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Turning a normal microscope into a 
super-resolution instrument using a 
scanning microlens array
Gergely Huszka    & Martin A. M. Gijs

We report dielectric microsphere array-based optical super-resolution microscopy. A dielectric 
microsphere that is placed on a sample is known to generate a virtual image with resolution better than 
the optical diffraction limit. However, a limitation of such type of super-resolution microscopy is the 
restricted field-of-view, essentially limited to the central area of the microsphere-generated image. We 
overcame this limitation by scanning a micro-fabricated array of ordered microspheres over the sample 
using a customized algorithm that moved step-by-step a motorized stage, meanwhile the microscope-
mounted camera was taking pictures at every step. Finally, we stitched together the extracted central 
parts of the virtual images that showed super-resolution into a mosaic image. We demonstrated 
130 nm lateral resolution (~λ/4) and 5 × 105 µm2 scanned surface area using a two by one array of 
barium titanate glass microspheres in oil-immersion environment. Our findings may serve as a basis for 
widespread applications of affordable optical super-resolution microscopy.

The discovery of the photonic nanojet phenomenon generated by a lens-like dielectric micro-object opened a new 
chapter in optical microscopy in 20041. Placing such micro-object over a sample allowed imaging with a resolu-
tion better than predicted by Abbe’s law of diffraction2. Since then, many groups investigated, the nature of the 
photonic nanojet phenomenon3–8. Recently, it became an accepted statement that the photonic nanojet is a narrow 
light beam with high optical density emerging over a length ~2λ away from the micro-object that created it with 
a full-width-at-half-maximum (FWHM) of ~λ/39. Parallel to the investigations of understanding and imaging 
the phenomenon itself, different micro-objects that are capable of creating such a nanojet for imaging purposes 
were studied10,11, the most common of which being nano-scale lenses2,12, polymer microdroplets13 and dielectric 
spheres both in the nanometer14 and micrometer range15,16. Subsequently, the research focus shifted towards 
applications17–26, but in these papers super-resolution was achieved typically over a very small area that was com-
parable to the size of the used micro-object. Recently, it was demonstrated that the super-resolved area can be 
extended by various scanning methods27–31, including the super-resolution imaging ability of dielectric micro-
spheres that were used in an atomic force microscopy (AFM) setup32,33. This technique extended the field-of-view 
of the imaging system, but also carried the drawbacks of an AFM system, namely the extreme sensitivity on vibra-
tion, requiring a dedicated setup. We have engineered the scanning principle and the super-resolution imaging 
capability of an array of dielectric microspheres into a robust experimental setup and thereby could upgrade a 
normal optical microscope to a super-resolution one.

Experimental setup
The working principle of our imaging system is explained in Fig. 1. As shown in Fig. 1a, if a dielectric microsphere 
with refractive index nsphere is placed underneath a light microscope’s objective and is surrounded by a medium 
with refractive index nmedium, a photonic nanojet is created right under the microsphere. The position, shape and 
size of this photonic nanojet is determined by the wavelength of the illumination light (visible light in our study, 
400 nm < λ < 700 nm, with peak at λ = 600 nm), the shape of the micro-object (which is spherical in our case) and 
the ratio between the two refractive indices (nsphere = 1.95 for the used barium titanate glass – BTG – microspheres 
and nmedium = 1.56 for immersion oil). These parameters must be tuned to generate a photonic nanojet exiting 
exactly at the surface of the microsphere, to enable imaging sub-diffraction limited features of the sample34,35. 
When a sample is placed just underneath the microsphere and the incident light is reflected back from the sample 
(Fig. 1b) the modulation pattern from the sample is transferred through the microsphere, towards the microscope 
objective. However, besides development of the photonic nanojet, also the near-field interaction with the sample 
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placed underneath the microsphere matters, so that the microsphere-based imaging resolution may become 
sample-dependent36. Therefore, in certain cases the super-resolution capability of a system can be only slightly 
better than the diffraction limit. Because of the geometrical optics properties of the microsphere, which acts as a 
lens, a virtual image will be projected about half the microsphere diameter distance below the sample plane. This 
virtual image plane can be placed in the focus of the microscope objective. An image, recorded while observing 
this plane will contain information about the sub-diffraction features, therefore enables super-resolution micros-
copy. The major drawback of such an imaging is that the field-of-view is limited to size of the central part of the 
microsphere. To overcome this limitation we established a scanning mechanism, with which we could restore the 
field-of-view to the full size of the microscope objective.

Our setup consists of two major components as shown in Fig. 2. The first is a metal frame, which is composed 
from 30 mm cage system parts (Thorlabs, Germany) including an SM1Z, Z-axis translator that are fixed to the 
microscope objective (Fig. 2a,b). An in-house designed and fabricated aluminum element is attached to the inside 
thread of the SM1Z translator (Fig. 2c), the aim of which is to fix a glass-based microsphere array chip onto the 
objective (Fig. 2d). The role of the Z-axis translator between the objective revolver and the chip holder is to ena-
ble focus adjustment along the Z-axis, as needed for positioning the chip in the right focal plane prior to imag-
ing based on our previous study in this topic37. The array chip was fabricated in the clean room using negative 
photoresist-based photolithography (Fig. 2e). The dimensions of the chip substrate is 22 × 22 × 0.15 mm3 and it is 
made of D 263 M borosilicate glass (Menzel-Gläser, Germany). After oxygen plasma cleaning, it was coated with 
20 µm 3025 type SU8 (MicroChem, USA). The glass-chromium mask used for the lithography consisted of an 
array of 40 µm diameter wells with a pitch of 60 µm. After development, a 4 µl droplet of Norland Optical Adhesive 
63 (NOA63, Norland Products, USA) was spread on the top of the well array. Then the chip was placed in a vac-
uum chamber for 20 minutes to remove the air bubbles stuck in the wells of the SU8 layer. Subsequently, we placed 
38–45 µm diameter BTG (Cospheric, USA) microspheres on the NOA63 layer and swiped them over the surface 
until they were located in the wells. The excess amount of microspheres was removed to prevent them acting as a 
spacer during imaging. Finally, the chip was exposed to UV light until an accumulated dose of 4.5 Joules/cm2 was 
reached, which is required for curing the NOA63 glue.

We placed our sample on a motorized microscope stage (Axio Imager M2m with HAL100 halogen light 
source, Zeiss, Germany) which was controlled by our custom algorithm. The scanning protocol was established 
as follows: after an initial focus setting along the Z-axis, the microscope-attached camera (AxioCam MRm, Zeiss, 
Germany) took a picture, when focused on the virtual image plane of the sample. To make a single scanning step, 
the stage moved 5 µm downwards along the Z-axis to prevent scratching the sample and took one step along either 
the X- or the Y-axis, where the in-plane step-size was set by the user before the scanning. Finally, it moved back 
to the original Z-axis position and was ready for taking the next picture. This scanning process was repeated until 
the pre-set sample area was fully scanned. Hereafter, the saved pictures were cropped to the region of interest 
(ROI) and subsequently stitched together to create a big field-of-view, super-resolution image. We implemented 

Figure 1.  Operation principle of the imaging system. (a) Excitation: light approaches through the microscope 
objective towards the dielectric microsphere with diameter d. In absence of an object to be imaged in the light 
path, the dielectric microsphere generates a photonic nanojet on its shadow side, as is shown on the finite 
element simulation of the electric field in the inset. (b) If an object is present underneath the microsphere, 
reflection occurs: the simulation shows reflection from a sample consisting of a modulated pattern of eleven 
lines and spaces with dimensions below the diffraction limit. The modulation is preserved and the near-field 
information of the diffraction-limited sample is propagated into the far-field within the microsphere. At the 
same time, the microsphere acts as a lens and generates a virtual image at d/2 distance below the sample plane, 
as illustrated by the green cone.
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a stitching algorithm that overlapped the regions in the image that were just outside the ROIs, to keep the useful 
amount of super-resolution pixels at maximum. To achieve that, we used the fact that the scanning went along 
a predefined path and that the useful area of a taken photograph was always at the same position, so that its size 

Figure 2.  Imaging setup. (a) Schematic of the optical microscope with our imaging setup attached. 1: 
Microscope revolver. 2: Optical cage (black) with spacers (metallic rods). 3: Microscope objective. 4: Aluminum 
adapter. 5: Immersion oil. 6: Chip template. 7: BTG microsphere. 8: Sample to be imaged. (b) Photograph of 
the optical cage system and the Z-axis translator. (c) Photograph of the bottom part of the optical cage with 
a custom aluminum holder attached to the Z-axis translator that clamps a glass microsphere array chip. (d) 
Photograph of the fabricated microsphere array chip, showing that the microspheres emerge from the surface 
plane of the chip. (e) Schematic of the fabrication process of the microsphere array chip. 1: A cover glass chip 
is treated with oxygen plasma. 2: 20 µm SU8 photoresist is spin-coated on the chip. 3: An array of microwells 
is patterned into the SU8 with photolithography. 4: A layer of NOA63 optical glue is placed on the top, leading 
to air bubbles stuck into the microwells. 5: The air bubbles are removed with vacuum treatment. 6: BTG 
microspheres are patterned into the microwells and fixed by UV curing of the optical glue.

Figure 3.  Demonstration of the microsphere scanning process. (a) Two microspheres of the array that are in 
the field-of-view of the microscope-mounted camera generate virtual images of the sample. The central regions 
of the microsphere-generated images (marked with green circles) show super-resolution. At every step of the 
scanning process, the inside squares (marked with yellow for the first and with blue for the second microsphere, 
respectively) are retained for generating the final image. (b) Schematics of the step-by-step scanning that is 
carried out using a motorized stage, controlled by an in-house developed scanning algorithm. (c) Final image at 
the end of the process. First, individual tiles, two of which are indicated by the white squares, are extracted from 
the center of the microsphere images and are stitched together to form a mosaic image. Next, the thus-generated 
mosaic images of the individual microspheres, indicated by yellow and blue tiles, are combined. Since the 
pitch of the microsphere array is smaller than the scanned area, overlap between the yellow tiles from the first 
microsphere and blue tiles from the second microsphere occurs. Scale bar 5 µm.



www.nature.com/scientificreports/

4Scientific REPOrTs |  (2018) 8:601  | DOI:10.1038/s41598-017-19039-6

could be calculated in advance. Because of this, we did not have to use the conventional stitching algorithms 
where the edges of the tiles are compared pixel-to-pixel for stitching. During experiments we used a 63×, oil 
immersion, NA = 1.4 objective, which limited the field-of-view to a 2 × 2 array of microspheres. Therefore, we 
had up to four ROIs per picture. Since each ROI was limited by the central part of the microsphere, we could not 
use conventional stitching algorithms.

Results and Discussion
In Fig. 3a, one can see a typical image captured from the virtual image plane. Technically, up to four microspheres 
could fit into the field-of-view of the camera. Practically, because of the size distribution of the microspheres 
and the dependence of the sensitivity of the detection principle on the local distance between the sample and 
the microsphere surface, we chose to use two microspheres for easy simultaneous imaging. In the center of the 
two microspheres (marked with the green dashed circles in Fig. 3a) super-resolution imaging is enabled. The 
yellow and the blue rectangles mark the ROI that will be extracted for the final image. During imaging, the 
microspheres have a fixed position on the pictures, while the sample is scanned (Fig. 3b). In Fig. 3c a composed 
image of a silicon-based microscope calibration target (MetroBoost, USA) is shown. The calibration target shows 
L-shaped line-space patterns with 130, 140 and 150 nm line width, from the left to right, respectively. The patterns 
are repeated in every row; therefore, the patterns in row nine (marked as R9 S) are nominally the same as the 
ones in row eight (marked as R8 S). One can observe the individual tiles that were used for stitching (yellow and 
blue corresponds to the two microspheres) and the overlap between the two scanned areas. The reason for this 
overlap is the pre-set scanning parameters, as the step-size was set to 5 µm along both X- and Y-axis, meanwhile 
the full scanned area was 100 × 100 µm. Since the pitch distance of the microspheres is 60 µm, this resulted in a 
40 µm-wide overlap area. Based on these results, it is possible to see the two major advantages of implementing 
scanning with multiple microspheres. With such a configuration, the scanning time could be reduced or the 
imaged area could be increased. The gain is proportional to the number of microspheres used during the process 
in both cases.

To determine the imaging performance of our system, we measured the modulation of line-space pat-
terns with different lateral dimensions as shown in Fig. 4. Figure 4a is a typical example of an image of 140 nm 
line-space pattern, showing that lines are better resolved towards the center of the microsphere and less sharp 
image is generated for increasing radial distance r. Experimentally we placed a 524–565 nm band-pass filter (AHF, 
Germany) in the optical path and we quantified the imaging performance by measuring the variation of the pixel 
intensity along the seven dashed lines of a width of 2 µm, corresponding to 22 pixels. Hereby, we repositioned 
the line-space pattern so that the complete range 0 < r < 12 µm could be studied. The extracted pixel gray values 
were normalized, taking as hundred percent the lighter region outside of the line pattern and zero percent the 
darkest pixel intensity of the micro-patterned structures. The peak-to-valley distances of the thus obtained curves 
were measured and marked as modulation. The graphs of Fig. 4b were constructed by placing line-space patterns 
with 260 nm, 280 nm and 300 nm pitch, respectively, in the center of a single microsphere. Seven measurement 
lines were placed along the horizontal axis (shown on Fig. 4a) of the images, starting from the center with 2 µm 

Figure 4.  Analysis of the modulation of the imaged line-space patterns. (a) Micrograph of an eleven-line 140 
nm-wide line-space pattern, as imaged by a microsphere, showing that the modulation pattern is best resolved 
towards the center of the microsphere and is attenuated with increasing radial distance r. (b) Measurement of 
the modulation as a function of r in the case of 260 nm, 280 nm and 300 nm pitch, respectively, along the dashed 
lines indicated in (a). (c) Measurement of the modulation of differently sized line-space patterns obtained at 
r = 0. Circles show the measured values when the microsphere array chip was present, while squares show the 
performance of the microscope objective without the array chip. Points are averages over the eleven lines at a 
given r, error bars: ±SD.
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increments. The modulation rapidly decreases as the local distance between the sample and the microsphere sur-
face increases, in good agreement with theoretical calculations of the evanescent behavior of sub-diffraction-sized 
nanostructures37. In Fig. 4c the modulation performance of the microscope objective with (yellow) and without 
(purple) the presence of the microsphere array was compared by imaging line-space patterns with different pitch 
in the 240–400 nm range. Data analysis showed that there is a significant gain due to the use of the microsphere 
when the lateral dimension of the sample is below 180 nm, i.e. exactly in the diffraction limited region.

To benchmark the performance of our approach, we compared the composed picture to the image that was 
taken by the microscope camera without using a microsphere (Fig. 5). In Fig. 5a, we see the line-space patterns 
of row nine from the sample of Fig. 3 in the upper part, and the line-space patterns of row eight in the lower 
part. The white dashed rectangle shows a single field-of-view of the microscope mounted camera. To be able to 
make fair comparison with our composed image, we took two photographs from the microscope and stitched 
them together. In the insets, enlarged images of the line-space patterns are shown, clearly indicating that the 
microscope cannot resolve features below the diffraction limit. To further support this statement, we drew five 
pixel-wide measurement lines on the taken photographs (blue lines correspond to patterns of row nine, while 
orange lines correspond to patterns of row eight), on which we evaluated the pixel gray values. We positioned 
these lines on exactly the same spot for every pattern, except for the 150 nm wide lines where they are shifted up 
by a few microns, because of a damaged region in the pattern of row eight. To exclude the shift caused by eventual 

Figure 5.  Resolution analysis of the image. (a) Picture of the sample taken via the microscope objective without 
use of the microsphere array. Since the field-of-view of the camera is smaller than the demonstrated scanned 
surface of the sample, two pictures were stitched together, one being marked by a white dashed rectangle. 
Nanostructures within the upper field-of-view are identical to the ones in the lower field-of-view, and are 
composed of 130 nm, 140 nm, and 150 nm L shaped line-space patterns from the left to the right, respectively. 
Black squares are zooms on these patterns. The optical signals are evaluated along the five pixel-wide horizontal 
lines (blue for the upper part and orange for the lower part) and plotted in the center as normalized gray 
values (a black pixel generating zero signal and a white pixel generating signal one). One can observe that the 
150 nm nanostructures-generated modulation patterns are resolvable; meanwhile no modulation is observed 
for the 130 nm and 140 nm nanostructures. (b) Picture of the same sample as in (a) and Fig. 3c, taken via the 
microscope objective using the microsphere array. Yellow colored tiles were recorded by the first microsphere, 
and blue ones by the second microsphere. Insets show zooms on the recorded modulation patterns. Optical 
signals are evaluated along the same five pixel-wide lines as in (a). Modulation plots in the center are generated 
with the same method as in (a), showing that all nanostructures are resolvable. Scale bar 5 µm.
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different brightness of the light source, we normalized all pixel gray values, resulting in a modulation pattern as 
discussed already in Fig. 4a. Therefore, on the plots in the center of Fig. 5a, the zero value corresponds to the dark-
est pixel and the one value corresponds to the lightest region next to the line-space pattern, i.e. the down-pointing 
peaks correspond to the dark lines in the pattern. One can observe that the peaks are distinguishable on the most 
right side plot (evaluating the 150 nm wide lines), but that they disappear as the line width is decreased to 140 nm 
(center plot) and finally to 130 nm (left side plot).

In Fig. 5b we show the image of the same area, but in this case, the picture was created with our microsphere 
array. We applied yellow and blue colors on the picture to show which part of it was created by the first and which 
by the second microsphere in our array. The insets show enlarged stitched images of the line-space patterns, with 
markings of the positions of our measurement lines. Just by eye observation, it is already clear that the lines, 
independently of their size, are more visible than in Fig. 5a. For evaluating the gray values along the measurement 
lines, we used the same method as described in the previous paragraph. On the plots in the center of Fig. 5b, one 
can observe that the peaks corresponding to the black lines on the sample are sharper and that the modulation 
amplitude is bigger. It is important to note, that the modulation did not change significantly between the biggest 
(150 nm) and the smallest (130 nm) line width, i.e. our imaging system could well resolve down to 130 nm wide 
features using a halogen light source.

Figure 6.  Demonstration of large area imaging with super-resolution. The sample area shown here is 
0.5 mm × 1.0 mm. It was reconstructed from 20 301 individual pictures and its original file consists of ~175 
MPixels. Insets show that 130 nm line-space patterns remained resolvable over the whole scanned area.
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Finally, to demonstrate the robustness and full possibility of our imaging technique, we show in Fig. 6 a 
super-resolution imaging corresponding to a large surface area (0.5 mm × 1.0 mm). During scanning, 20 301 
individual pictures were collected using our custom algorithm, resulting in ~60 GB of raw data. Our stitching 
algorithm composed the final image that had ~175 MPixel and ~530 MB file size. One can observe that due to the 
shear stress generated during the scanning, a slight systematic tilt occurred on the picture, which was corrected 
by our image reconstruction algorithm. The shadow effect at the edge of the tiles could not be compensated by 
our algorithm, therefore the quality of the stitching could be improved, e.g. by using seamless stitching in ImageJ, 
but it is important to note, that our solution completed the stitching ~100× faster than the ImageJ algorithm. As 
the insets in Fig. 6 show, the 130 nm lateral resolution was preserved over the total area of the scanned surface.

Conclusion
We demonstrated an advanced implementation of an optical microscopy super-resolution imaging technique, 
using an ordered array of dielectric microspheres. The imaging principle was explained to be related to the exist-
ence of a photonic nanojet upon illumination of a microsphere and the near-field interactions between the sample 
and the microsphere. We showed that it is possible to overcome some of the field-of-view limitations of previously 
published microsphere-based super-resolution imaging techniques by implementing a scanning and stitching 
process. Our simple but smart system achieved a 240 nm pitch lateral resolution in static mode. Furthermore, 
260 nm pitch and simultaneously a much bigger total field-of-view than the one of the microscope-mounted 
camera was demonstrated. To show the robustness of the system, a surface scan of 5 × 105 µm2 was presented. 
However, we believe that even bigger areas can be imaged, since there are no intrinsic limits in our process. Later, 
the scanning system could eventually be optimized for mass production with the help of 3D printing, as this tech-
nique enables very flexible microfabrication of customized parts, as was shown earlier31. We therefore hope that 
our findings will help repositioning dielectric microsphere-based optical super-resolution microscopy beyond the 
proof-of-concept stage towards a fully operational real-life application.

Data availability.  The data that support the plots within this paper and other findings of this study are avail-
able from the corresponding author upon reasonable request.
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