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In this paper we developed a stochastic model of measles transmission dynamics with
double dose vaccination. The total population in this model was sub-divided in to five
compartments, namely Susceptible SðtÞ, Infected IðtÞ; Vaccinated first dose V1ðtÞ ;
Vaccinated second dose V2ðtÞ and Recovered RðtÞ: First the model was developed by
deterministic approach and then transformed into stochastic one, which is known to play a
significant role by providing additional degree of realism compared to the deterministic
approach. The analysis of the model was done in both approaches. The qualitative behavior
of the model, like conditions for positivity of solutions, invariant region of the solution, the
existence of equilibrium points of the model and their stability, and also sensitivity
analysis of the model were analyzed. We showed that in both deterministic and stochastic
cases if the basic reproduction number is less than 1 or greater than 1 the disease free
equilibrium point is stable or unstable respectively, so that the disease dies out or persists
within the population. Numerical simulations were carried out using MATLAB to support
our analytical solutions. These simulations show that how double dose vaccination affect
the dynamics of human population.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Measles is one of the most acute viral infectious human diseases and can cause serious illness, life-long complications and
death (Moss & Griffin, 2012). Measles is an acute, highly contagious viral disease caused by paramyxovirus. This virus is
transmitted primarily by airborne spray to mucous in the upper respiratory tract and it can live in the nose and throat mucus
of an infected person. It can be transmitted by direct contact with infected nasal transmissionwhen an infected person cough
or sneezes. Humans are the only natural hosts of measles virus. It can be divided into four stages of illness phases such as
incubation, prodrome, rash and recovery phase (C (Center of Disease Co, 2008e2015). Complications of measles are more
common among children younger than 5 years of age and adults 20 years of age and older. These include pneumonia, ear and
sinus infections, mouth ulcers, persistent diarrhea, Otis, blindness, malnutrition, and brain damage (Ethiopian health and
nutr, 2012).
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Measles is highly communicable, with greater than 90% secondary attack rates among susceptible persons. It is still a
public health problem inmany developing countries, particularly in parts of Asia and Africa. According to theWHO,more than
20 million people are affected by measles each year with more than 95% of measles deaths occur in developing countries
especially with more than half of measles deaths occur in sub-Saharan Africa and this burden accounted for 15% of all under-
five mortality (O (World Health Organiz, 2012). Measles vaccine is the best way to reduce the risk of contracting measles. It is
safe, effective and inexpensive. Unvaccinated young children and pregnant women are at highest risk of measles and its
complications, including death. Immunity conferred by vaccination against measles has been shown to persist for at least 20
years and is generally thought to be life-long for most individuals. Measles vaccine efficacy is expected to be 85% at 9e11
months of age and increases to 97% after a second dose given at greater than 12 months (O (World Health Organiz, 2012).

Treatment aims to ease symptoms until the body’s immune system clears the infection. There is no specific medicine that
kills the measles virus. For most cases, rest and simple measures to reduce a fever are all that are needed for a full recovery.
Peoplewithmeasles need bed rest, fluids, and control of fever and pains, and antibiotics (C (Center of Disease Co, 2000e2010).

Mathematical modeling is the process of expressing real world phenomena using mathematical principles and formula.
Mathematical Modeling can be classified into deterministic models and stochastic models based on certainty. Mathematical
models have been applied to infectious diseases since the middle of the 20th century. Infectious diseases like measles have
been analyzed by both deterministic and stochastic epidemiology models.

The deterministic approach has some limitations in the mathematical modeling transmission of an infectious disease.
They are simple to analyses but give less information, hard to perform estimation because it is not probabilistic and also
repeated simulation from identical model result to one realization. The stochastic model of a process describes the uncer-
tainty about the process development. Uncertainty is generated by randomness, which is a characteristic feature of the
evolution of universe, and by ignorance, which is a characteristic feature of mankind.

Thus, in order to describe uncertainty in a realistic way, the stochastic model must explicitly include both sources of
uncertainty (Wolfgang et al., 2006). Stochastic models play a significant role in various branches of applied sciences including
measles transmission dynamics, as they provide some additional degree of realism compared to their deterministic model
(KermackMcKendrick, 1927).

Few essential researches have been done on the transmission dynamics of measles in the last decade. The study done by
(Ochoche & Gweryina, 2014) performed a SIR mathematical model of measles with vaccination and two phases of infec-
tiousness. Their study realized that the disease will certainly be eliminated if all susceptible are vaccinated. They therefore
suggested that the measles vaccine should be made compulsory such that no child is allowed to enter school without evi-
dence of at least two dosemeasles vaccination (Raymond, 2016). studied stochastic modeling of the transmission dynamics of
measles with vaccination control. The study has shown the effectiveness of stochastic analysis in studying the dynamics of
measles compared to deterministic analysis. Moreover, the study done by (Edward et al., 2015) performed a mathematical
model for control and elimination of the transmission dynamics of measles. Elimination of measles requires maintaining the
effective reproduction number less than 1, as well as achieving low levels of susceptibility. Simulations of variables of the
model have been performed and sensitivity analysis of different parameters has been done using MATLAB. Additionally
(Christopher, Ibrahim, & Shamaki, 2017), developed a mathematical model for the dynamics of measles under the combined
effect of vaccination at the susceptible class, and administering measles drug therapy to screened infected individuals in the
exposed class. The results of the numerical experiments revealed that eradicating measles is more efficient if susceptible
individuals are vaccinated and followed by drug therapy to screened infected individuals in the exposed class. The study by
(NigusiePurnachandra, 2017) also considered and investigated SEIR mathematical modeling and simulation study for the
control and transmission dynamics of measles. Infected has been split into two: Infected catarrh, and infected eruption.
Numerical simulation was conducted using ode 45 of MATLAB. Similarly (Abu & Okutachi, 2017), studied simulating deter-
ministic and stochastic differential equation models of measles outbreak considering population size and initial vaccination
regime. Numerical results reveal that the solutions of the stochastic model display strong stochastic components for small
susceptible population sizes. Thus, the solution of the deterministic model is a limit of the solutions of the stochastic
counterpart for larger susceptible population sizes (SowoleSangare et al., 2019). also studied on the existence, uniqueness,
stability of solution and numerical simulations of a mathematical model for measles disease. They carried out the stability of
themodel, established the existence and uniqueness of the solution to themodel. Runge-Kutta fourth order methodwas used
to solve the model numerically. This was used to do a simulation of the model by using MATLAB to determine the best
strategies to adopt in controlling the measles disease.

All the above studies have developed deterministic as well as stochastic mathematical models of measles transmission
dynamics. But there is no research done so far focusing on stochastic model of measles transmission dynamics with double
dose vaccination by partitioning first and second dose vaccinated classes to the best of the knowledge the authors. But we
need to be sure about the mentioned gap.

The remaining part of the paper is organized as follows. Section 2 introduces model formulation and description about
proposed measles model. In Section 3, analysis of the model is discussed. Section 4 discuss about numerical simulation of the
model. Finally, section 5 contains discussion and conclusions.
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2. Model description and formulation

The proposed model of measles transmission dynamics total population size is divided into five distinct sub-classes which
are: Susceptible S(t),Vaccinated first dose V1(t), Vaccinated second dose V2(t), Infected I(t) and Recovered R(t). Susceptible(S):
individuals who have not yet been infected with the disease, but are susceptible to the disease, and so might become infected.
Vaccinated first dose (V1): individuals who have received first dose of vaccine. Vaccinated second dose (V2): individuals who
have received second dose of vaccine. Infected (I): individuals who have been infected with the disease and are capable of
spreading the disease to susceptible. Recovered (R): individuals who have been infected and then recovered from the disease,
those are not able to be infected again.

Model assumptions

1. The population is uniform and mixes homogeneously,
2. The latent period is not crucial for the susceptible-infective interaction, so the compartment of exposed is omitted,
3. The recruited newborns who received first dose of vaccine join the Vaccinated class, but recruited newborns who have not

received first dose of vaccine join the susceptible class.
4. An infected individual makes contact and is able to transmit the disease,
5. There is no treatment failure if you receive first and second doses of vaccine, a patient will either recover or die.

Susceptible class is increased by recruited of newborn at a rate p, and waning for first dose of vaccine at rate qV1, and
decreased due to contact with infected at rate bSI, individuals who receive first dose of vaccine to susceptible at rate aS.
Infected class is increased by contact with susceptible class by rate bSI and recovered from the infected class at a rate aI.
Recovered class is increased due to the recovered from the infected class at a rate aI and receive second dose of vaccine to
recover at rate bV2. Vaccinated first dose class is increased by the Vaccinated recruited of newborn at a rate K, receive first
dose of vaccine to susceptible at rate aS, and decreased due to waning for first dose of vaccine to susceptible at rate qV1,
receive first dose of vaccine to second dose of vaccine at a rate cV1. Vaccinated second dose class is increased by receive first
dose of vaccine to second dose at a rate cV1 and decreased due to receive second dose of vaccine to recovery at rate bV2. In all
sub-classes decreased due to natural death rate m, and the disease death rate h for infected class only.

The total population size at time t is denoted by N (t) where N (t) ¼ S (t) þV1 (t) þ V2 (t) þ I (t) þ R (t).
The dynamics of the measles disease can be depicted in Fig. 1 below.

2.2. Model formulations

From the above schematic diagram (Fig. 1) the following system of differential equations is obtained for the deterministic
model of measles transmission with double dose vaccination.8>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

dS
dt

¼ pþ qV1 � bSI � aS� mS

dV1

dt
¼ K þ aS� qV1 � cV1 � mV1

dV2

dt
¼ cV1 � bV2 � mV2

dI
dt

¼ bSI � aI � hI � mI

dR
dt

¼ aI þ bV2 � mR

(1)
With initial condition

Sð0Þ¼ S0 � 0;V1ð0Þ ¼ V10 � 0;V2ð0Þ ¼ V20 � 0; Ið0Þ ¼ I0 � 0;Rð0Þ ¼ R0 � 0
Stochastic measles model formulation.
Let us now consider themodel (1) with the perturbation on transmission parameter given bywhite noise. The use of white

noise is a good hypothesis in this model since it is assumed that the transmission parameter oscillates randomly around some
average value, due to sometime varying disturbances. In this way, if a stochastic perturbation is made on the transmission
parameter then we obtain Itôs type stochastic deferential system.



Fig. 1. The schematic model of measles transmission.
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8>>>><
>>>>:

dS ¼ ½pþ qV1 � bSI � aS� mS�dt þ r1SdW1
dV1 ¼ ½K þ aS� qV1 � cV1 � mV1�dt þ r2V1dW2
dV2 ¼ ½cV1 � bV2 � mV2�dt þ r3V2dW3
dI ¼ ½bSI � aI � hI� mI�dt þ r4IdW4
dR ¼ ½aI þ bV2 � mR�dt þ r5RdW5

(2)
with initial condition. ðSð0Þ;V1ð0Þ;V2ð0Þ; Ið0Þ;Rð0ÞÞT ¼ ðS0;V10; V20; I0; R0ÞT2R5þwhere r1; r2; r3; r4; r5 areconstants
intensity fluctuations of each compartment and W1;W2;W3;W4;W5 are the Brownian motions of each compartment.

3. Model analysis

In this section, the invariant region, positivity of solution, disease free equilibrium point, endemic equilibrium point, basic
reproduction number, stability analysis and sensitivity analysis are discussed.

3.1. Invariant region

In this sub-sectionwe obtained a region in which solutions of the models (1) and (2) are uniformly bounded in the proper

subsetU of R5.

Theorem 1. The feasible solution set U ¼ ðS;V1;V2; I;RÞ of the model (1) and (2) with initial conditions Sð0Þ ¼ S0 � 0;V1ð0Þ ¼
V10 � 0;V2ð0Þ ¼ V20 � 0; Ið0Þ ¼ I0 � 0;Rð0Þ ¼ R0 � 0 then 0 � N � l

m U ¼
n
ðS;V1;V2; I;RÞεR5 : 0� N� l

m

o
where l ¼ pþ K is

bounded region.

Proof. For the model in our consideration the total population is given by

NðtÞ¼ SðtÞ þ V1ðtÞ þ V2ðtÞ þ IðtÞ þ RðtÞ (3)
Then differentiating N with respect to t and using equation (1) gives us;

dN
dt

¼ dS
dt

þ dV1

dt
þ dV2

dt
þ dI
dt

þ dR
dt

dN
dt

¼ pþ K � mN � hI

(4)
In the absence of death due to measles or if there is no infected individual (i.e I¼0), equation (4) becomes

dN
dt

�pþK �mN; letting ðpþKÞ¼ l

Z
dN

Z

l� mN

� dt Integrating both sides
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�1
m
lnðl�mNÞ� t þ C; where C is a constant

lnðl�mNÞ� � mðtþCÞ
elnðl�mNÞ � e�mðtþCÞ
ðl� mNÞ� e�mt :e�mC ; since N ¼ e�mC & lim
�
e�mt�¼ 0
0 t/∞

ðl� mNÞ � N0: 0
l

N �

m

Hence, 0 � N � l
m

Therefore,U ¼
n
ðS;V1;V2; I;RÞ εR5 : 0� N� L

m

o
is positive invariant set for the system (1) and also for model (2) because

stochastic model are deterministic model adding stochastic perturbations.

3.2. Positivity of solutions

In this sub-section, to obtain the solution of the model is non-negative we stated and proved the following theorem. To
verify themodel (1) to be epidemiologically meaningful andwell posedwe have to pave that all state variables are positive for
all t � 0.

Theorem 2. If Sð0Þ � 0;V1ð0Þ � 0;V2ð0Þ � 0; Ið0Þ � 0 and Rð0Þ � 0 then the solution set fSðtÞ;V1ðtÞ;V2ðtÞ; IðtÞ;RðtÞg of the
model (1) is positive for all t � 0.

Proof. From the system of differential equation (1), let us take the first equation;

0
dS
dt

¼pþ qV1 � bSI � aS� mS

dS

dt

� � ðbIþ aþmÞS
dS
S � �ðbIþaþmÞdt By using separating of variables and integrating both sides, we getSðtÞ � Sð0Þe�ðbIþaþmÞt >0 since eC ¼

Sð0Þ, where C is a constant
Hence, the proof holds if SðtÞs0 for all t � 0.

V1ðtÞ � V1ð0Þe�ðqþcþmÞt >0

V2ðtÞ � V2ð0Þe�ðbþmÞt > 0

IðtÞ � Ið0Þe�ðmþhþaÞt >0
RðtÞ � Rð0Þe�ðmÞt >0
Hence, the solution of fS;V1;V2; I;Rg for t � 0 in the region. Thenwe can deduce that the state variables of the system are
all positive for all t>0.

3.3. Disease-free equilibrium point (DFEP)

In this sub-sectionwe obtain the equilibrium point at which the epidemic is eradicated from the population. Letting all the
right hand sides of (1) to zero and I ¼ R ¼ 0, leads to8>><

>>:
pþ qV*

1 � ðaþ mÞS0 ¼ 0

K þ aS0 � ðqþ cþ mÞV*
1 ¼ 0

cV*
1 � ðbþ mÞV*

2 ¼ 0

(5)

by rearranging equation (5) and after substituting each other, we got,
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S0 ¼
pðqþ cþ mÞ þ qK

ðqþ cþ mÞðaþ mÞ � qa
;V*

1 ¼
Kðaþ mÞ þ ap

ðqþ cþ mÞðaþ mÞ � qa
V*
2 ¼

Kcðaþ mÞ þ pac
ðbþ mÞ½ðqþ cþ mÞðaþ mÞ � qa�
Therefore, DFE is given by,

�
S0;V

*
1 ;V

*
2 ; 0;0

�¼� pðqþ cþ mÞ þ qK
ðqþ cþ mÞðaþ mÞ � qa

;
Kðaþ mÞ þ ap

ðqþ cþ mÞðaþ mÞ � qa
;

Kcðaþ mÞ þ pac
ðbþ mÞ½ðqþ cþ mÞðaþ mÞ � qa�;0;0

�

that represents the state in which there is no infection in the community.

3.4. Basic reproduction numberðR0Þ

In this sub-section we obtained basic reproduction numbers for deterministic as well as stochastic models.

3.4.1. Deterministic basic reproduction number (Ro
D)

The deterministic model basic reproduction number Ro
D can be determined using the method of next-generation matrix

(Diekmann & Heesterbeek, 2000). The basic reproduction number is the eigen-value of largest magnitude of the next gen-

eration matrix, that is, the number of all new infectious types in the next generation. Ro
D ¼ rðFV�1Þ

F be the rate of appearance of new infections in compartments I and V be the rate of transfer of individuals out of
compartment I.

Based on system (1) one infectious compartment (m ¼ 1) i.e mxm ¼ 1 � 1 matrices, we may compute F and V as follow:

dI
dt

¼ bSI � mI� hI� aI (6)
Note that equation (5) is made of one compartments I which are disease transmission. These are used for the determi-

nation of Ro
D.

f ¼bSI v ¼ ðmþhþa ÞI
vf vv
F ¼
vI

¼ bS V ¼
vI

¼ ðmþhþa Þ

pðqþ cþ mÞ þ qK

FDFEðS0;V*

1 ;V
*
2 ;0;0Þ ¼ bS0 Where S0 ¼ðqþ cþ mÞðaþ mÞ � qa
The next generation matrix of equation (6) is. Ro
D ¼ FV�1

Thus, we need to find the spectral radius of FV�1:

F ¼bS0 V�1 ¼ 1
ðmþ hþ a Þ

�1 bS0 bS0
FV ¼ðmþ hþ a Þ ¼ ðmþ hþ a Þ

� �

The Eigen-value of FV�1 can be obtain by.

��� bS0
ðmþhþa Þ � l

��� ¼ 0

Hence, with next generation matrix rule the largest Eigen-value of the next generation matrix is the basic reproduction
number.

Therefore, RoD ¼ bS0
ðmþhþa Þ Where. S0 ¼ pðqþcþmÞþqK

ðqþcþmÞðaþmÞ�qa

3.4.2. Stochastic basic reproduction number (Ro
S)

From model system (2) we take the forth equation i.e

dI¼ ½bSI�ðmþhþaÞI�dt þ r4IdW4
The stochastic model basic reproductive number can be determined by using Ito’s formula for twice differentiable function

on [0, T], f ðIÞ ¼ lnðIÞ its expansion in Taylor series is df ðt; IðtÞÞ ¼ vf
vt dtþ vf

vI dIþ 1
2

v2f
vI2ðdIÞ2 þ v2f

vtvIdtdIþ 1
2

v2f
vt2ðdtÞ2
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dI
��

dI
�
ðdIÞ2 ¼

�
bSI �

�
mþ hþ a

�
I
�2ðdtÞ2 þ2ðbSI�ðmþhþaÞIÞðr4IÞdtdW4 þ ðr4IÞ2ðdW4Þ2

vf v2f v2f vf 1 v2f 1

The partial derivatives are :

vt
¼0 ;

vt2
¼ 0 ;

vtvI
¼ 0;

vI
¼

I
;
vI2

¼ �
I2

vf vf 1 v2f 2 v2f 1 v2f 2
0df ðt; IðtÞÞ¼
vt

dtþ
vI

dIþ
2 vI2

ðdIÞ þ
vtvI

dtðdIÞ þ
2 vt2

ðdtÞ

1 1 �
2 2
0df ðt; IðtÞÞ¼ ð0Þdtþ

I
ð½bSI�ðmþhþaÞI�dtþ r4IdW4Þ�2I2

ðbSI � tde is a pivotal concept in ðmþ hþ aÞIÞ ðdtÞ

þ2ðbSI�ðmþhþaÞIÞðr4IÞdtdW4 þðr4IÞ2ðdW4Þ2
�
þð0Þdtð½bSI�ðmþhþaÞI�dtþ r4IdW4Þ þ

1
2
ð0ÞðdtÞ2

1
�

2 2
�

0df ðt; IðtÞÞ¼ ð½bS�ðmþhþaÞ�dtþ r4dW4Þ�2
r4 ðdW4Þ
The differentials of higher order ðdt; dWÞ become fast zero; ðdtÞ2 / 0 and dtdWðtÞ / 0: the stochastic term dW2ðtÞ ac-
cording to the rules of Brownianmotion is given as dW2ðtÞ ¼ dt.where for computing ðdIðtÞÞ2 we use the following properties

dt
��

dt
�
ðdtÞ2 ¼ 0 ; dtdWðtÞ ¼ dWðtÞdt ¼ 0;

�
dW

�
t
��2 ¼dWdW ¼ dt

dt for ðdWðtÞÞ2
�
due to variance of a wiener process

o

�	

1� 2
�
 �
0df ðt; IðtÞÞ¼ bS�ðmþhþaÞ�
2

r4 dtþ r4dW4ðtÞ (7)

	
1 2




0df ðt; IðtÞÞ¼ bS�

2
r4 �ðmþhþaÞ dt þ r4dWðtÞ
Using next generation matrix

DFE¼ �S0;V*
1 ;V

*
2 ;0;0

�
where S0 ¼

pðqþ cþ mÞ þ qK
ðqþ cþ mÞðaþ mÞ � qa

1 2 1 2
f ¼ bS�
2
r4 ; fDFE ¼ bS0 � 2

r4

�1 1

v¼ðmþhþaÞ v ¼ðmþ hþ aÞ

� � � �

Hence.RoS ¼ f v�1 ¼ bS0 � r4

2

2 * 1
ðmþhþaÞ ¼ bS0

ðmþhþaÞ �
r4

2

2ðmþhþaÞ

Therefore.Ro
S ¼ Ro

D � r4
2

2ðmþhþaÞ ; since Ro
D ¼ bS0

ðmþhþaÞ
Note: Ro

S < Ro
D The stochastic basic reproduction number is less than deterministic basic reproduction number, because

the stochastic model version approaches to reality than deterministic model.

3.5. Local stability of disease-free equilibrium

3.5.1. Local stability of disease-free equilibrium of the deterministic model

The number of infected class I will tend to zero in the long run provided that RoD < 1. If RoD < 1 then disease-free equi-
librium of the deterministic model is locally asymptotically stable.

Theorem 3. The disease-free equilibrium DFE ¼ ðS0;V*
1 ;V

*
2 ;0;0Þ of the system (1) is locally asymptotically stable if RoD < 1 and

unstable ifRoD >1.

Proof. We investigate the stability of the disease-free equilibrium DFE ¼ ðS0;V*
1 ;V

*
2 ;0;0Þ by considering the system (1),

taking the Jacobian matrix and obtained
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J¼

2
66666666666666666666666666666666666664

vf1
vS
vf2
vS
vf3
vS
vf4
vS
vf5
vS

vf1
vV1

vf2
vV1

vf3
vV1

vf4
vV1

vf5
vV1

vf1
vV2

vf2
vV2

vf3
vV2

vf4
vV2

vf5
vV2

vf1
vI

vf2
vI
vf3
vI
vf4
vI
vf5
vI

vf1
vR
vf2
vR
vf3
vR
vf4
vR
vf5
vR

3
77777777777777777777777777777777777775

; where

f1 ¼ pþ qV1 � bSI � aS� mS
f2 ¼ K þ aS� qV1 � cV1 � mV1
f3 ¼ cV1 � bV2 � mV2
f4 ¼ bSI � aI � hI� mI
f5 ¼ aI þ bV2 � mR

2�ðbI þ aþ mÞ q 0 �bS 0
3

J¼
66664
a
0
bI
0

�ðqþ cþ mÞ
c
0
0

0
�ðbþ mÞ
0
b

0
0
bS� ðaþ hþ mÞ
a

0
0
0
�m

77775
The Jacobean matrix of the system (1) at disease free equilibrium is

J
�
S0;V

*
1 ;V

*
2 ;0; 0

�¼
2
66664
�ðaþ mÞ
a
0
0
0

q
�ðqþ cþ mÞ
c
0
0

0
0
�ðbþ mÞ
0
b

�bS0
0
0
bS0 � ðaþ hþ mÞ
a

0
0
0
0
�m

3
77775
The determinant is given by:
��JðS0;V*

1 ;V
*
2 ;0;0Þ � lIn

�� ¼ 0

0

����������

�ðaþ mÞ � l
a
0
0
0

q
�ðqþ cþ mÞ � l
c
0
0

0
0
�ðbþ mÞ � l
0
b

�bS0
0
0
bS0 � ðaþ hþ mÞ � l
a

0
0
0
0
�m� l

����������
¼0
0ð�ðaþmÞ�lÞ

�

��������
�ðqþ cþmÞ�l
c
0
0

0
�ðbþmÞ�l
0
b

0
0
bS0�ðaþhþmÞ�l
a

0
0
0
�m�l

��������
�a

��������
q
c
0
0

0
�ðbþmÞ�l
0
b

�bS0
0
bS0�ðaþhþmÞ�l
a

0
0
0
�m�l

��������
¼0

2

0ð� ðaþmÞ� lÞ4

� ðqþ cþmÞ� l

������
�ðbþ mÞ � l
0
b

0
bS0 � ðaþ hþ mÞ � l
a

0
0
�m� l

������� aq

������
�ðbþ mÞ � l
0
b

0
bS0 � ðaþ hþ mÞ � l
a

0
0
�m� l

������
3
5¼0



G.T. Tilahun et al. / Infectious Disease Modelling 5 (2020) 478e494486
0ð� ðaþmÞ� lÞ
	
ð � ðqþ cþmÞ� lÞð � ðbþmÞ� lÞ

���� bS0 � ðaþ hþ mÞ � l 0
a �m� l

����� aqð � ðbþmÞ� lÞ

�
���� bS0 � ðaþ hþ mÞ � l 0
a �m� l

����


¼0

0ð� ðaþmÞ� lÞ½ð � ðqþ cþmÞ� lÞð � ðbþmÞ� lÞ� aqð � ðbþmÞ� lÞ� ¼0 (8)
�� bS0 � ðaþ hþ mÞ � l 0
��
Or��a �m� l
��¼0 (9)
when equation (8) it becomes

0ð� ðaþmÞ� lÞ½ð � ðqþ cþmÞ� lÞð � ðbþmÞ� lÞ� aqð � ðbþmÞ� lÞ� ¼0

ð� ðaþmÞ� lÞ¼00l1 ¼ � ðaþmÞ < 0 or
ð � ðbþmÞ� lÞ½ð � ðqþ cþmÞ� lÞ� aq� ¼0
ð � ðbþmÞ� lÞ¼00l2 ¼ � ðbþmÞ < 0 or
ð � ðqþ cþmÞ� lÞ� aq¼00l3 ¼ � ðqþ cþmþ aqÞ < 0
l1 <0; l2 <0 and l3 <0
Then, equation (8) has strictly negative root and stable.
The determinant of equation (9) can be obtained,

0

���� bS0 � ðaþ hþ mÞ � l 0
a �m� lÞ

����¼0

0ðbS0 �ðaþhþmÞ� lÞð�m� lÞÞ¼0
0l2 þð2mþaþh�bS Þlþmðaþhþm�bS Þ¼0
0 0
By using quadratic formula: l ¼ �b±
ffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

p
2a

Where; a¼1 ; b¼2mþaþh� bS0 ; c¼mðaþhþm� bS0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�r

0l¼

�ð2mþ aþ h� bS0Þ± ð2mþ aþ h� bS0Þ � 4ðmðaþ hþ m� bS0Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�r
0l4 ¼
�ð2mþ aþ h� bS0Þ � ð2mþ aþ h� bS0Þ � 4ðmðaþ hþ m� bS0Þ

2
<0 is stable

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�r

0l5 ¼

�ð2mþ aþ h� bS0Þ þ ð2mþ aþ h� bS0Þ � 4ðmðaþ hþ m� bS0Þ
2

DFE to be stable; b2 � 4ac<0 and and ac>0
ac>00ð1Þðmðaþhþm�bS0ÞÞ > 0
ðmþhþaÞ> bS0
ðmþ hþ aÞ bS0

ðmþ hþ aÞ> ðmþ hþ aÞ

bS0

ðmþ hþ aÞ<1;
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0RoD <1
Therefore, If RoD < 1 then the DFEP of the deterministic model is locally asymptotically stable and also the eigen values of
the Jacobian matrix evaluated at DFEP are strictly negative. This is the theorem.

3.5.2. Local stability of disease-free equilibrium point of the stochastic model
We provide a similar the stochastic extinction of infection for the stochastic model. The number of infected class I will tend

to zero in the long run provided that Ro
S < 1. If Ro

S <1 then disease-free equilibrium of the stochastic model is locally
asymptotically stable.

Theorem 4. If Ro
S <1 , then for any initial valueðSð0Þ;V1ð0Þ;V2ð0Þ; Ið0Þ;Rð0ÞÞ ¼ ðS0;V*

1 ;V
*
2 ;0;0Þ2 R5

þ , I (t) will tend to zero
almost surely exponentially stable (i.e the disease dies out with probability one) of the system (2) is locally asymptotically

stable and unstable if RoS >1. That is, lim
t/∞

sup lnIðtÞ
t <0 or lim

t/∞
IðtÞ ¼ 0 as

Proof. By using equation (7)

0d lnðIÞ ¼
	
bS�ðmþhþaÞ�1

2r4
2


dt þ r4dW4ðtÞ Integrating both sides on [0,t] we get

0lnðIÞ¼ lnðI0Þþ
Zt
0

	
bS�ðmþhþaÞ�1

2
r4

2


dt þ

Zt
0

r4dW4ðtÞ

	 
 Zt

0lnðIÞ¼ lnðI0Þþ bS�ðmþhþaÞ�1

2
r4

2 t þ
0

r4dW4ðtÞ

	 
 Zt

0lnðIÞ� lnðI0Þþ bS�ðmþhþaÞ�1

2
r4

2 t þ
0

r4dW4ðtÞ

	
1 2




0lnðIÞ� lnðI0Þþ bS�ðmþhþaÞ�

2
r4 t þMðtÞ

lnðIðtÞÞ � lnðIð0ÞÞ �
1 2
�

MðtÞ

0

t
� bS�m�h�a�

2
r4 þ

t

Z

Let MðtÞ ¼

t

0
r4dW4ðsÞ Then, M is a martingale (Mao & Yuan, 2006), with a quadratic variation given by

< M;M> t ¼
Zt
0

r24ds ¼ r24t
Since lim
t/∞

sup <M;M> t
t ¼ r24 <∞ by the strong law of large numbers, it follows that

lim
t/∞

sup
MðtÞ
t

¼0:

� �

Thus, lim

t/∞
sup lnIðtÞ

t ¼ bS � m � h � a � 1
2r

2
4

Now if Ro
S <1 we have

�
bS � m � h � a � 1

2r
2
4

�
<0

Thus, lim
t/∞

sup lnIðtÞ
t ¼

�
bS�1

2r
2
4 �ðmþhþaÞ

�
<0 since DFE ¼ ðS0;V*

1 ;V
*
2 ;0;0Þ

¼
�
bS0 �

1
2
r24 �ðmþhþaÞ

�
<0
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¼ ðmþhþaÞ
 

bS0
ðmþ hþ aÞ�

r24
2ðmþ hþ aÞ�

ðmþ hþ aÞ
ðmþ hþ aÞ

!
<0

 ! 
r2

!

¼ mþhþa Ro

D � 4
2ðmþ hþ aÞ�1 < 0

¼ ðmþhþaÞ
�
R S �1

�
<0
o

�
�
R S �1

�
< 0
o
Therefore.Ro
S <1

3.6. Endemic equilibrium point (EEP)

In this sub-section we obtain the equilibrium point at which the disease persists in the community. The endemic equi-
librium point (EEP) of system (1) is obtained by equating all equations of the model to be zero.8>>>><

>>>>:

pþ qV1 � bSI � aS� mS ¼ 0
K þ aS� qV1 � cV1 � mV1 ¼ 0
cV1 � bV2 � mV2 ¼ 0
bSI � aI � hI � mI ¼ 0
aI þ bV2 � mR ¼ 0

(10)
By adding all the equation of system (10) we obtain

pþK � mN � hI ¼ 0 where N ¼ Sþ V1 þ V2 þ I þ R

* pþ K � mN

Hence; I ¼

h
(11)
From the fourth equation in (10), we have

bSI�aI � hI� mI ¼ 0

ðbS�a�h�mÞI¼0
bS¼ðaþhþmÞ
* ðaþ hþ mÞ

Hence; S ¼

b
(12)
From the second equation in (10), we have

K þ aS� qV1 � cV1 � mV1 ¼ 0

K þ aS ¼ ðqþ cþmÞV1; from ð12Þ
* bK þ aðaþ hþ mÞ

Hence; V1 ¼ bðqþ cþ mÞ (13)
From the third equation in (10), we have

cV1 � bV2 � mV2 ¼ 0

cV1 ¼ðbþmÞV2; from ð13Þ
* cbK þ caðaþ hþ mÞ

Hence; V2 ¼ bðbþ mÞðqþ cþ mÞ (14)
From the fifth equation in (10), we have
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aIþ bV2 � mR ¼ 0

aIþ bV2 ¼ mR; from ð11Þ and ð14Þ
*
�
pþ K � mN

� �
cbK þ caðaþ hþ mÞ�
Hence; R ¼a
h

þ b
bðbþ mÞðqþ cþ mÞ (15)

� �

Therefore, by (11),(12),(13),(14) and (15) system (1) has endemic equilibrium point. EEP ¼ S*; V*

1 ;V
*
2 ; I

* ;R* � ¼ ðaþhþmÞ
b

;

bKþaðaþhþmÞ
bðqþcþmÞ ;

cbKþcaðaþhþmÞ
bðbþmÞðqþcþmÞ ;

pþK�mN
h ;

aðpþK�mNÞ
h þ bðcbKþcaðaþhþmÞÞ

bðbþmÞðqþcþmÞ

Theorem 5. If Ro
S >1, then for any initial value ðSð0Þ;V1ð0Þ;V2ð0Þ; Ið0Þ;Rð0ÞÞ2U I(t) will tend to zero exponentially almost

surely. That is, lim
t/∞

sup lnIðtÞ
t >f almost surly. Where f is a positive root of equation (7).
3.7. Sensitivity analysis of the model parameters

Sensitivity analysis is performed to determine the importance of each parameter to the transmission dynamics of measles
disease. The analysis helps to measure the relative change in a variable when a parameter changes. Such information is very
important to study transmission dynamics of the disease. The sensitivity index with respect to a parameter p is given by

Pxi ¼
vRs

o
vxi

*
xi
Rs
o
;where is any parameter in Rs

o ; i ¼ 1;2;…;9

r 2 bS r2 2bS0 � r2 pðqþ cþ mÞ þ qK

Rs
o ¼RD

o � 4
2ðmþ hþ aÞ¼

0

ðmþ hþ aÞ�
4

2ðmþ hþ aÞ¼
4

2ðmþ hþ aÞ where S0 ¼ðqþ cþ mÞðaþ mÞ � qa

2bðqpþ cpþ mpþ qKÞ � r4
2�m2 þ mqþ mcþ maþ ca

�

¼

2ðmþ hþ aÞ�m2 þ mqþ mcþ maþ ca
�

vRo
S b 2bðqpþ cpþ mpþ qKÞ
Pb ¼ vb
*
Ro

S ¼2bðqpþ cpþ mpþ qKÞ � r4
2
�
m2 þ mqþ mcþ maþ ca

�>0

vRo
S p 2pbðqþ cþ mÞ
Pp ¼
vp

*
Ro

S ¼2bðqpþ cpþ mpþ qKÞ � r4
2
�
m2 þ mqþ mcþ maþ ca

�>0

vRo
S K bqK
PK ¼
vK

*
Ro

S ¼ðmþ hþ aÞ�m2 þ mqþ mcþ maþ ca
��
2bðqpþ cpþ mpþ qKÞ � r4

2
�
m2 þ mqþ mcþ maþ ca

�>0

vRS q

Pq ¼ o

vq
*
RS
o

¼

4qðmþ hþ aÞ
h
b
h
ðcpþ mpþ KpÞ

�
m2 þ mqþ mcþ maþ ca

�
þ ðqpþ cpþ mpþ qKÞ

�
m2 þ mcþ maþ ca� a

�i
�r4

2�m2 þ mcþ maþ ca� a
��
m2 þ mqþ mcþ maþ ca

�
2ðmþ hþ aÞ�m2 þ mqþ mcþ maþ ca

��
2bpðqþ cþ mÞ þ 2bqK � r4

2
�
m2 þ mqþ mcþ maþ ca

�
>0
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Pm ¼ vRS
oo

S

vm
*

m

Ro
S ¼ � 2r24mð2mþ qþ cþ aÞ�ðmþ hþ aÞ�m2 þ mqþ mcþ maþ ca

�þ 4bpm
2ðmþ hþ aÞ�m2 þ mqþ mcþ maþ ca

��
2bpðqþ cþ mÞ þ 2bqK � r24½ðqþ cþ mÞðaþ mÞ � qa�þ

2m
�
3m2 þ mðqþ cþ aþ hþ aÞ þ ðhþ aÞðqþ cþ aþ caÞ�2bðqpþ cpþ mpþ qKÞ � r2

�
m2 þ mqþ mcþ maþ ca

�

4

2ðmþ hþ aÞ�m2 þ mqþ mcþ maþ ca
��
2bpðqþ cþ mÞ þ 2bqK � r24½ðqþ cþ mÞðaþ mÞ � qa� <0

vRS h h

Ph ¼ o

vh
*
RS
o

¼ � ðmþ hþ aÞ < 0

vRS a a

Pa ¼ o

va
*
Ro

S ¼ � ðmþ hþ aÞ < 0

vRS r4 2r2
�
m2 þ mqþ mcþ maþ ca

�

Pr4 ¼ o

vr3
*
RS
o

¼ � 4

2bðqpþ cpþ mpþ qKÞ � r24
�
m2 þ mqþ mcþ maþ ca

� < 0
Sensitivity index of measles disease.

Parameter Description Index

b contact rate þve
p recruitment of newborn not vaccinated rate þve
K recruitment of newborn vaccinated rate þve
q waning for first dose of vaccine rate þve
a receive first dose of vaccine to susceptible rate þve
m natural death rate -ve
h disease death rate -ve
a recovered from the infected rate -ve
r4 Intensity of infected -ve
The above analysis and table shows the sensitivity indices of to the parameters for measles disease model. We summarize
the interpretation of sensitivity indices:

The sensitivity indices of the basic reproductive number with respect to the main parameters are discussed above and
summarized in Table 1. Accordingly the parameters b; p; K; q and a have positive sensitivity indices which show that they
have great impact on expanding the disease in the community if their values get increased. On the other hand the parameters
m; h; a and r4 have negative sensitivity indices, so decreasing their value will result in minimizing the expansion of the
disease.

4. Numerical simulations results and discussion

In this section, we present and analyze the parameter values of the model along with numerical simulations. For simu-
lation of the developed model we have used parameter values in Table 1 below. Numerical analysis of the model is presented
in the form of graphs generated by using MATLAB. This is conducted to find out the transmission dynamics of the measles
disease in population.

4.1. Trend of the model with deterministic and stochastic approaches

In Fig. 2 for deterministic case we observe that the number of population in all compartments decreases as time increases,
except the number in the recovered population in which case the number of individuals recovered rises steadily as time
increases. The stochastic case in the same figure shows that susceptible, infected ones are decreasing from the beginning till a
certain time t, where it starts decreasing to be zero. This means that vaccinating first and second dose (double dose) con-
tributes in controlling the measles disease and helps to eradicate the disease from the population after a certain period of
time, while keeping the recovered population increasing. We can observe that the solutions of the deterministic model
equations are smooth in nature whereas that of the stochastic model exhibit randomness behavior and more effectively.

4.2. Effect of contact rate on infected population

In Fig. 3 we tried to demonstrate the impact of the contact rate b on the number of infected population. The numerical
results were obtained by varying the value of contact rate b while keeping other parameters constant. In the deterministic
model (left), when the value of contact rate b increased from 0.09091 to 0.3, there is a significant and regular increase in the



Table 1
Parameter values of the model.

Parameter Value Source

b 0.09091 Ethiopian health and nutr (2012)
p 0.02755 (Ethiopian health and nutr, 2012; Federal Democratic Republic of Ethiopia, 2008)
K 0.03755 (Ethiopian health and nutr, 2012; Federal Democratic Republic of Ethiopia, 2008)
q 0.167 Raymond (2016)
m 0.00875 (Ethiopian health and nutr, 2012; Witbooi, 2013)
a 0.6 Edward et al. (2015)
B 0.8 Edward et al. (2015)
C 0.7 Edward et al. (2015)
h 0.125 Ethiopian health and nutr (2012)
a 0.14286 (Ethiopian health and nutr, 2012; KermackMcKendrick, 1927)
r1 0.02 Witbooi (2013)
r2 0.2 Moss and Griffin (2012)
r3 0.3 Witbooi (2013)
r4 0.4 Moss and Griffin (2012)
r5 0.5 Moss and Griffin (2012)

Fig. 2. Graph of the population by deterministic (left) and stochastic (right) measles model.

Fig. 3. Graph of the contact rate on infected population for deterministic (left) stochastic (right) measles model.
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number of infected population. Moreover, when b¼ 0.6 the number of infected people quickly increases above 25 and start to
go down a bit, but still manages to be higher than the previous two cases. The results from the stochastic model (right) are
also increasing maintaining their perturbing property due to the randomness behavior. However, the overall outcome is that



Fig. 4. Graph of the recovery rate on infected population for deterministic (left) stochastic (right) measles model.
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the number of infected population still increases significantly with increasing the value of contact rate b. Therefore, we can
infer that, when the contact rate b is increasing and other parameters are kept constant, the measles disease transmission
expands in the community.

4.3. Effect of recovery rate on infected population

In Fig. 4, we investigate the impact of recovery rate a on the size of infected population. The simulation results were
obtained by varying the value of recovery rate and keeping the other parameters constant. The numerical results revealed that
the number of infected population decreases with increasing the value of recovery rate a. When the value of recovery rate
increased from0.14286 to 0.24286; there is a significant and regular decrease in the number of infected population. Moreover,
for the case of a ¼ 0.44286 the number of infected people rapidly decreases. It is also observed in the figure that for the
deterministic model (left) the infected population decreases smoothly but in the stochastic model (right) it decreases
irregularly. Hence, we can analyze that when the value of the recovery rate increase and other parameters are kept constant,
the measles disease transmission eliminate from the community.

4.4. Effect of receiving second dose(double dose) of vaccine rate on vaccinated second dose population

Fig. 5 displays the plot of the number in the populationwho got vaccinated second dose against time by varying the value
of receiving second dose of vaccine rate b and keeping the other parameters constant. When the value of receiving second
dose of vaccine rate b increased from 0.8 to 1.8; there is a significant and regular increase in the number of vaccinated second
population. Moreover, when b ¼ 2.8 the number of vaccinated second population quickly increases. It is also observed in the
figure that for deterministic model (left) the vaccinated (second dose) population decreases smoothly but for the stochastic
Fig. 5. Graph of receiving first dose of vaccine rate on vaccinated second dose population for deterministic (left) stochastic (right) measles model.
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model (right) it decreases irregularly. Therefore, receiving second dose (double dose) of vaccine the target population has a
significant contribution in eliminating the measles disease from the community.

5. Summary and conclusion

In this paper we have developed a stochastic model of measles transmission dynamics with double dose vaccination. The
governing equations for both deterministic and stochastic models have been formulated. The basic qualitative behaviors of
the twomodels have been analyzed.We have determined a closed form expressions for the basic reproductive numbers of the
models and showed that the disease-free equilibrium point is locally asymptotically stable if the basic reproductive number is
less than one in each case. Numerical simulations have been also carried out to examine the increase or decrease of the size of
the population over time and investigate the effect of basic parameters like the rate of contact and recovery on the infected
population. According to the numerical results, it is clear that real world problems such as disease are not deterministic in
nature so including random effects to the model gives us a more realistic way of modeling measles epidemics diseases. So,
stochastic model analysis is more effective compared to deterministic model analysis in studying the measles transmission
dynamics with double dose vaccination. Therefore, we advice the use of stochastic analysis in studying dynamics of infectious
diseases, decrease in contact between susceptible and infective population, increase receiving double dose vaccination
coverage, combination of awareness and treatment to elimination measles in the community.
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