowing errors in the retrieved patterns modifies storage

capacity. For N~10,000, the capacity increases from P~7,800 to

P~10,400, i.e. by approximately 30%.

Our study focused on networks of binary neurons, connected

through binary synapses, and storing very sparse patterns. These

three assumptions allowed us to compute analytically the storage

capacity of the network in two learning scenarios. An important

question is how far real neural networks are from such idealized

assumptions. First, the issue of whether real synapses are binary,

discrete but with a larger number of states, or essentially

continuous, is still unresolved, with evidence in favor of each of

these scenarios [28,29,30,31,32]. We expect that having synapses

with a finite number Kw2 of states will not modify strongly the

picture outlined here [17,33,20]. Second, it remains to be

investigated how these results will generalize to networks of more

realistic neurons. In strongly connected networks of spiking

neurons operating in the balanced mode [34,35,36,37], the

presence of ongoing activity presents strong constraints on the

viability of sparsely coded selective attractor states. This is because

‘non-selective’ neurons are no longer silent, but are rather active at

low background rates, and the noise due to this background

activity can easily wipe out the selective signal [35,38]. In fact,

simple scaling arguments in balanced networks suggest the optimal

coding level would become f*1=
ffiffiffiffiffi
N
p

[3,39]. The learning rules

we have considered in this paper lead to a vanishing information

stored per synapse with this scaling. Finding an unsupervised
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learning rule that achieves a finite information capacity in the

large N limit in networks with discrete synapses for such coding

levels remains an open question. However, the results presented

here show that for networks of realistic sizes, the information

capacity at such coding levels is in fact not very far from the

optimal one that is reached at lower coding levels (see vertical lines

in Figure 5–7). Finally, the coding levels of cortical networks

during delay period activity remain poorly characterized. Exper-

iments in IT cortex [40,41,42] are consistent with coding levels of

order 1%. Our results indicate that in networks of reasonable sizes,

these coding levels are not far from the optimal values.

The SP and MP models investigated in this paper can be

thought of as minimal models for learning in hippocampus and

neocortex. The SP model bears some resemblance to the function

of hippocampus, which is supposed to keep a memory of recent

episodes that are learned in one shot, thanks to highly plastic

synapses. The MP model relates to the function of neocortex,

where a longer-term memory can be stored, thanks to repeated

presentations of a set of prototypes that occur repeatedly in the

environment, and perhaps during sleep under the supervision of

the hippocampus. The idea that hippocampal and cortical

networks learn on different time scales has been exploited in

several modeling studies [43,44,45], in which the memories are

first stored in the hippocampus and then gradually transferred to

cortical networks. It would be interesting to extend the type of

analysis presented here to coupled hippocampo-cortical networks

with varying degrees of plasticity.

Methods

Capacity calculation for infinite size networks

We are interested at retrieving pattern ~jjm that has been

presented during the learning phase. We set the network in this

state ~ss~~jjm and ask whether the network remains in this state

while the dynamics (2) is running. At the first iteration, each

neuron i is receiving a field

hi~
XN

j~1

Wijj
m
j ~

XM
k~1

X i
k ð35Þ

Where M+1 is the number of selective neurons in pattern ~jjm,

with M~O( ln N). Where we use the standard ‘Landau’

notations: a~O(F (N)) means that a=F (N) goes to a finite limit

in the large N limit, while a~o(F (N)) means that a=F(N) goes to

zero in the large N limit. and N?z?. We recall that

gz~P(Wij~1Djm
i ~jm

j ~1) and g~P(Wij~1D(jm
i ,jm

j )=(1,1)).

Thus X i
k is a binary random variable which is 1 with probability,

either gz if i is a selective neuron (sites i such that jm
i ~1), or g if i

is a non-selective neuron (sites i such that jm
i ~0). Neglecting

correlations between Wij1 and Wij2 (it is legitimate in the sparse

coding limit we are interested in, see [17]), the X i
k’s are

independent and the distribution of the field on selective neurons

can be written as

P(hs
i ~S)~

M

S


 �
gS

z(1{gz)M{S

~ exp {MW gz,
S

M


 �
{

1

2
ln S 1{

S

M


 �
 �
{

1

2
ln (2p)

� �
ð36Þ

where we used Stirling formula for M,S&1, with W defined in

(13). For non-selective neurons

P hn
i ~S

� �
~

M

S


 �
gS(1{g)M{S

~ exp {MW g,
S

M


 �
{

1

2
ln S 1{

S

M


 �
 �
{

1

2
ln (2p)

� �
ð37Þ

Now write

P(hs
i ƒhfN)~P(hs

i ~hfN)
X

SƒhfN

P(hs
i ~S)

P(hs
i ~hfN)

P(hn
i §hfN)~P(hn

i ~hfN)
X

S§hfN

P(hn
i ~S)

P(hn
i ~hfN)

ð38Þ

In the limit N?z? we are considering in this section, and if

MgvfNhvMgz, the sums corresponding to the probabilities

P(hs
i ƒfNh),P(hn

i §fNh) are dominated by their first term

(corrections are made explicit in the following section). Keeping

only higher order terms in M in Eqs. (36) and (37), we have:

P(hs
i ƒfNh)^ exp ({MW(gz,hM )) ð39Þ

and

P(hn
i §fNh)^ exp ({MW(g,hM )), ð40Þ

yielding Eq. (15) with hM~h
fN

M
~O(1). Note that with the coding

levels we are considering here (f!
ln N

N
), M is of order ln N.

When the number of selective neurons per pattern is fixed at fN,

we choose Mh for the activation threshold and these equations

become:

Xs~{ ln NbW(gz,h)zO( ln ln N)

Xn~ ln N({bW(g,h)z1)zO( ln ln N) ð41Þ

where b~f
N

ln N
For random numbers of selective neurons we need to compute

the average over M: Pne(N)~
PN

M~0 P(M)Pne(M,N). Since M

is distributed according to a binomial of average Nf and variance

Nf (1{f )^Nf , for sufficiently large Nf , this can be approximat-

ed as M~fNzz
ffiffiffiffiffiffi
fN

p
where z is normally distributed:
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Pne(N)~

ðz?

{?
dz

e
{z2

2ffiffiffiffiffiffi
2p
p exp ({ exp (Xs(z,N)){ exp (Xn(z,N)))

ð42Þ

with

Xs(z,N)~{MW gz,
h

1z zffiffiffiffi
fN
p

0
@

1
AzO( ln ln N)

^{b ln N W(gz,h)z
zffiffiffiffiffiffi
fN

p W(gz,h){h
LW

Lh
(gz,h)


 �" #

zO( ln ln N)

^{b ln N W(gz,h)z
zffiffiffiffiffiffi
fN

p ln
1{h

1{gz

" #
zO( ln ln N) ð43Þ

and

Xn(z,N)~{MW g,
h

1z
zffiffiffiffiffiffi
fN

p
0
BB@

1
CCAz ln NzO( ln ln N)

^ ln N 1{b W(g,h)z
zffiffiffiffiffiffi
fN

p ln
1{h

1{g

 !" #
zO( ln ln N) ð44Þ

When N goes to infinity, we bring the limit into the integral in

Eq. (42) and obtain

lim
N?z?

Pne(N)~

ðz?

{?
dz

e
{z2

2ffiffiffiffiffiffi
2p
p lim

N?z?
exp { exp (Xs(z,N)){ exp (Xn(z,N))½ �

~H(W(gz,h))H({bW(g,h)z1) ð45Þ

where H is the Heaviside function. Thus in the limit of infinite size

networks, the probability of no error is a step function. The first

Heaviside function implies that the only requirement to avoid

errors on selective neurons is to have a scaled activation threshold

h below gz. The second Heaviside function implies that,

depending on b, h has to be chosen far enough from g. The

above equation allows to derive the inequalities (19) and (20).

Capacity calculation for finite-size networks
We now turn to a derivation of finite-size corrections for the

capacity. Here we show two different calculations. In the first

calculation, we derive Eq. (32), taking into account the leading-

order correction term in Eq. (43). This allows us to compute the

leading-order correction to the number of patterns P that can be

stored for a given set of parameters. However, it does not predict

accurately the storage capacity of the large-size but finite networks

that we simulated. In the second calculation presented, we focus

on computing the probability of no error in a given pattern Pne,

including a next-to-leading-order correction.

Eq. (32) is derived for a fixed set of parameters, assuming that

the set of active neurons have a fixed size, and that the activation

threshold h has been chosen large enough such that the probability

to have non-selective neurons activated is small. From the Stirling

expansion, adding the first finite-size correction term in Eq. (41),

we get

Xs^{ ln NbMW(gz,h)z
1

2
ln ln N ð46Þ

with bM~M= ln N. For large N , the number of stored patterns P

can be increased until gz(P) &
> h. Setting gz~hzE, an expansion

of W in E allows to write

Xs^{ ln NbM

E2

2h(1{h)
z

1

2
ln ln N ð47Þ

The P patterns are correctly stored as long as Xs%{1. This

condition is satisfied for Ev

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(1{h)

bM

ln ln N

ln N

s
. For the SP model,

we can deduce which value of P yields this value of E (see Eq. (26)).

This allows to derive Eq. (32),

P~
g

qzb2
ln

qz(1{g)

h{g


 �
N2

( ln N)2

1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(1{h)

p
ffiffiffiffiffiffiffi
bM

p
(h{g) ln

qz(1{g)

h{g


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln N

ln N

r
zo

ln ln N

ln N


 �2
664

3
775
ð48Þ

We now turn to a calculation of the probability of no error on a

given pattern Pne, taking into account the next-to-leading order

correction of order one, in addition to the term of order ln ln N in

Eq. (41). This is necessary to predict accurately the capacity

of realistic size networks (for instance for N~10,000,

ln ln N^2~O(1)). Pne(M) is computed for a memory pattern

with M selective neurons. The estimation of Pne used in the

figures is obtained by averaging over different values of M, with

M drawn from a binomial distribution of mean fN.

We first provide a more detailed expansion of the sums in Eq.

(38). Setting S~fNhzk, with the Taylor expansions:

MW g,hMz
k

M


 �
~

MW(g,hM )zk
LW
Lh

(g,hM )z
k2

2M

L2W

Lh2
(g,hM )zO

1

M2


 � ð49Þ

ln S 1{
S

M


 �
 �
~ ln (MhM (1{hM ))

z
k

M
Dh{1

M zO
1

M2


 � ð50Þ
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where hM~h
fN

M
and Dh{1

M ~
1

hM

{
1

1{hM

. Using (37) we can

rewrite:

X
S§fNh

P(hn
i ~S)

P(hn
i ~fNh)

~

XM{fNh

k~0

exp {k
LW
Lh

(g,hM ){
1

M

k2

2

L2W

Lh2
(g,hM ){kDh{1

M

 !
zO

1

M2


 �" # ð51Þ

In the cases we consider, we will always have
LW
Lh

(g,hM )=0 so

that we can consider only the term of order 1 in M. The sum is

now geometric, and we obtain

X
S§fNh

P(hn
i ~S)

P(hn
i ~fNh)

~
1

1{ exp ({
LW
Lh

(g,hM ))

zo(1) ð52Þ

The same kind of expansion can be applied for the selective

neurons. Again if we are in a situation where
LW
Lh

(gz,hM )=0,

X
SƒfNh

P(hs
i ~S)

P(hs
i ~fNh)

~
1

1{ exp (
LW
Lh

(gz,hM ))

zo(1) ð53Þ

When gz is close to h and thus
LW
Lh

(gz,hM )^0, we are then left

with:

XhM

k~0

exp {
1

M

k2

2

L2W

Lh2
(gz,hM ){kDh{1

M

 !" #
ð54Þ

~ exp
1

8M

L2W

Lh2
(gz,hM )(Dh{1

M )2

" #

Xz?

k~0

exp {
(k{Dh{1

M )2

2M

L2W

Lh2
(gz,hM )

" #
zo(1)

~

ðz?

0

dte
{

(t{(Dh{1
M

))2

2M
L2W
Lh2

(gz ,hM )
zo(1)

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2

M

L2W

Lh2
(gz,hM )

vuuut zo(1) ð55Þ

When gz is too close to h, which is the case for the optimal

parameters in the large N limit, we need to use (55). It only

contributes a term of order ln ln N in Xs and does not modify our

results. In Figures 6-7, we use (53), which gives from (38) and (36),

(37) and (53),(52):

P(hs
i ƒfNh)~

exp ln N({bMW(gz,hM )){
1

2
ln ln N

�

{
1

2
ln 2phM (1{hM )½1{ exp (

LW
Lh

(gz,hM ))�2

 �� ð56Þ

P(hn
i §fNh)~

exp ln N({bMW(g,hM )){
1

2
ln ln N

�

{
1

2
ln 2phM (1{hM )½1{ exp ({

LW
Lh

(g,hM ))�2

 �� ð57Þ

The probability of no error is

Pne~(1{P(hs
i ƒfNh))M (1{P(hn

i §fNh))N{M

~ exp ({ exp Xs{ exp Xn) ð58Þ

which leads to Eqs. (31)

Xs~{bMW gz,hMð Þ ln Nz
1

2
ln ln N

{
1

2
ln

1{ exp (
LW
Lh

(gz,hM ))


 �2

2phM (1{hM )

bM

2
6664

3
7775zo(1)

Xn~ {bMW(g,hM )z1ð Þ ln N{
1

2
ln ln N

{
1

2
ln 1{ exp ({

LW
Lh

(g,hM ))


 �2

2phM (1{hM )bM

" #
zo(1)

Gaussian approximation of the fields distribution

For a fixed number Mz1 of selective neurons in pattern ~jjm0 ,

approximating the distribution of the fields on background

neurons hn
i and selective neurons hs

i with a gaussian distribution

gives:

PG(hn
i ~S)~

1ffiffiffiffiffiffiffiffiffiffi
2ps2

n

p exp {
(S{mb)2

2s2
n

 !
ð59Þ

where

mb~Mg , s2
n~Mg(1{g) ð60Þ

and
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PG(hs
i ~S)~

1ffiffiffiffiffiffiffiffiffiffi
2ps2

s

p exp {
(S{mf )2

2s2
s

 !
ð61Þ

where

mf ~Mgz , s2
s ~Mgz(1{gz) ð62Þ

The probability that those fields are on the wrong side of the

threshold are:

PG(hn
i §fNh)~

ðz?

fNh

PG(hn
i ~z)dz ð63Þ

and

PG(hs
i ƒfNh)~

ðfNh

{?
PG(hs

i ~z)dz ð64Þ

Following the same calculations presented, and keeping only

terms that are relevant in the limit N?z?, the probability that

there is no error is given by:

H(WG(gz,h))H({bWG(g,h)z1) ð65Þ

where the rate function WG is

WG(x,h)~
(h{x)2

2x(1{x)
ð66Þ

Calculations with the binomial versus the gaussian approxima-

tion differ only in the form of W. Finite size terms can be taken into

account in the same way it is done in the previous Methods section

for the binomial approximation.

In all above calculations we assumed that fields are sums of

independent random variables (35). For small f correlations are

negligible [17,19]. It is possible to compute the covariances

between the terms of the sum (see Eq. (3.9) in [19]), and take them

into account in the gaussian approximation. This can be done

using

s2
n~Mg(1{g)zM(M{1)c ð67Þ

s2
s ~Mgz(1{gz)zM(M{1)c ð68Þ

in Eqs. (59),(61), where

c~f
d2

2(1zd)3
ð69Þ
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