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A B S T R A C T   

Background: The world has been battling the continuous COVID-19 pandemic spread by the SARS-CoV-2 virus for 
last two years. The issue of viral disease prediction is constantly a matter of interest in virology and the study of 
disease transmission over the long years. 
Objective: In this study, we aimed to implement genome association studies using RNA-Seq of COVID-19 and 
reveal highly expressed gene biomarkers and prediction based on the machine learning model of COVID-19 
analysis to combat this pandemic. 
Method: We collected RNA-Seq gene count data for both healthy (Control) and non-healthy (Treated) COVID-19 
cases. In this experiment, a sequence of bioinformatics strategies and statistical techniques, such as fold-change 
and adjusted p-value, were processed to identify differentially expressed genes (DEGs). We filtered biomarker 
sets of high DEGs, moderate DEGs, and low DEGs using DESeq2, Limma Trend, and Limma Voom methods based 
on intersection and union operations and applied machine learning techniques to predict COVID-19. 
Result: Through experimental analysis, 67 potential biomarkers were extracted, comprising 49 up-regulated and 
18 down-regulated genes, using statistical techniques and a set-theory consensus strategy. We trained the ma-
chine learning models on 12 different biomarker sets and found that the SVM model performed better than the 
other classifiers with 99.07% classification accuracy for moderate DEGs. 
Conclusion: Our study revealed that identified differentially expressed genes of the moderate DEGs biomarker set, 
|log2FC| ≥ 2 with adjusted p-value < 0.05, work significantly as input features to implement a machine learning 
model using a kernel-based SVM technique to predict COVID-19.   

1. Introduction 

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
emergencies began in late 2019 and rapidly spread worldwide. It is 
transmissible in humans and has created pandemics around the globe. It 
endangers millions of humans worldwide, and leading to economic 
disruption [1]. With the evolution of RNA-sequencing or RNA-Seq 
analysis techniques, RNA-based biological molecules have shown a 
prolonged potential for their diagnosis and treatment of several bacterial 
diseases such as lung cancer, liver cancer, and heart disease, as well as 
various viral transmittable ailments such as SARS-CoV-1, MERS, Ebola 
Virus, Zika Virus and SARS-CoV-2 [2]. RNA-based estimations have the 
capability for application across the various areas of healthcare in 
conjunction with disease diagnosis and prognosis. We introduced a 

combined workflow from the next-generation sequencing (NGS) 
computational approach for RNA-Seq data analysis to identify potential 
biomarkers through differential expression analysis, followed by a ma-
chine learning approach to predict COVID-19. 

The key aim of a large-scale omics study is to combat high- 
dimensional illness using multi-omics data that may be employed to 
discover molecular subgroups for more accurate disease diagnosis and 
therapies. Obtaining an effective, low-dimensional subspace of actual 
data and then clustering illness samples in that subspace. [3]. However, 
owing to diverse data types and large data volumes, a few techniques 
can efficiently determine the principle of low-dimensional diversity of 
these diseases with high dimensionality in multi-omics datasets. In the 
early twentieth century, dimension reduction methods came into exis-
tence and have continued to evolve independently in several analytical 
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domains, providing or promoting several less related terms. Differential 
expression analysis as a feature extractor is used to control the curse of 
dimensionality problems in biomedical data processing, especially for 
genetic profile data, such as DNA, RNA, and protein sequences, to pre-
dict various diseases [4]. In a similar study, Hong et al. [5] shed light on 
the functional annotation of protein sequences with high accuracy to 
determine improvements in various metrics, such as stability, accuracy, 
and false discovery rate, especially in biomedical research. As a result, 
they discovered that the CNN convolutional neural network, which is 
based on deep learning, outperforms other applicable models. Similarly, 
the ANPELA online tool developed by Tang et al. [6] was used for per-
formance assessment, followed by systematic validation using meta-
proteomic benchmarks of whole label-free quantification (LFQ). 

The accessibility of high-throughput gene profile data and develop-
ment of biomedical processing toolkits allows for the implementation of 
a reproducible RNA-Seq analysis workflow to measure RNA-Seq profile 
datasets with reference to transcriptions and gain commonly expressed 
biomarkers as differentially expressed genes using various methods such 
as DESeq2, Limma Trend, and Limma Voom [6]. Therefore, we propose 
a merger of RNA-Seq data processing for potential biomarker identifi-
cation and a machine learning based pipeline for COVID-19 prediction 
with an integrated approach. 

Various prominent machine learning approaches have been devel-
oped and applied in several real-life fields, such as industry, medical 
care, and biomedicine. Furthermore, machine learning methods are 
productively incorporated into interrelated applications such as disease 
prediction [7]. Therefore, the objective of the development of classifiers 
employing machine learning procedures is beneficial for solving asso-
ciated health problems by encouraging medical practitioners to di-
agnose and predict disease at early stage. 

The significance of COVID-19 prediction using high-throughput 
sequencing technology, such as RNA-Seq activity can be seen by its 
application from November 2019 to May 2022. Many research articles, 
such as literature, clinical trials, and experiments, have been published 
since the early stage of the coronavirus pandemic. However, the world is 
continuously facing this situation. Our motivation was to combine the 
capabilities of RNA-Seq data processing and the powerfulness of ma-
chine learning modeling to combat and contribute to this pandemic 
situation. Therefore, to design a novel integrated COVID-19 predictor, 
we attempted to filter published works in PubMed publication re-
positories search, one of the largest databases for medicine and biolog-
ical experimental works. As a result, the number of publications related 
to “COVID-19′′ and other associated terminologies with “RNA-Seq” in 
the title or abstract of various types of articles from November 2019 to 
May 2022 is 524 (Fig. 1). On the other hand, the number of publications 
related to “COVID-19′′ other terminologies associated with “Machine 
Learning” in the title or abstract of different types of articles from 

November 2019 to May 2022 is 3368 (Fig. 1). Finally, we found 21 
publications based on a combination of all three terminologies, such as 
COVID-19, RNA-Seq, and Machine learning (Fig. 1). 

In this article, the remaining topics are systematized as follows. 
Section 2 enlightens the related work. Section 3 and its sub-sections 
describe the integrated workflow for RNA-Seq data processing and 
machine learning-based COVID-19 prediction models used in this work. 
Section 4 and its sub-sections explain the results and discussion, along 
with the datasets used in this study and the identification of DEGs as 
feature genes. Section 5 highlights the limitations and some future 
research directions. Finally, the conclusions of this study are presented 
in section 6. 

2. Related works 

To gain insight into the expected spread and consequences of 
communicable illnesses, accurate disease prediction models are 
requirement of human life. Unfortunately, the recent worldwide COVID- 
19 epidemic is complicated and nonlinear. Furthermore, the epidemic 
differs from other outbreaks, casting doubt on the capacity of the 
established models to provide reliable findings. Consequently, tradi-
tional epidemiological models face new obstacles in producing more 
reliable data. Therefore, a slew of new models has evolved to address 
this issue by incorporating a set of assumptions. 

MetaFS [8] is an online tool for evaluating the performance of 
biomarker discovery in metaproteomics. This tool offers 13 different 
feature selection methods and conducts a thorough review of compli-
cated feature selection methods using four generally acknowledged and 
independent criteria. Similarly, MMEASE [9] is an online application 
that allows the combination of several investigative experiments with 
increased metabolite annotation and enrichment analysis. This platform 
was designed to provide a comprehensive solution for large-scale and 
long-term metabolomics, which may help current scientific 
investigations. 

On the other hand, Yang et al. [10] demonstrate an integrated 
strategy to predict schizophrenia (SCZ) disease using repeated random 
sampling, consensus scoring, and analyzing the uniformity of gene rank 
across various dataset. They discovered two new transcription factors 
and 17 previously characterized transcription factors, all of which have 
the potential to reveal the etiology of SCZ. This SCZ signature might help 
researchers find diagnostic compounds and possible SCZ targets. 

In the research study [11], researchers built a server-based tool 
named SSizer to identify sample sufficiency for computational biological 
studies. The SSizer is unusual because it can estimate whether the 
instance size is adequate and calculate the number of instances neces-
sary given a user input dataset, making comparative and OMIC-based 
biological investigations easier. 

Another intriguing tool, NOREVA [13], was built to normalize and 
assess the time-course and multiclass metabolomic data in the R pro-
gramming language. Furthermore, NOREVA 2.0, an upgraded version of 
NOREVA 1.0, was created with additional features [12]. In addition, 
several standards have been studied to demonstrate the uniqueness of 
the newly established protocol, such as measuring processing perfor-
mance based on numerous measures, improving data processing by 
scanning hundreds of processes, and permitting time-course and 
multi-class metabolomic data processing. 

Ong et al. [13] employed the PRIORITY score to prioritize COVID-19 
patients in a cross-sectional examination. Subgroup investigation of 
unvaccinated and vaccinated patients revealed more remarkable 
outcome in vaccinated patients, with ROC (receiver operator charac-
teristic) outcomes of 79.4%, 68.4%, and 83.1% in all unvaccinated pa-
tients vaccinated, respectively. In-silico approach has recently gained 
attention for generating disease prediction models because of the in-
tricacy and large-scale nature of the challenges in developing epidemi-
ological models. Models with more vital generalization ability and 
predictability for longer lead times were formed using machine learning 

Fig. 1. Year-wise publications associated with COVID-19, RNA-Seq and Ma-
chine Learning in PubMed Repository. 
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techniques. 
In contrast, 279 COVID-19 hospitalized individuals with symptom-

atic infection and a positive SARS-CoV-2 nasopharyngeal swab (NSW) 
polymerase chain reaction (PCR) were analyzed cross-sectionally after 
being admitted with a treated SARS-CoV-2 nasopharyngeal swab (NSW) 
polymerase chain reaction (PCR) surveyed longitudinally after confir-
mation of a treated COVID-19. In addition, they examined at individuals 
for whom blood samples were accessible with subsequent symptom 
onset (DSO11) (n = 217) to permit for a cross-sectional study of early 
plasma indicators [14]. Consequently, in the discovery cohort, the re-
searcher’s joint investigation of SARS-CoV-2 vRNA, Angiopoietin-2, age, 
and sex had the highest prediction accuracy, while a more straightfor-
ward model using vRNA, age, and sex was almost as robust. Further-
more, interactive machine learning models have been developed by 
various researchers (Table 1). 

3. Methodology 

The comprehensive workflow of this experiment involved the inte-
gration of two pipelines. First, the RNA-Seq data processing starts from 
gathering datasets for DEGs analysis and second, a machine learning 
model is employed to predict COVID-19 (Fig. 2). Each sequence of steps 
of both pipelines is described in the subsequent sections, followed by 
their procedure and expected outcomes. 

3.1. Biomedical data preprocessing 

Next-generation sequencing (NGS) technology begins with sample 
preparation using transcriptomic or RNA-Seq profile data. Sample 
preparation is an important phase because all data analysis outcomes 
rely on collection accuracy. When the sample is ready, it is forwarded to 
the sequencing phase, which generates a massive quantity of sequence 
bases as small fragments of sequences, also known as reads [18]. The 
sequence reads archive, or.sra, and.fastq file format is commonly used to 
store these reads per sample. Primary data collection for omics 
sequencing can be performed in wet labs or contracted to the sequencing 
agency. 

In contrast, secondary data collection of omics profile data can be 
collected from various open public repositories such as NCBI-SRA and 
NCBI-GEO for analysis [19]. The proposed integrated pipeline (Fig. 2) 
starts with quality control, mapping to the reference genome, read 
count, and normalization to differentially expressed genes (DEGs) for 
RNA-Seq profile data analysis. Furthermore, the identified DEGs were 
forwarded as input features to develop a machine learning-based 
COVID-19 prediction model. 

3.1.1. Data collection 
We collected high-throughput sequencing profile data in the pro-

cessed read count of whole blood RNA-Seq expression from healthy 
samples (Control) and severely hospitalized COVID-19 non-healthy 
samples (Treated). The gene count comprised 86 samples, including 24 
healthy samples (Control) and 62 non-healthy samples (Treated) [20], 
available at the National Center for Biotechnology Information- Gene 
Expression Omnibus (NCBI-GEO) repository with Accession No. 
GSE152641 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE152641). 

3.1.2. Read quality control 
The starting phases in the quality control measure typically include 

evaluating the inherent quality of the raw reads using measurements 
created by the sequencing stage such as quality scores, or determined 
directly from the raw reads, for instance, base synthesis [21]. The 
quality scores of the sequence reads computed the possibility that a base 
was inaccurately called. Because the Q-score in a phred procedure is 
involved in every base of the reads in every sample, the inclusive quality 
of reads is required to confirm an elimination or improvement in the 
degraded reads when their Q-score is greater than 20 [22]. FastQC or 
another related toolkit can assess the read quality and calculate the read 
quality associated with numerous quality measures such as Q-score per 
base, average Q-score, % of GC substances, etc. Some tools used for read 
quality control, such as FastQC, offer a modest method to apply quality 
control instructions for raw sequenced profile data produced via a 
high-throughput sequencing channel [23]. High-Throughput Quality 
Control (HTQC) is an Illumina sequencing data quality control tool. The 
package also contains functions for filtering and generating graphical 
reports [24]. 

3.1.3. Adaptor trimming 
Read trimming is an essential activity in a sequence data study 

workflow that transforms the read sequence generated by a sequencing 
machine. All subsequent phases could influence the modifications per-
formed on the raw read sequences in the analysis workflow. This task 
was proposed to reduce the influence of the enlightened decline in 
sequencing quality through the expanded dimension of the sequenced 
collection [25]. Trimmomtic is a tool for adaptor trimming Illumina 
sequence data reads [26]. QTrim is a tool for trimming sequence reads 
based on Phred quality values [27]. 

3.1.4. Read mapping 
Read mapping is the process by which reads are aligned to the 

reference genome. An aligner precedes the reference genome and a set of 
reads as contributions. An aligned read is a sequence that aligned to a 
typical reference genome. The researchers [20] used the GRCh38 human 

Table 1 
List of interactive machine learning based COVID-19 models.  

MODEL & YEAR METHODS DISEASE ACCURACY 
(%) 

Gap/Future Work 

PACIFIC [15] (A deep learning and 
Natural Language Processing based 
Model) 

Convolutional neural network (CNN) and a 
bi-directional long short-term memory 
(BiLSTM) network 

Coronaviridae, 
Influenza, 
Metapneumovirus, 
Rhinovirus, 
SARS-CoV-2, 
Human 
transcriptome 

99.90 and 
85.80 

It is necessary to classify a broader 
spectrum of viruses. 
Bacterial classifications on a species basis 
Variable input read durations can be 
accommodated. 

jSRC [16] (Joints Sparse Representation 
and Clustering) 

Dimension reduction (DR) and Sparse 
Representation (SR) 

SARS-CoV-2 67.70 Spalt1 
92.40 Spalt2 

Improve the function of jSRC, 
Integrate Omic data 

COVID-DeepPredictor [17] (A deep 
learning and Natural Language 
Processing based model) 

NLP Techniques: k-mer, Bag-of-Descriptors 
(BoDs), and Bag-of-Unique-Descriptors 
(BoUDs) 
ML Techniques: Recurrent 
Neural Network (RNN) long short-term 
memory (LSTM) 

SARS-CoV-2 
MERS-CoV 
Ebola 
Dengue 
Influenza 

100 To forecast the virus class, the results must 
also be examined by machine intelligence 
technology  
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reference genome (https://www.ncbi.nlm.nih.gov/assemb 
ly/GCF_000001405.40) to map the reads in their experiments. In this 
homo sapiens, 1060 assemblies are available. Usually, these roads could 
be an amount of the many thousands to several million [28]. Therefore, 
one or more alignments will be acquired between every read and the 
genome. HISAT2 is one of the fastest and most sensitive alignment 
programs aimed at mapping NGS reads, contrary to the typical human 
population and contrary to a single reference genome [29]. Rbowtie2 
encloses the Bowtie 2 utility in R and contains features, including 
adapter removal, read merging, and identification [30]. 

3.1.5. Read count & normalization 
The read count is simple and most typically applied for quantitation 

task. It sums up the reads inside the analysis and can rectify the raw 
count based on distinct aspects that may bias the outcome. In the RNA- 
Seq study, the aligned read counts were considered for gene expression. 
The read counts can be biased in the direction of the size of the gene and 
sequence depth [31]. Therefore, gene transcript size and sequence 
complexity are significant for read count regularization. Subsequently, 
read counts have generally implemented regularization to Fragments 
Per Kilobase Million (FPKM), Reads Per Kilobase Million (RPKM), or 
Transcripts Per kilobase Million (TPM) before downstream analysis. 

StringTie is a utility that generates transcripts from RNA-seq sequence 
alignments. The StringTie algorithm optionally assemblies de novo and 
applies a unique network flow procedure [32]. HTSeq is applied to 
investigate a high-throughput sequencing dataset. It assigns expression 
value counts to readings aligned using HISTAT or STAR [33]. HTSeq is 
also appropriate for quantifying of single-cell RNA-seq profile data. The 
package also includes an htseq-count tool for pre-processing RNA-seq 
reads before differential expression analysis and it assesses read quality. 

3.1.6. Differentially expressed genes identification 
The identification of differentially expressed genes (DEGs) is one of 

the main targets for recognizing the biological differences between 
control and treated cases of COVID-19. This implies that the normalized 
read counts are selected and statistical exploration is performed to 
identify quantitative variations in expression levels between trial col-
lections. In the first step, the read count must be normalized to compute 
variations in library size and RNA-seq composition among sample col-
lections [34]. Subsequently, the normalized read count will use to create 
filtrations to identify highly expressed genes as feature vectors. Finally, 
the identified differentially expressed genes will apply for further 
implementation of the machine learning models to classify and predict 
COVID-19 [35]. Differentially expressed genes (DEGs) were identified 
using three methods such as DESeq2, Limma Trend, and Limma Voom. 

DESeq2 is a method for hypothesis testing and studying differentially 
expressed genes using RNA-seq data [36]. The DESeq2 process uses the 
likelihood ratio test and negative binomial distribution. It also normal-
izes the data by cutting the mean M-value, and avoids a short sample size 
by combining information from all biomarkers in a collection of 
samples. 

Limma Trend is a technique that involves computing log count per 
million (logCPM) data with edgeR and then evaluating them in limma 
with trend values true in the eBayes function, which is used in empirical 
Bayes statistics for differential expressions [37]. If the sequencing depth 
is fairly uniform among the RNA-Seq samples, the limma-trend is the 
most straightforward and reliable method for differential analysis. If the 
ratio of the greatest library size to the smallest library size is less than 
approximately 3-fold, this strategy will typically work effectively. 

Limma Voom is a limma package technique that alters RNA-Seq data 
for limma applications. This makes RNA-Seq data analysis rapid, 

Fig. 2. Integrated workflow for RNA-Seq data processing and Machine Learning COVID-19 prediction.  
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versatile, and powerful. The voom approach enables the majority of 
RNA-Seq analytical tools, such as models random effect and tests gene 
set, to be used for RNA-Seq data [38]. The voom technique is potentially 
more powerful when the library sizes vary significantly across samples.  

⁃ Consensus strategies for DEGs 

Based on the intersection and union functions of set theory, we 
assumed that X is the set of DEGs filtered using the DESeq2 method, Y is 
the set of DEGs filtered using the Limma Trend, and Z is the set of DEGs 
filtered using the Limma Voom method. Based on the consensus strat-
egy, highly potential biomarkers (DEGsHigh) were formulated (Equation 
(1)) using intersection operations.  

DEGsHigh = (X∩Y∩Z)                                                                     (1) 

In similar manner, moderate potential biomarkers (DEGsModerate) 
were formulated (Equation (2)) using a combination of intersection and 
union operations.  

DEGsModerate = (X∩Y) ∪ (X∩Z) ∪(Y∩Z)                                            (2) 

Whereas, low potential biomarkers (DEGsLow) were formulated (Equa-
tion (3)) using union operations.  

DEGsLow = (X∪Y∪Z)                                                                      (3)  

3.2. Machine learning approach 

Classification is a way to arrange samples into specified classes that 
can be implemented on organized or unorganized data [39]. The core 
target of the classification issue is to categorize the samples into classes 
such that when unknown samples come, they will lie under one of the 
classes [40]. In this era of data science, many learning techniques have 
been developed and applied to resolve simple to complex problems. 

This experimental study applied machine learning classifiers, 
including sallow classification techniques such as SVM, IBk-KNN, Naïve 
Bayes, and Decision Tree, to ensemble classifier such as Random Forest. 
As a result, the entire applied machine learning classification technique 
performed better, with a significant aggregated accuracy rate 
throughout the experiment. We depicted the top five classifiers, ranging 
from 80% to 99% accuracy rates in this experiment. 

3.2.1. Support vector machine (SVM) 
Support vector machines are a combination of instance-oriented 

learning with a linear model. It selects a minimal number of critical 
range samples from each class. It creates a linear discriminant model 
that isolates the features as broadly as expected under the circumstances 
[41]. If linear separation is not applicable, the kernel approach can be 
applied to transform the training samples into a high-dimensional space. 
A separator is then used in learning to this space [42]. It stands out 
amongst other known classification approaches based on computational 
circumstances over their opponents. SVMs control non-linear decision 
margins of unpredictable intricacy. Linear SVMs are used for specific 
linear discriminant classifications [42]. Linear SVM applies as a 
maximum margin classifier when the datasets are linearly distinguish-
able. The presence of these support vectors is at the root of their 
computational characteristics and high classification efficiency. 

3.2.2. K-nearest neighbor (KNN) 
Instance-based k-nearest neighbor (IBk-kNN) is a simple technique 

based on lazy classification that contains entire classes and categorizes 
the unknown instance or class based on a closeness match. The ‘k’ into 
kNN is a constraint that states the number of adjacent neighbors to 
comprise the most gained data points [43]. The IBk procedure applies a 
distance calculation to trace the sample of k close data points from the 

training dataset for each test sample. Based on the chosen samples, the 
model applies for prediction. IBk-kNN is generally productive for an 
enormous number of datasets with fewer feature vectors that produce 
inclusive calculations that take significant time for training. 

3.2.3. Naïve Bayes (NB) 
Naïve Bayes applies an analogous procedure for the prediction of 

likelihood of various classes contains numerous feature vectors. Naïve 
Bayes is an effective statistical arrangement procedure, and it also plays 
a productive part in biological data analysis [44]. The primary idea of 
this algorithm is based on Bayes’ formula, which describes the likeli-
hood of an occurrence, founded on prior information of circumstances 
that can be associated through the occurrence. 

P(X|Y)=
P(Y|X)(likelihood)*P*(X)(prior)

P(Y)(evidance)

Each training instance can progressively increase or decrease the 
possibility that an assumption is a correct measure that earlier infor-
mation might be linked to detected consequence. Naive Bayes is 
computationally incurable and optimum assessment creation. Naive 
Bayes classifier helps to mine a suitable group aimed at a dataset in 
which unambiguous essential operations are adjoined. 

3.2.4. Random forest (RF) 
Random forest is based on an ensemble technique built using the 

decision tree approach. It constructs a decision tree on various instances 
and precedes the most gained points for classification and means in the 
regression situation. Random forests generate using subsets of the 
dataset, and the outcome is based on the mean or highest rank gained 
[45]. In comparison to the individual decision tree, the random forest is 
slow. In random forest, n quantity of arbitrary records occupies from the 
dataset, taking k quantity of records. A single decision tree creates for 
every instance that generates a decision regarding the outcome. 

3.2.5. Decision tree (DT) 
The decision tree is a hierarchical prediction method that depicts the 

branches’ observed attributes and the desired value leaves [45]. A 
classification decision tree can predict discrete values, whereas a 
regression decision tree can predict continuous values. [44]. It is a 
multi-purpose tool that can be used for various tasks. Decision trees are 
helpful for both classification and regression problems. It employs a 
hierarchical flowchart that resembles a tree structure that arises from a 
sequence of feature-based splits to illustrate predictions. Everything 
begins with a root node and ends with the deciding leaves. 

3.3. Hyperparameter tuning 

The experiments based on the entire proposed integrated workflow 
were carried out with R language version 4.1.2 and iDEP95 for the first 
phase RNA-Seq data processing phase on a 2.30 GHz Intel Core i5-2410 
M CPU, 8 GB RAM, and Windows 8.1 operating system. Further, for the 
second phase, KNIME Analytics version 4.3.0, is used for model devel-
opment and a comparative study on various machine learning prediction 
models. 

The required input parameters in the experimental setting are 
configured as follows. To train and test the models, a 10-fold cross- 
validation is applied. In the SVM, the kernel used is “Polynomial” with 
a bias and gamma value of 1. The number of neighbors in IBk-kNN was 
set to 3. In the Naïve Bayes technique, the maximum number of unique 
features is 20 per attribute. Information gain is used as the splitting 
criterion in the random forest algorithm. In the decision tree, Gini index 
is used as a quality measure of the tree, minimum description length 
(MDL) is applied for pruning, and the minimum number of records is 
tuned to 4 per node. The eight essential performance measures are 
Classification Accuracy (CA), Positive Predictive Value (PPV) or Preci-
sion, Specificity, Recall (sensitivity), False Positive Rate (FPR), Negative 
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Predictive Value (NPV), Rate of Misclassification (RMC), and F1-Score 
are used to evaluate the outcomes of the COVID-19 prediction models. 

3.4. Performance metrics 

The performance of the classification techniques estimates using 
performance metrics. In Fig. 3, the confusion matrix and their funda-
mental quality matrices are used to assess the classification models [43]. 
True Positive (TP) is the quantity of samples with positive predictions, 
and it does have a positive class. True Negative (TN) is the quantity of 
negative prediction samples and it does have a negative class. False 
Positive (FP) is the sum of positive predictions samples; however, it does 
not contain a positive class. It also shows a Type I Error. False Negative 
(FN) is the quantity of negative prediction samples; however, it does 
have a positive class. This also indicates a Type II Error. 

4. Results & discussions 

In this experiment, we obtained a gene count dataset of COVID-19 
with 86 samples, including 24 healthy (Control) and 62 non-healthy 
(Treated) samples, so we started our next step to perform the normali-
zation task of the standard workflow RNA-Seq data processing tasks. 

The entire pipeline shows in Fig. 2 was developed and accomplished 
on a personal computer that have 8 GB RAM and a dual-core processor 
under the Windows 8.1 operating system. First, the R language is used to 
normalize the gene counts, and iDEP95 [46], an interactive online tool, 
identified differentially expressed genes using the DESeq2, Limma Trend 
and Limma Voom methods. Subsequently, the KNIME analytics data 
mining tool is used to implement machine learning models. Finally, the 
parameters of the underlying prediction models have been set 
experimentally. 

4.1. Read count and normalization 

Read counts are the measurement of reads that cover a particular 
feature, such as a gene. The quantity of reads mapped or read counts for 
a gene measure by the substituting their expression. Read counts are a 
prerequisite to associate with reference genome and count up into 
interpreted genes before the differential expression analysis. 

For the subsequent analysis step, read counts are normalized by a 
complete chunk of counts to make counts worthy of crosswise compar-
ison in the experiments. The procedure of the DESeq2 algorithm is 
applied in the R language for this experiment, which initially converted 

read counts data obtained by a stable dispersion. The DESeq2 package is 
intended to normalize, visualize, and differentially expressed genes 
analysis of high-dimension read counts. 

4.2. Differentially expressed genes analysis 

The high-throughput sequencing processed read count is performed 
on the GSE152641 dataset to identify highly significant genes of the 
whole blood RNA-Seq expression commencing healthy cases (Control) 
and non-healthy COVID-19 cases (Treated) compared with additional 
acute viral infections. The acquired gene counts have been pre- 
processed and normalized in the R programming language, and a web- 
based tool, iDEP95, is used to identify DEGs using the DESeq2, Limma 
Trend, and Limma Voom methods. In addition, to detect significant 
regulators (both up-regulated and down-regulated) by taking differen-
tially expressed genes, fold-change statistical techniques and adjusted p- 
value methods have been considered. 

The fold change, one of the extensively utilized techniques applied 
for studying differentially expressed genes, is a statistical measurement 
that defines the manner in which the level of expression of a gene change 
over two diverse circumstances like COVID-19 treated and control 
samples (i.e., treated-control analysis). The fold change is computed as a 
proportion of the means from the control and treated samples and 
measured as a log of fold change (log2FC). Typically, log2FC ≥+1.0 and 
above is reflected as Up-Regulated, whereas log2FC ≤ − 1.0 and below is 
reflected as Down-Regulated. Another statistical approach, the p-value 
adjusted (padj), has been applied to filter differentially expressed genes, 
where p-values adjusted for several tests using the Benjamini-Hochberg 
technique, which reduces the false discovery rate (FDR). Limiting the 
results to those below a certain FDR threshold is feasible. Here, a 0.05 set 
for the adjusted p-value (p-adj also called q-value) means that 5% of 
relevant tests will produce false positives. Fig. 4, Fig. 6, and Fig. 8 
represent the MA plots for COVID-19 up-regulated and down-regulated 
differentially expressed genes (DEGs) using DESeq2, Limma Trend, and 
Limma Voom, respectively. This plot is generally applied to present the 
log2 fold change versus the average expressed genes between binary 
classes. Fig. 5, Fig. 7, and Fig. 9 depict the volcano plots, showing sta-
tistical significance (p-value) versus change magnitude (fold change) of 
the DESeq2, Limma Trend, and Limma Voom methods, respectively. It is 
a type of scatter plot that allows rapid identification of biomarkers with 
substantial fold changes that are statistically potential. 

In this analysis, we filtered 12 different biomarker sets based on the 
consensus strategy (DEGsHigh, DEGsModerate, DEGsLow) along with 

Fig. 3. Confusion matrix and classification performance metrics.  

N. Iqbal and P. Kumar                                                                                                                                                                                                                        



Computers in Biology and Medicine 147 (2022) 105684

7

changing fold changes ranging from 0 to 3 and adjusted p-value < 0.05 
(Table 2). Upon careful observation, DEGsHigh on |log2FC| ≥ 1, DEGs-
Moderate, and DEGsLow on |log2FC| ≥ 2 biomarker sets yielded better 
accuracy rates than other models. Furthermore, DEGsModerate with | 
log2FC| ≥ 2 achieved the highest mean accuracy for almost every 
classifier, with an accuracy rate of 97.07% (Table 2).  

⁃ Biomarker set of DEGsHigh 

In the first biomarker set, 7628 potential biomarker genes were 
filtered, comprising 4395 up-regulated and 3233 down-regulated genes 
by the fold-change factor (|log2FC| > 0) for differentially expressed 
genes, whereas 657 genes were filtered that contained 479 up-regulated 
and 178 down-regulated genes using the fold change factor (|log2FC| ≥
1) in the second biomarker set. In the third biomarker set, 36 potential 
biomarker genes were filtered with 29 up-regulated and 7 down- 
regulated genes using the fold change factor (|log2FC| ≥ 2), whereas 
3 genes were filtered that contained only up-regulated genes by the fold 
change factor (|log2FC| ≥ 3) in the fourth biomarker set (Table 2).  

⁃ Biomarker set of DEGsModerate 

In the fifth biomarker set, 8901 potential biomarker genes were 
filtered, comprising 5589 up-regulated and 3312 down-regulated genes 
by the fold-change factor (|log2FC| > 0) for differentially expressed 
genes, whereas 1586 genes were filtered that contained 1350 up- 
regulated and 236 down-regulated genes using the fold change factor 
(|log2FC| ≥ 1) in the sixth biomarker set. In the seventh biomarker set, 
67 potential biomarker genes were filtered with 49 up-regulated and 18 
down-regulated genes by the fold change factor (|log2FC| ≥ 2), whereas 
6 genes were filtered that contained 4 up-regulated and 2 down- 
regulated genes using the fold change factor (|log2FC| ≥ 3) in the 
eighth biomarker set (Table 2). The lists of up-regulated and down- 
regulated genes are further dispatched as an input feature vector to 
further implement the machine learning-based COVID-19 prediction 

Fig. 4. MA Plot of DEGs on log2FC ≥ 2 using DESeq2.  

Fig. 5. Volcano Plot of DEGs on log2FC ≥ 2 using DESeq2.  

Fig. 6. MA Plot of DEGs on log2FC ≥ 2 using Limma Trend.  

Fig. 7. Volcano Plot of DEGs on log2FC ≥ 2 using Limma Trend.  

Fig. 8. MA Plot of DEGs on log2FC ≥ 2 using Limma Voom.  

Fig. 9. Volcano Plot of DEGs on log2FC ≥ 2 using Limma Voom.  
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model (Table 3).  

⁃ Biomarker set of DEGsLow 

In the ninth biomarker set, 10005 potential biomarker genes were 
filtered, comprising 5897 up-regulated and 4108 down-regulated genes 
using the fold-change factor (|log2FC| > 0) for differentially expressed 
genes, whereas 2246 genes were filtered that containing 1950 up- 
regulated and 296 down-regulated genes using the fold change factor 
(|log2FC| ≥ 1) in the tenth biomarker set. In the eleventh biomarker set, 
90 potential biomarker genes were filtered with 71 up-regulated and 19 
down-regulated genes using the fold change factor (|log2FC| ≥ 2), 
whereas 8 genes were filtered that contained 6 up-regulated and 2 
down-regulated genes using the fold change factor (|log2FC| ≥ 3) in the 
twelfth biomarker set (Table 2). 

4.3. Outcome of integrated COVID-19 predictor 

The performance estimation of the integrated COVID-19 predictor 
based on five machine learning algorithms is measured using eight 
related standard performance metrics, as shown in Fig. 3. A total of 86 
samples were considered, comprising 24 healthy (Control) and 62 non- 
healthy (Treated) COVID-19 patients. First, the read count data included 

the gene counts (.csv) is gathered, followed by a sequence of biomedical 
data processing computational phases stated in the designed integrated 
workflow (Fig. 2). After that, we performed a normalization function in 
the R language to normalize gene counts, followed by DESeq2, Limma 
Trend, and Limma Voom methods to identify potential gene biomarkers 
using the iDEP95 web tool. Fig. 10 shows the distribution of biomarkers 
based on the log2 fold-change ranges of DEGsModerate. 

Subsequently, we trained machine learning models on 12 different 
biomarker sets that is filtered using a consensus strategy of set theory 
and found significant performance in terms of accuracy rate and other 
parameters of the confusion matrix (Fig. 3). During machine learning 
modelling, all biomarker sets have been dispersed into ten cross- 
validation folds, and each fold were supplied in the test phase. The 
remaining folds were provided for training throughout the cross- 
validation. It can be quantified based on the results that the COVID-19 
classification of (Fig. 11) SVM and KNN are the topmost quantities of 
true positive (the total amount of samples predicted as treated and it has 
COVID-19 positive). In contrast, the second topmost true positive were 
detected by Random Forest, whereas Naïve Bayes and Decision Tree 
received third and fourth positions, respectively. On the other hand, 
SVM and Naïve Bayes have the highest quantity of true negative (the 
total amount of samples predicted as control and it has COVID-19 
negative). In contrast, the second topmost true negative has been 
perceived by KNN, whereas Random Forest and Decision Tree achieved 
third and fourth positions, respectively (Fig. 11). 

In terms of false positive (the total quantity of samples predicted as 
treated but actually, it does not have COVID-19 positive), SVM and 
Naïve Bayes had significant outcomes with the lowest amount, whereas 
KNN had the second lowest false positive. The Random Forest and 

Table 2 
No. of Genes and corresponding accuracy rate based on DEGs levels and Log2 fold change.  

ML ALGORITHM DEGs Level |log2FC| > 0 |log2FC| ≥ 1 |log2FC| ≥ 2 |log2FC| ≥ 3 Mean Accuracy 

No. of Genes Accuracy No. of Genes Accuracy No. of Genes Accuracy No. of Genes Accuracy 

SVM DEGsHigh 7628 98.02 657 98.49 36 95.70 3 89.88 95.52 
KNN 94.07 96.28 95.23 88.95 93.63 
NB 94.77 95.12 93.37 87.09 92.59 
RF 93.60 95.00 91.51 88.72 92.21 
DT 94.77 91.16 83.02 81.28 87.56 
SVM DEGsModerate 8901 97.56 1586 98.37 67 99.07 6 93.60 97.15 
KNN 92.91 94.42 97.33 94.65 94.83 
NB 93.60 94.88 95.23 92.21 93.98 
RF 93.49 93.84 94.19 95.70 94.31 
DT 94.88 90.81 82.91 81.16 87.44 
SVM DEGsLow 10005 95.81 2246 97.09 90 98.14 8 91.86 95.73 
KNN 92.44 94.88 96.05 94.53 94.48 
NB 93.84 93.14 94.88 93.02 93.72 
RF 93.72 93.84 94.07 93.60 93.81 
DT 94.88 91.40 80.70 81.86 87.21  

Table 3 
List of top five Up-Regulated and five Down-Regulated genes out of 67 DEGs-
Moderate with log2FC ≥ 2.  

Regulation Ensembl ID Gene 
Symbol 

Log2FoldChange p-adj 

Up 
Regulated 
Genes 

ENSG00000275214 IFI27 +4.17787 1.88E- 
12 

ENSG00000170439 METTL7B +3.61618 2.12E- 
10 

ENSG00000115155 OTOF +3.35171 3.91E- 
09 

ENSG00000204936 CD177 +3.22541 2.92E- 
06 

ENSG00000283802 ADAMTS2 +3.08239 2.47E- 
07 

Down 
Regulated 
Genes 

ENSG00000154165 GPR15 − 2.06062 1.34E- 
07 

ENSG00000082497 SERTAD4 − 2.05997 4.95E- 
08 

ENSG00000092978 GPATCH2 − 2.05432 4.06E- 
05 

ENSG00000180537 RNF182 − 2.03799 5.79E- 
04 

ENSG00000079308 TNS1 − 2.00083 1.86E- 
07  

Fig. 10. Distribution of DEGsModerate Biomarkers based on Log2 Fold Change.  
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Decision Tree had the third and fourth lowest false positive (Fig. 11). On 
the other hand, SVM and KNN (Fig. 11) have the lowest quantity of false 
negative (the total number of samples predicted as control, but actually, 
it does not have COVID-19 negative). Random Forest achieved the 
second-lowest false negative, whereas Naïve Bayes and Decision Tree 
received the third and fourth positions, respectively. 

Table 4 shows the accuracy effect related to feature dimension 
comparison of machine learning models performance based on the fold- 
change parameter of DEGsModerate for the selection of the best-performed 
model. The classical performance metrics allied with the confusion 
matrix aimed at the measurement of classification and prediction, 
particularly the classification accuracy, sensitivity or recall, specificity, 
precision, Rate of Misclassification (RMC), and F1 measure, have been 
stated in Table 5. 

Table 5 demonstrates that SVM achieved outstanding performance 
with 99.07% accuracy compared to other classifier models, whereas 
KNN and Naïve Bayes achieved the second and third highest perfor-
mance rates of 97.33% and 95.23%, respectively. The Random Forest 
and Decision Tree classifiers received the fourth and fifth highest per-
formance rates of 94.19% and 82.91%, respectively. Regarding sensi-
tivity, the SVM reached the highest rate of 98.71%, whereas the KNN 
models had the second-highest rate of 97.90%. The Decision Tree, 
Random Forest and Naïve Bayes achieved the third, fourth, and fifth 
ranks of 97.58%, 96.45%, and 93.87%, respectively. However, SVM 
achieved a 100% specificity rate, whereas Naïve Bayes and KNN ach-
ieved the second and third highest specificity rates of 98.75%, and 
95.83%, respectively. Random Forest and Decision Tree acquired third 
and fourth specificity rates of 88.33%, and 70.83%, respectively. 
Furthermore, SVM has a 100% precision value, whereas Naïve Bayes 
and KNN achieved the second and third ranks of precision rates of 
99.49%, and 98.38%, respectively. Random Forest and Decision Tree 
achieved 95.54%, and 88.64% precision values, respectively. 

In terms of the false positive rate (FPR), SVM achieved the lowest 
rate at 0%, whereas Naïve Bayes and KNN achieved the second and third 
lowest rates of 1.25%, and 4.17%, respectively. Random Forest achieved 
the fourth-lowest FPR of 11.67%, whereas the Decision Tree had the 
fifth FPR of 29.17%. Table 5 conveyed that the SVM classifiers have a 
96.80% negative predictive value (NPV), whereas KNN received the 
second position. Furthermore, Random Forest got the ranked third, 
whereas Naïve Bayes and Decision Tree achieved fourth and fifth ranks 
in NPV. 

In the context of the rate of misclassification (RMC), SVM mis-
classified rate of 0.93%, whereas KNN, Naïve Bayes, Random Forest, and 
Decision Tree classifiers misclassified rates of 2.67%, 4.77%, 5.81%, and 
17.09%, respectively. Furthermore, the SVM scored 99.35% on the F1 
measure, whereas KNN, Naïve Bayes, Random Forest and Decision Tree 
achieved 98.14%, 96.60%, 95.99%, and 88.08% in the F1 scores, 
respectively. 

The area under the curve is a binary class problem assessment 
measurement unit based on the Receiver Characteristic Operator (ROC). 
This is a likelihood curve that illustrates the TPR in contradiction to the 
FPR at diverse standard limits, distinguishing the signals from the noise. 
The area under the curve (AUC) encapsulates the ROC curve, which 
evaluates the capability of a classifier to discriminate between classes. 

Fig. 11. Classification outcomes of machine learning techniques of DEGsMo-

derate with |log2FC| ≥ 2. 

Table 4 
Feature dimension comparison of ML models performance based on fold change 
parameter of DEGsModerate.  

ML Algorithm Feature Dimension Accuracy 
(%) 

Accuracy Effect (%) 

Log2 Fold 
Change 

Selected 
Genes 

Support 
Vector 
Machine 

|log2FC| >
0 

8901 97.56 +0.81 Increase 

|log2FC| ≥
1 

1586 98.37 

|log2FC| ≥ 
2 

67 99.07 þ0.70 Increase 

|log2FC| ≥
3 

6 93.60 − 5.47 Decrease 

K-Nearest 
Neighbor 

|log2FC| >
0 

8901 92.91 +1.51 Increase 

|log2FC| ≥
1 

1586 94.42 

|log2FC| ≥ 
2 

67 97.33 þ2.91 Increase 

|log2FC| ≥
3 

6 94.65 − 2.68 Decrease 

Naïve Bayes |log2FC| >
0 

8901 93.60 +1.28 Increase 

|log2FC| ≥
1 

1586 94.88 

|log2FC| ≥ 
2 

67 95.23 þ0.35 Increase 

|log2FC| ≥
3 

6 92.21 − 3.02 Decrease 

Random 
Forest 

|log2FC| >
0 

8901 93.49 +0.35 Increase 

|log2FC| ≥
1 

1586 93.84 

|log2FC| ≥ 
2 

67 94.19 þ0.35 Increase 

|log2FC| ≥
3 

6 95.70 +1.51 Increase 

Decision Tree |log2FC| >
0 

8901 94.88 − 4.07 Decrease 

|log2FC| ≥
1 

1586 90.81 

|log2FC| ≥ 
2 

67 82.91 ¡7.91 Decrease 

|log2FC| ≥
3 

6 81.16 − 1.75 Decrease  

Table 5 
Classification performance metrics of trained ML models of DEGsModerate with | 
log2FC| ≥ 2 (in %).  

ML Algorithm SVM kNN Naïve 
Bayes 

Random 
Forest 

Decision 
Tree 

Classification 
Accuracy 

99.07 97.33 95.23 94.19 82.91 

Sensitivity 98.71 97.90 93.87 96.45 97.58 
Specificity 100.00 95.83 98.75 88.33 70.83 
Precision 100.00 98.38 99.49 95.54 88.64 
FPR 0.00 4.17 1.25 11.67 29.17 
NPV 96.80 94.68 86.21 90.61 68.98 
RMC 0.93 2.67 4.77 5.81 17.09 
F1 99.35 98.14 96.60 95.99 88.07 
Area under ROC 

(Control) 
99.19 97.38 98.86 98.66 81.28 

Area under ROC 
(Treated) 

99.19 97.38 99.46 98.66 81.28  
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The AUC measures the model that separates the control and treated 
COVID-19 samples. The superior the AUC, the performance of the 
models will be better. Table 5 shows the value achieved by AUC on ROC 
in the DEGsModerate biomarker dataset on |log2FC| ≥ 2, with a rate of 
99.19% for both the control and treated classes using the SVM classifier. 

Based on the performance outcomes, it has been observed that the 
DEGsModerate on |log2FC| ≥ 2 and adjusted p-value with <0.05, statis-
tical approaches performed significantly using the SVM classifier. 
However, the kernel-based support vector machine (SVM) model is the 
most appropriate for building a model to classify and predict COVID-19 
non-healthy (Treated) and healthy (Control) patients based on |log2FC| 
≥ 2 with 67 biomarkers. 

5. Limitation and future research direction 

In this experiment, we designed a novel integrated next-generation 
sequencing (NGS) or RNA-Seq based pipeline for biomedical data pro-
cessing with a machine learning approach for COVID-19 prediction. We 
collected 67 differentially expressed genes feature subsets out of 20460 
gene expression features, containing 86 samples in the form of gene 
counts. Out of 86 samples, there were 24 healthy (Control) and 62 non- 
healthy (Treated) COVID-19 samples and achieved classification actions 
of the machine learning model. Formerly, we applied various prominent 
machine learning algorithms to predict COVID-19, in which kernel- 
based support vector machine (SVM) classification models performs 
significantly. 

Furthermore, with optimistic hope, we intend to enhance the model 
with multi-stage prediction, such as mild, moderate, and severe levels, 
and further related thoughtful gene expression attributes utilizing a 
massive volume of datasets in the future strategy. 

Some of the future research directions and challenges in the pro-
cessing of RNA-Seq data are handling the curse of dimensionality issue 
using other possible strategies, unavailability of control class data, data 
imbalance problem, access cost of massive databases, integration issue 
of various datasets, and scalable issue of models. Furthermore, we 
required both healthy (Control) and non-healthy (Treated) RNA-Seq 
profile data with an adequate number of biological reproductions that 
are missing yet for more better investigation. Moreover, we listed some 
important challenges that must be addressed in future research tasks, 
such as:  

▪ Imbalance of control (negative) class samples in comparison to 
treated (positive) class samples. 

▪ Classification of severity level prediction includes mild, mod-
erate, and severe COVID-19 cases.  

▪ Analysis of different variants, such as Alpha, Beta, Gamma, 
Delta, and Omicron of SARS-CoV-2 mutations.  

▪ Various enrichment analyses, such as gene-disease associations, 
pathway analysis, and tissue analysis.  

▪ Development of a web-based application for the entire designed 
model. 

6. Conclusion 

The precise classification and prediction of COVID-19 using tran-
scriptomic or RNA-Seq profile data is an extended research issue asso-
ciated with bioscience exploration. RNA-Seq profile data provide an 
enhanced transcriptomic investigation; furthermore, this could be 
applied to the classification and prediction of COVID-19. 

This experimental research article is an integrated pipeline for the 
characterization of disease classification and prediction on RNA-Seq 
profile data, which should control analysts to deal with RNA-Seq, fil-
ter significant genes as feature vectors, and then use a suitable classifi-
cation algorithm to predict COVID-19. Unfortunately, despite the 
numerous benefits of next-generation sequencing (NGS) technique, 
there are shortage of enhanced and perfect procedures to transform the 

sequencing profile data into productive information that may be applied 
for determination and care. 

The machine learning methodology integrated with RNA-Seq based 
workflow would show an imperative part in the prediction of COVID-19 
at an early stage for appropriate care and treatment. Furthermore, this 
integrated workflow is likely to be helpful and devoted to implementing 
proper solutions to fight the current pandemic conditions. 

The main emphasis of this experiment is the development of an in-
tegrated prediction model to predict COVID-19 using the R language and 
iDEP95 web-based tool for the RNA-Seq data processing phase, and the 
KNIME analytics data mining tool for machine learning-based predictor 
modeling. This analysis used five prominent machine learning algo-
rithms, and eight parameters are applied for performance estimation. 

Summarization: Based on the outcome of the experiment, we 
concluded that the consensus strategy of DEGsModerate using set theory 
and statistical approaches, such as fold-change with |log2FC| ≥ 2 and 
adjusted p-value < 0.05, identified significant DEGs as input features 
that could be applied for machine learning modelling. Furthermore, we 
recommend that the kernel-based SVM model be the most appropriate 
for building a model that performs significantly in terms of all perfor-
mance metrics of the confusion matrix, such as classification accuracy, 
sensitivity, and specificity for the classification and prediction of 
COVID-19 healthy (Control) patients or non-healthy (Treated) patients. 
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