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ABSTRACT The intricate process of biofilm formation in the human pathogen
Staphylococcus aureus involves distinct stages during which a complex mixture of
matrix molecules is produced and modified throughout the developmental cycle.
Early in biofilm development, a subpopulation of cells detaches from its substrate in
an event termed “exodus” that is mediated by SaePQRS-dependent stochastic ex-
pression of a secreted staphylococcal nuclease, which degrades extracellular DNA
within the matrix, causing the release of cells and subsequently allowing for the for-
mation of metabolically heterogenous microcolonies. Since the SaePQRS regulatory
system is involved in the transcriptional control of multiple S. aureus virulence fac-
tors, the expression of several additional virulence genes was examined within a de-
veloping biofilm by introducing fluorescent gene reporter plasmids into wild-type S.
aureus and isogenic regulatory mutants and growing these strains in a microfluidic
system that supplies the bacteria with a constant flow of media while simultane-
ously imaging developing biofilms in 5-min intervals. This study demonstrated that
multiple virulence genes, including nuc, were expressed stochastically within a spe-
cialized subpopulation of cells in nascent biofilms. We demonstrated that virulence
genes regulated by SaePQRS were stochastically expressed in nearly all strains exam-
ined whereas Agr-regulated genes were expressed more homogenously within ma-
turing microcolonies. The commonly used Newman strain contains a variant of SaeS
(SaeSP) that confers constitutive kinase activity to the protein and caused this strain
to lack the stochastic expression pattern observed in other strain backgrounds. Im-
portantly, repair of the SaeSP allele resulting in reversion to the well-conserved SaeSL

allele found in other strains restored stochastic expression in this strain.

IMPORTANCE Staphylococcus aureus is an important human pathogen capable of
colonizing diverse tissue types and inducing severe disease in both immunocompro-
mised and otherwise healthy individuals. Biofilm infections caused by this bacterial
species are of particular concern because of their persistence, even in the face of in-
tensive therapeutic intervention. The results of the current study demonstrate the
stochastic nature of Sae-mediated virulence gene expression in S. aureus and indi-
cate that this regulatory system may function as a “bistable switch” in a manner
similar to that seen with regulators controlling competence gene expression in Bacil-
lus subtilis and persister cell formation in Escherichia coli. The results of this study
provide a new perspective on the complex mechanisms utilized by S. aureus during
the establishment of infections.
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Staphylococcus aureus is a medically important pathogen capable of both asymp-
tomatic nasal colonization as well as acute and chronic infections in a wide array of

tissue types (1, 2). The versatility of this organism can be attributed to the combination
of the vast repertoire of virulence factors it produces, its ability to form biofilm, and its
metabolic adaptability (3, 4). The expression of virulence factors and the processes
associated with biofilm development involve numerous interacting regulators, includ-
ing two-component signal transduction systems (Agr and SaePQRS being two well-
studied examples), stand-alone transcriptional regulators (such as Rot, SarA, and CodY),
and an alternative sigma factor (e.g., �B) (5–7). Studies have shown that the bacterial
gene expression profile induced under planktonic growth conditions differs from that
observed in cells grown as part of a biofilm (8, 9). Epidemiological and etiological
evidence indicates that infections caused by S. aureus commonly involve the formation
of biofilms on implanted or indwelling medical devices such as catheters, prosthetic
orthopedic joints, and cardiac devices (10–13). Additionally, the host response elicited
by a biofilm infection differs from that elicited by planktonic bacteria (14, 15). The
majority of what is known about S. aureus regulatory systems has been obtained
through studies of planktonic cultures; however, the biofilm mode of growth may
represent a more appropriate context to understand the complex interactions between
these regulatory systems.

S. aureus biofilm development is a complex process that involves the production of
multiple extracellular matrix (ECM) components, including polysaccharide intercellular
adhesin (PIA), extracellular DNA (eDNA), fibronectin binding protein (FnBP), and cell
wall-anchored clumping factors (ClfA and ClfB), as well as extracellular adherence
protein (Eap) (16–18). The complex nature of biofilm development is further illustrated
by recent studies that utilized time-lapse microscopy to gain a much more detailed
assessment of the different developmental stages that exist and of the gene expression
changes that occur during S. aureus biofilm formation. These studies also revealed a
previously unrecognized stage of biofilm development, termed “exodus,” that precedes
microcolony formation and the subsequent Agr-mediated dispersal phase (19). The
results of this study demonstrated that the exodus event was dependent on the
stochastic expression of the nuc gene, encoding staphylococcal nuclease. The signifi-
cance of production of this enzyme during biofilm development was highlighted by the
demonstration that nuclease production leads to the degradation of the eDNA that
functions to maintain the structural stability of the biofilm (20, 21).

In the present study, we continued our assessment of the stochastic nature of nuc
expression during S. aureus biofilm formation using fluorescent reporter gene-based
approaches that allow for monitoring of the transcription changes that occur at the
cellular level. The results demonstrate that stochastic nuc expression and the exodus
stage of biofilm development are wide-spread phenomena, occurring in all strains
tested, representative of four major S. aureus clonal complexes. We also show, for the
first time, that several other virulence genes, including those encoding staphylocoagu-
lase (coa) and staphylococcal enterotoxin-like toxin X (selX), exhibit stochastic expres-
sion during biofilm development, identifying a specialized subpopulation of cells
dedicated to the production of these virulence factors. Furthermore, utilizing isogenic
agr and sae mutants to examine the roles of the Agr and Sae virulence regulatory
systems in stochastic gene expression, we demonstrated that, like the exodus stage of
biofilm development, stochastic gene expression is independent of Agr quorum sens-
ing and is instead dependent on the activity of the SaeS sensor histidine kinase.

RESULTS
Stochastic nuc expression and exodus are observed in multiple clonal com-

plexes. Previous reports from our laboratory revealed that stochastic expression of the
staphylococcal nuclease gene (nuc) during early biofilm formation induces the newly
recognized stage of development, referred to as “exodus,” which precedes the forma-
tion of microcolonies during biofilm maturation (19). To determine if exodus occurs in
other staphylococcal strains, we examined strains that represented four common S.
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aureus clonal complexes, including UAMS-1 (CC30), AH1263 and RN6390 (CC8), SA564
(CC5), and MW2 (CC1), using a BioFlux microfluidics system as previously described (19).
Biofilms generated by all of these strains showed the same developmental pattern.
First, cells replicated and formed a thin “mat,” characteristic of the multiplication stage
of development. Multiplication was followed by exodus, at which time a subset of cells
detached, leaving behind cells that were randomly dispersed across the channel wall.
The remaining cells continued to replicate as they transitioned into the maturation
stage of biofilm development, during which microcolony formation occurred. As shown
in Fig. 1, the initial accumulation of biomass, corresponding to the multiplication stage
of development, occurred over the course of 3 to 7 h, with the durations differing
between genetic backgrounds. On average, UAMS-1 (Fig. 1E) took 7 h to reach peak cell
accumulation whereas MW2 (Fig. 1C) showed peak cell accumulation as early as 3 h into
the experiment. The exodus event followed this peak in cell accumulation and was
associated with a decline in cell coverage (Fig. 1). The conclusion of exodus was
associated with the initiation of microcolony formation that is a characteristic of the
maturation stage of development.

Since exodus occurred in all strains tested, we reasoned that the timing of nuc
expression would be associated with the exodus event. To test this, we utilized the
previously described nuc reporter plasmid (pCM20; 21) to monitor nuc expression in
individual cells during biofilm development. As anticipated, nuc expression was ob-
served during biofilm development in all the tested strains and roughly corresponded
to the timing of the exodus event (Fig. 1). As was reported previously (19), only a
relatively small subpopulation of cells actually generated a fluorescent signal (Fig. 1). In
addition to variations in the times at which the different strains underwent the stages
of development, the percentage of channel area covered by cells also varied by strain
(Fig. 1). In order to normalize for cell density and address the question of whether
similar proportions of the populations expressed nuc among the strains tested, we
quantified the percentage of the population that fluoresced during biofilm develop-
ment. The results revealed that the percentages of nuc-positive cells within the biofilms
also differed from strain to strain (Fig. 1). For example, UAMS-1 biofilms, on average,
reached peak cell coverage when 50% of the channel area was covered (after 7 h of
growth) but only 1% was green fluorescent protein (GFP) positive at that time point
(Fig. 1E). In contrast, cell accumulation for RN6390 peaked with an average cell
coverage area of 45% (after 4.5 h of growth) but approximately 10% of this population
was GFP positive (Fig. 1B). Another example of differences in levels of nuc expression
between strains can be seen by the high percentage of nuc-positive cells in SA564
(Fig. 1D) and RN6390 (Fig. 1B) biofilms at the start of the experiment compared with the
relatively low percentage of GFP-positive cells within the biofilms of the other strains
at this time point (Fig. 1A, C, and E). After the initiation of the experiment, the
percentage of high-expressing cells declined over time but then increased when the
stochastic expression of nuc resumed (Fig. 1). Although we examined hundreds of
images of nascent biofilms to determine if this expression could be explained by the
presence of subtle environmental/spatial characteristics (proximity to other cells, the
relative position of attachment to the viewing channel, the expression level of neigh-
boring cells, etc.), no evidence of this was found. Thus, we conclude that nuc is
stochastically expressed by S. aureus during biofilm development and that this mode of
expression is common in a variety of strains representing multiple clonal complexes.

The specific roles of Sae and Agr during biofilm development. It was demon-
strated in a previous study that exodus occurred in an Sae-dependent but Agr-
independent manner (19). Given that the exodus event is mediated by nuc (19), we
hypothesized that stochastic expression from the nuc::gfp reporter would still be
observed in an agr mutant. Indeed, early stochastic expression of the nuc reporter was
readily observed in the agr mutant (AH1292, Fig. 2C) at levels comparable to those of
the parental strain (AH1263, Fig. 2A) whereas it was substantially diminished in the
saePQRS mutant (AH2216, Fig. 2B). Furthermore, as was observed during exodus, the
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FIG 1 Assessment of exodus and stochastic expression in different genetic backgrounds. S. aureus strains
containing the nuc::gfp reporter plasmid (pCM20) were grown in a BioFlux system, where bright-field and

(Continued on next page)
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saePQRS mutant biofilm failed to induce fluorescent signal during maturation despite
forming cell aggregates that appeared similar in size to those formed by the wild-type
and agr mutant strains (Fig. 2).

Early reports examining the necessity of Sae and Agr in virulence gene expression
found activation of the Sae system to be at least partially dependent on Agr (22, 23).
However, more recent reports argued against any Agr dependence in Sae-mediated
signaling, particularly in nuc expression (24). Quantification of wild-type and agr mutant
biofilm coverage over time showed that the levels of early biofilm development of the
two strains were very similar (Fig. 2D). At early time points (t � 0 h to t � 8 h), pairwise
comparisons found no statistically significant difference in either cell coverage (all
adjusted P values � 0.15) or the percentage of cells that were fluorescent (all adjusted
P values � 0.27). It was not until later in biofilm development (after 9 h of growth) that
any discernible differences between the two emerged. The agr mutant biofilm took
slightly longer, on average, to reach maturation, and the percentage of the channel
area that was covered by biofilm at later time points was often less than that covered

FIG 1 Legend (Continued)
epifluorescent images were acquired at 5-min intervals at �200 magnification. The images shown are
bright-field and epifluorescent overlays that depict individual cells within the biofilm, some of which
produce a fluorescent signal. The acquisition time is indicated in the lower left corner of each biofilm
image and with an arrow on the corresponding plot; differences in acquisition times reflect the variability
in timing associated with exodus. Scale bars represent 75 �m. Each plot depicts the average percentage
of channel area covered by cells (represented by black circles and plotted on the right y axis) and the
average percentage of biofilm area that was GFP positive (represented by green squares and plotted on
the left y axis) at 15-min intervals over 8 h of growth. The minimum and maximum values of the y axes
were adjusted in some cases to ensure that the full range of mean values over the entire growing period
were visible. The data represent means of results from three independent experiments, each containing
at least two technical replicates. Error bars represent standard deviations (SD).

FIG 2 Effect of the Sae and Agr regulatory systems on nuc expression during biofilm development. (A to C) The S. aureus
wild-type (WT) strain (AH1263) (A) and isogenic mutants ΔsaePQRS (AH2216) (B) and agr::tet (AH1292) (C) harboring the
nuc::gfp reporter were grown in a BioFlux system, where bright-field and epifluorescent images were acquired at 5-min
intervals at �200 magnification). The images shown are bright-field and epifluorescent overlays taken at the indicated
times during biofilm development. Scale bars represent 75 �m. (D and E) Graphs depict the average percentage of channel
area covered by cells (D) and the average percentage of the biofilm area that was GFP positive at 15-min intervals over
15 h of growth (E). The data represent means of results from three independent experiments, each containing at least two
technical replicates. Error bars represent the SD. After 5 h of growth, ΔsaePQRS mutant biofilms often caused the
microfluidic channels to clog due to the buildup of cells resulting from deficient nuclease production (19).
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by the wild-type biofilms (Fig. 2D; see also Fig. S1 in the supplemental material). Despite
the minimal differences in the area of channel coverage between the two strains (as
indicated in Fig. 2D), a smaller population of cells expressed GFP in towers produced by
the agr mutant (Fig. 2E). Pairwise comparisons of the wild-type and agr mutant biofilms
indicated no statistically significant difference in the levels of cell coverage at 9 h
(adjusted P value � 0.3095) or 15 h (adjusted P value � 0.3163). However, there was a
statistically significant difference in the percentages of cells that were fluorescent at 9 h
(adjusted P value � 0.009) or 15 h (adjusted P value � �0.0001). The observed differ-
ences were even more evident at later time points (Fig. S1). Overall, the results
generated by these studies provide further evidence that the mechanisms confining
expression of nuc to a subpopulation of cells during the early stages of biofilm
development are independent of the Agr-mediated quorum sensing system but are
dependent on Sae. In contrast, nuc expression is dependent on both Sae and Agr
during the maturation stage of biofilm development.

Sae- and Agr-regulated virulence genes display distinct patterns of expression
during biofilm development. The Agr quorum sensing system becomes activated
when sufficient levels of the autoinducing peptide (AIP) are produced and sensed by
the sensor histidine kinase, AgrC, a process that occurs within microcolonies during the
maturation phase of biofilm development (25). On the basis of our observation that
stochastic expression of nuc during the exodus stage was independent of the Agr
regulatory system, we hypothesized that virulence factor genes regulated by Agr, but
independent of Sae, would lack early stochastic expression and that promoter
activity for these genes would be limited to the maturation stage when microcolony
development occurs. Although there are several genes that fall into this category,
the genes encoding the Agr two-component signal transduction system (agrBCDA),
as well as those encoding the virulence factors �-type phenol-soluble modulins
(psm�), phosphatidylinositol-specific phospholipase C (plc), and staphylococcal entero-
toxin K (sek), were selected to generate fluorescent promoter fusion reporters. As
anticipated, stochastic expression of these genes was not observed during the multi-
plication or exodus stages of biofilm development (Fig. 3A; see also Fig. S2). In contrast,
significant expression of these promoters was observed during the maturation stage,
specifically within the developing microcolonies.

FIG 3 Agr- and Sae-dependent regulation dictate distinct gene expression patterns during biofilm
development. The wild-type S. aureus strain (AH1263) harboring the psm� reporter (pLD24 (A) and the
selX reporter (pLD9) (B) were grown in a BioFlux system, where bright-field and epifluorescent images
were acquired at 5-min intervals at �200 magnification. The images shown are bright-field and
epifluorescent overlays collected at the indicated times and are representative of results from three
independent experiments, each containing at least two technical replicates for each strain. Scale bars
represent 75 �m. The Sae-independent virulence gene, psm�, is not expressed in a stochastic manner
during exodus; instead, Agr-dependent expression occurs in developing towers, during maturation. In
contrast, the Sae-dependent virulence gene (selX) is stochastically expressed during exodus but signal
from this Agr-independent gene is absent from developing towers.
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On the basis of the observation that nuc is stochastically expressed in a subpopu-
lation of cells in a manner dependent on the SaePQRS system, we hypothesized that
other virulence factors under the control of this regulatory system would likewise show
similar stochastic expression. To test this, fluorescent promoter fusions were generated
for several other virulence genes within the Sae regulon. Stochastic expression was
observed for the genes encoding other Sae-dependent virulence genes. Staphylococcal
enterotoxin-like toxin X (selX [26]) (Fig. 3B) is one such example. Similarly to nuc
expression, the stochastic expression of selX (shown in the context of a dual reporter in
Fig. S3) and additional Sae-dependent virulence genes (unpublished results) was
observed in the Agr mutant but absent in the Sae mutant during biofilm development.
These results indicate that stochastic expression in S. aureus is associated with virulence
genes that are regulated by the Sae-regulatory system.

Collectively, these results indicate that the distinct patterns of expression observed
during biofilm development are mediated by Sae- and Agr-dependent regulation.
Expression of selX, a virulence gene whose expression is Sae-dependent and Agr-
independent was observed during the multiplication and exodus stages, but absent
during microcolony formation (Fig. 3B). Conversely, expression of psm�, an Agr-
dependent gene, was observed only during maturation, within developing microcolo-
nies (Fig. 3A). Agr-dependent virulence genes were more homogenously expressed
across the cell population compared to the stochastic expression seen with Sae-
dependent genes. The nuc reporter (shown in Fig. 2A) displayed both stochastic
expression during early stages of development and homogenous expression within
microcolonies, consistent with the observation that its expression is dependent on both
Agr and Sae.

Given that stochastic expression of the Sae-regulated virulence genes was observed
at the same stage of biofilm development, we asked whether these virulence genes
were expressed within the same cells. To assess this, we generated dual-reporter
constructs to enable observation of simultaneous expression of multiple genes of
interest. In the experiment shown in Fig. 4A, the nuc promoter was fused to gfp and a
second fluorescent reporter gene (dsRed) was used to generate a transcriptional

FIG 4 Coexpression of nuc and additional Sae-dependent genes during biofilm development. The images shown are of wild-type S. aureus
cells harboring the dual reporter for (A) nuc and coa (pDM19) taken after 4 h of growth and (B) nuc and selX (pLD13) taken after 3.5 h of
growth in a BioFlux system, where bright-field and epifluorescent images were acquired at 5-min intervals at �200 magnification. Scale
bars represent 75 �m. Overlay of FITC (GFP) and TRITC (DsRed) images shows overlap in the fluorescent signals indicating coexpression
of these virulence factors within this subpopulation of cells. Images are representative of results from three independent experiments,
each containing at least two technical replicates for each strain.
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reporter for the Sae-dependent gene, staphylocoagulase (coa [27]). Examination of this
dual-reporter strain during biofilm development revealed that these two genes are
coexpressed within the same subpopulation of cells. Similar results were observed with
another dual-reporter construct containing a nuc/selX combination (Fig. 4B).

Stochastic expression is also observed during planktonic growth. As described
above, we observed a subpopulation of high-expressing cells immediately after seeding
of the biofilm experiments described for Fig. 1. As a result of this observation, we
reasoned that stochastic expression of nuc (and of other Sae-regulated genes) would
also be observed during planktonic growth. Thus, we grew several of our reporter
strains to the stationary phase under standard planktonic conditions and examined
them using confocal microscopy. As shown in Fig. 5A, stochastic expression was
observed from our Sae-dependent dual-reporter construct, pLD13, indicating that nuc
and selX are expressed in a subpopulation of cells during planktonic growth. Further-
more, stochastic expression of nuc and selX was also observed in the agr mutant but
was absent in the sae mutant (Fig. 5A). Similarly to growth during biofilm development,
stochastic expression was not observed with the Agr-dependent psm� reporter under
planktonic conditions (Fig. 5B). Instead, expression of psm� (indicated by red fluores-
cence from the dual-reporter pLD24) was mostly homogenous across the planktonic
wild-type population, with only slight cell-to-cell variation in signal intensity (Fig. 5B).
Expression of psm� was unaffected by deletion of saePQRS but was absent in the agr
mutant (Fig. 5B). In contrast, stochastic nuc expression was observed from the dual
reporter (indicated by green fluorescence) in the wild-type and agr mutant strains but
was absent in the sae mutant (Fig. 5B).

Stochastic nuc expression and the exodus stage of development are depen-
dent on saeS. One exception to the stochastic virulence gene expression that we
observed in the different strains tested was the S. aureus Newman strain, which
demonstrated homogeneous expression of the nuc::gfp reporter across the entire

FIG 5 Sae- and Agr-dependent regulation of virulence genes during planktonic growth. The S. aureus wild-type
strain (AH1263), sae mutant (AH2216), and agr mutant (AH1292) harboring dual gene expression reporters were
grown aerobically with shaking in 3-ml glass culture tubes and imaged after cells had reached the stationary phase.
(A) Cells harboring the selX::dsRed/nuc::gfp dual-reporter plasmid (pLD13). (B) Cells harboring the psm�::dsRed/nuc::
gfp dual-reporter plasmid (pLD24). Images were obtained using confocal laser microscopy at �630 magnification.
The images shown are representative of results from two independent experiments and multiple fields of view
observed during each experiment. Arrows highlight stochastic expression. Scale bars represent 20 �m.
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population (Fig. 6A). This strain contains a natural variant of the saeS allele that encodes
a SaeS variant in which amino acid 18 is changed from a leucine (SaeSL) to a proline
(SaeSP), resulting in the constitutive kinase activity of SaeS and subsequent overex-
pression of Sae-regulated genes (28). Although it was presumed that this mutation
resulted in an increase in the average expression levels of the virulence genes tested,
the observation that the majority of the population expressed nuc suggests that the
apparent increase in gene expression was actually a result of the loss of stochastic
expression (an increase in the total number of cells within the population expressing
virulence genes). To assess the potential impact of constitutive activation of SaeS on
stochastic gene expression, the variant allele found in the Newman strain was intro-
duced into the AH1263 background to generate strain JLB29 (29), followed by the
transfer of the nuc::gfp promoter plasmid into this strain. As shown in Fig. 6D, the
variant allele in JLB29 resulted in the conversion from stochastic nuc expression to
homogeneous expression. In a reciprocal experiment, we monitored nuc expression in
a Newman-derived strain (NewHG) in which the variant saeS allele was altered such that
it produces the well-conserved SaeSL protein (30). As shown in Fig. 6B, this change
resulted in stochastic expression of the nuc::gfp reporter similar to that seen with the
AH1263 strain (shown in Fig. 6C). Reporters for other Sae-dependent virulence factors
such as coa (unpublished results) and selX (Fig. S4) showed the same results as were
observed for nuc, with stochastic gene expression observed in the strains that harbor
the saeSL allele but homogeneous expression in the strains containing the saeSP allele.

To determine the impact of the variant saeS allele on biofilm development, we grew
the saeSL and saeSP strains in the BioFlux system. As was observed in planktonic culture,
the biofilms produced by the saeSP strains (Newman and JLB29) were comprised almost
entirely of nuc-expressing cells within 3 h of the start of the experiment (Fig. 7A and E).
The biofilm phenotypes associated with these two strains were highly divergent both
compared with each other and compared with their respective saeSL isogenic strains.
JLB29 biofilms had a delayed multiplication stage, but accumulation occurred rapidly

FIG 6 Effect of the saeSP allele on expression of nuc. S. aureus strains Newman (A), NewHG (B), AH1263
(C), and JLB29 (D) containing the nuc::gfp reporter plasmid (pCM20) were grown aerobically with shaking
in 3-ml glass culture tubes. Bright-field and epifluorescent images were obtained using confocal laser
microscopy at �630 magnification. The images shown are representative of results from two indepen-
dent experiments and multiple fields of view observed for all strains during each experiment. Images
were acquired after approximately 12 h of growth. Arrows indicate stochastic expression. Scale bars
represent 20 �m.
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after 3 h (Fig. 7F). Ultimately, these biofilms failed to undergo exodus and formed dense
cell aggregates that filled the channels by 6 h. Similarly to JLB29, Newman was slow to
proliferate; however, unlike JLB29, this strain showed a reduced propensity to remain
attached to the channel, as most cells were flushed from the surface within 3 h (Fig. 7C).
These observations are consistent with previously published reports demonstrating the
poor biofilm-forming ability of the Newman strain (31, 32). While NewHG biofilms
(Fig. 7B and C) did not achieve the same level of channel coverage as those of AH1263
(Fig. 7D and F), this strain formed a more robust biofilm than strain Newman and
exodus occurred shortly after the induction of the nuc reporter (Fig. 7C). Combined, the
results from the planktonic and biofilm studies suggest that the SaeS protein plays an
important role in mediating stochastic expression and biofilm development.

DISCUSSION

The results of the current study reveal the ability of S. aureus to produce a
specialized subpopulation of cells that specifically express virulence genes. These
findings build on previous results demonstrating that a newly defined stage of biofilm
development, designated “exodus,” is mediated by the stochastic expression of the nuc
gene encoding staphylococcal nuclease (19). This secreted enzyme was shown to
mediate the degradation of the extracellular DNA (eDNA) matrix of biofilm, resulting in
the detachment of cells during the early stages of biofilm development and allowing
microcolony formation. In contrast to the previous dogma, which was based on the
presumption that all S. aureus cells within a population are similar with respect to
virulence gene expression, our current results support a growing awareness that
expression of some virulence genes is limited to a subpopulation of cells under

FIG 7 The saeSP allele affects stochastic expression and exodus during biofilm development. S. aureus strains containing the nuc::gfp
reporter plasmid (pCM20) were grown in a BioFlux system, where bright-field and epifluorescent images were acquired at 5-min
intervals at �200 magnification. The biofilm images shown are overlays of bright-field and epifluorescent and are representative of
results from three independent experiments, each containing at least two technical replicates. Images for NewHG (B), AH1263 (D), and
JLB29 (E) were acquired at 4 h of growth, and the image for Newman (A) was acquired at 3 h of growth (nearly all cells were gone
by 4 h). Scale bars represent 75 �m. Stochastic expression was observed in strains containing the SaeSL allele (NewHG and AH1263,
represented by circles in panels C and F, respectively). In the SaeSP isogenic strains (Newman and JLB29, represented by squares in
panels C and F, respectively), expression was mostly homogenous and occurred at a very high level. The plots (C and F) depict average
percentages of channel area covered by cells (black symbols, plotted on the right y axis) and average percentages of biofilm-covered
areas that are also GFP positive (green symbols, plotted on the left y axis) at 15-min intervals over a 6-h time period. The maximum
values of the y axes were adjusted in some cases to ensure the visibility of the full range of mean values over the 6-h growing period.
The data represent means of results from three independent experiments, each containing at least two technical replicates of each
strain. Error bars represent the SD.
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standard planktonic growth conditions and during biofilm development (33, 34). We
also demonstrated that the stochastic expression of these genes is likely to be medi-
ated by the well-known SaePQRS regulatory system. In addition, our results reveal an
intricate interplay between the Sae and Agr regulatory systems that coordinate viru-
lence gene expression within the context of a developing biofilm.

Based on the effects of the Sae and Agr regulatory systems on expression of the
different S. aureus virulence genes, we can divide these genes into three distinct
regulatory groups: (i) virulence genes regulated by the Sae regulatory system, (ii)
virulence genes regulated by the Agr regulatory system, and (iii) virulence genes
regulated by both Sae and Agr. The results of the current study demonstrate that these
three regulatory categories are neatly associated with different stages of biofilm
development. For example, all the Sae-regulated genes tested exhibited stochastic
expression during the early stages of biofilm development, while the Agr-regulated
genes tested were all expressed during the maturation stage within developing mi-
crocolonies. Those virulence genes that are regulated by both Sae and Agr displayed
both expression patterns. The results from the studies performed using our nuc
reporters also demonstrate two distinct expression patterns whose differences were
dependent on the growth conditions. Cells grown in planktonic culture demonstrated
a clear pattern of Sae-dependent regulation that was independent of Agr. In contrast,
under biofilm conditions, nuc expression was found to be Sae dependent during
exodus but Agr dependent during maturation.

Although it seems clear that the Sae regulatory system is involved in the stochastic
expression of the genes under its control, the molecular mechanism mediating this
expression remains unknown. In general, stochastic expression is dependent on a
so-called “bistable switch” that can dictate two different expression outcomes based on
the achievement of a “threshold” level of transcription factors, usually involving an
autoregulatory loop, that determines whether target genes are expressed or not. On
the basis of the intrinsic “noise” generated in the transcription of genes (35, 36), the
achievement of the threshold level of transcription of a bistable switch within a given
cell determines whether the cell expresses a target gene (37). Classic examples of
bistable switches are the natural competence (38–41) and sporulation (42–44) systems
of Bacillus subtilis, the former causing approximately 15% of the population to become
competent for natural transformation and the latter dividing the population into
subpopulations consisting of sporulating cells and nonsporulating cells (44, 45).

The demonstration of a specialized subpopulation of cells dedicated to the expres-
sion of virulence genes is consistent with an emerging theme of virulence gene
expression in S. aureus. Since the original discovery of the stochastic expression of nuc
during biofilm development (19), similar observations of the bimodal regulation of
other virulence genes have been reported. For example, García-Betancur et al. (33) have
demonstrated that the Agr regulatory system plays an important role in the bifurcation
of S. aureus into two distinct subpopulations, one that is destined for a biofilm lifestyle
and the other for planktonic growth. Importantly, that study suggested that the Agr
system itself functions as a bistable switch and that the magnesium concentration in
different host niches influences the bimodal outcome. In another study, expression of
the capsular polysaccharide operon was shown to be limited to a subpopulation of cells
(34). Although cap expression was largely dependent on Agr, this regulatory system, as
well as several others tested, was found not to be responsible for the stochastic control
of this operon. Interestingly, cap expression was previously shown to be unaffected by
the SaeS polymorphism found in Newman (46), suggesting there may be yet another
regulatory strategy (distinct from Sae and Agr) involved in mediation of stochastic
expression of the cap operon.

The N-terminal region of the SaeS histidine kinase component of the SaePQRS
multicomponent regulatory system contains two transmembrane domains connected
by a short linker peptide (28). This region is integral to sensing environmental stimuli
and inducing an appropriate transcriptional response. Mutation of individual amino
acids within the extracellular linker region of SaeS has previously been shown to disrupt
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the ability of this system to generate diverse responses in the presence or absence of
stimuli (47). Furthermore, mutations to this region were shown to alter the autokinase
and phosphotransferase activity rate of SaeS which corresponded to attenuated or
enhanced virulence within a murine infection model (48). The results from the current
study highlight how SaeS plays an important role in the stochastic expression of the
target genes of the SaePQRS regulatory system by functioning as a molecular switch.
A single point mutation found within the saeS gene of the Newman strain, well known
for its ability to produce high levels of virulence factors (46), causes loss of stochastic
expression, resulting in the entire cell population becoming fixed in an “ON” state
(shown in Fig. 6 and 7). Introduction of this variant allele into AH1263 (JLB29) resulted
in the conversion from stochastic nuc expression to homogenous expression within the
population (Fig. 6D and 7E). Importantly, repair of the mutant allele in the Newman
strain (NewHG) resulted in the restoration of stochastic expression, confirming the role
of saeS in this mode of regulation (as indicated in Fig. 6B and 7B). Importantly, these
findings also provide support for the model that the stochastic production of GFP
within a subpopulation of cells is a consequence of genetic regulation and not an
artifact of plasmid loss, growth rate, or oxygen concentration.

Interestingly, deletion of saeP (encoding a lipoprotein known to stimulate the
phosphatase activity of SaeS) was shown to affect stochastic expression, as most cells
within a saeP mutant biofilm express nuc (49). These results indicate that the mecha-
nism controlling the bistable expression of virulence genes may involve specific
interactions between the SaeP and SaeS proteins of this complex signal transduction
system. Furthermore, recent studies of the role of CodY in the regulation of SaePQRS
provided evidence that this regulatory protein also affects the stochastic expression of
Sae targets such as nuc (7). This study demonstrated that a codY mutant harboring a
nuc::gfp reporter displayed a significantly higher number of GFP-positive cells within
the population than the wild-type parent strain, indicating that CodY contributes to
stochastic expression of nuc, possibly via its role in the regulation of the sae P1
promoter, which drives expression of the components of the SaePQRS system. Ongoing
studies are focused on defining the precise interactions between the Sae and CodY
regulatory systems that mediate the bistable expression of virulence genes as well as
on understanding the biological significance of this mode of regulation.

Overall, the results of this study reveal a complexity with respect to the regulation
of virulence gene expression and biofilm development that had not been previously
appreciated. Given the role of the Sae regulatory system in the stochastic control of
virulence gene expression during biofilm development, it is possible that the biofilm
mode of growth provides a better context to understand the regulatory dynamics that
exist between the different S. aureus regulatory systems. Furthermore, analyses of cells
grown in planktonic culture had been assumed to be relatively homogeneous, with,
until recently, little consideration of differences between cells within the population. As
such, many commonly used transcriptional profiling strategies had previously relied on
the analysis of mRNA from entire cell communities, thus giving an average value of
gene expression across the transcriptome and inadvertently neglecting biologically
significant differences that exist within subpopulations of cells (50). We have learned a
great deal from those studies, but it is becoming increasingly apparent that a full
understanding of the complex interactions between the regulatory pathways may
require consideration of the potential temporal expression patterns and regulatory
checkpoints that are the hallmarks of development in more-complex multicellular
organisms.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The S. aureus strains used in this study are described in

Table 1. All S. aureus strains were grown in tryptic soy broth (TSB) (EMD Biosciences) or on TSB containing
1.5% agar (TSA). When appropriate, erythromycin (5 �g ml�1) and chloramphenicol (10 �g ml�1) were
added to the growth media for plasmid selection and maintenance. Escherichia coli was grown in LB
broth (Difco) or on LB containing 1.5% agar. All E. coli growth media were supplemented with ampicillin
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(100 �g ml�1) for plasmid selection. All experiments were started from fresh TSB overnight cultures
supplemented with the appropriate antibiotic and grown at 37°C with shaking at 250 rpm.

Construction of gene reporter plasmids. For construction of gene reporter plasmids, PCR ampli-
fication of the promoter regions of nuc, selX, sek, plc, and psm� and the P2 promoter of agr was
performed using genomic DNA isolated from AH1263 using primers Nuc1Green-F, Nuc1Green-R,
pSelXRed-F, pSelXRed-R, pSEK-F, pSEK-R, pPCL-F, pPCL-R, PSMbetaRed-F, PSMbetaRed-R, pP2AGR-F, and
pP2AGR-R (Table 2). The PCR products were purified using a DNA Clean & Concentrator kit (Zymo
Research Corp.). For single gene reporter plasmids, purified PCR product was digested with HindIII and
KpnI and ligated into pCM20 digested with the same enzymes. The sequences for these single reporters
were confirmed using the sGFP-S-r primer (Table 2). For dual gene reporter plasmids, site-directed
mutagenesis was used to eliminate the internal NdeI site in the sDsRed reporter gene of the pMRSI
plasmid (51) for generation of the pMRSII plasmid using primers sDsRed-dNdeI-f and sDsRed-dNdeI-r. The

TABLE 1 Bacterial strains and plasmids used for this studya

Strain or plasmid Description Reference or source

Strains
DH5� E. coli
RN4220 Highly transformable restriction-deficient strain
RN6390 USA300, CC8
MW2 USA400, CC1
SA564 USA100, CC5
UAMS-1 USA200, CC30
AH1263 USA300 CA-MRSA Erms LAC derivative lacking LAC-p03, CC8 47
AH1292 AH1263 agr::tet 21
AH2216 AH1263 ΔsaePQRS 47
JLB29 AH1263 with saeSP allele 29
AH3498 AH1263 ΔsaeP 49
Newman Commonly used laboratory strain, CC8 30
NewHG Newman background with saeSL allele 30

Plasmids
pCM20 nuc promoter::sGFP, Ampr and Ermr 21
pCM11plc plc promoter::sGFP, Ampr and Ermr This work
pCM11sek sek promoter::sGFP, Ampr and Ermr This work
pCM11P2Agr agr P2 promoter::sGFP, Ampr and Ermr This work
pMRSII Dual-reporter shuttle vector, Ampr and Cmr This work
pLD9 selX promoter::sDsRed, Ampr and Cmr This work
pLD13 selX promoter::sDsRed, nuc promoter::sGFP, Ampr and Cmr This work
pLD24 psm� promoter::sDsRed, nuc promoter::sGFP, Ampr and Cmr This work
pDM19 coa promoter::sDsRed, nuc promoter::sGFP, Ampr and Cmr This work

aAmp, ampicillin; CA-MRSA, community-acquired S. aureus; Erms, erythromycin sensitive.

TABLE 2 Primer sequences used for this study

Primer name Sequence (5=¡3=)
sDsRed-dNdeI-f GTGAAGGTGAAGGACGTCTTTATGAAGGTACACAAACAG
sDsRed-dNdeI-r CTGTTTGTGTACCTTCATAAGGACGTCCTTCACCTTCAC
pPlc-F CCCAAGCTTATTCATTCACATTTTGGAG
pPlc-R GCCGGTACCCTTTCTATATTTAATACATTAATTATACATC
pSek-F CCCAAGCTTGGTAACTGCTCAAGAG
pSek-R GCTGGTACCCCTTAAATTCTATTTATTCAG
pSelXRed-F CCCACTAGTGTTGTCTCCTTTACTCCG
pSelXRed-R CCCGGATCCCTTGATGTAAAGCTTTATTTGCTAC
Nuc1Green-F CCCGGTACCAGTAAATTATAAGTTATACATCTCG
Nuc1Green-R CCCGAATTCCTTTTTAGTTAATTTTAATATTAAACG
PSMbetaRed-F CCCGCTAGCGTAATCACGG
PSMbetaRed-R CCCGGATCCCTTAAAATTTAAATTTGAAG
pP2agr-F CCCAAGCTTGTTCACTGTGTCGATAATCC
pP2agr-R ACCGGTACCCCTCACTGTCATTATAC
sDsRed-S-r CTGTTGATGGTTCCCAACCC
sGFP-S-r GTAGCATCACCTTCACCCTCTC
pCN51-S1-f CTCACATGTTCTTTCCTGCGTTATCC
pCN51-S-r GTTCTTGTTGCTGTTCCTGTTCTG
Dual-nuc-F GCCCGCTGCAGGTAAATTATAAGTTATACATCTCG
Dual-nucR GCCGGAATTCCTTTTTAGTTAATTTTAATATTAAACG
Dual-coa-F GCCGCTGCAGGTTTCGCTTTAGTCATTTGAT
Dual-coa-R GCCGGGATCCATGTAATTGCCCAATCTACAT
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purified PCR amplification product for selX and the pMRSII plasmid were digested with SpeI and BamHI,
and then the digested products were ligated together to generate pLD9. Next, the purified PCR product
for nuc was digested with KpnI and EcoRI and ligated into pMRSII digested with the same enzymes to
generate pLD10. pLD10 and the purified PCR amplification product for selX were each digested with the
restriction enzymes SpeI and BamHI and then ligated together to generate pLD13. pLD10 and the
purified PCR amplification product for psm� were each digested with the restriction enzymes NheI and
BamHI and then ligated together to generate pLD24. To generate pDM19, the nuc promoter region was
first amplified from AH1263 chromosomal DNA using primers Dual-nuc-F and Dual-nuc-R (Table 2) and
then digested with EcoRI and PstI and ligated into pSC14 (provided by the laboratory of Vinai Chittezham
Thomas), which had been digested with the same enzymes to generate pDM17. Next, the coa promoter
region was amplified from the AH1263 chromosome using the Dual-coa-F and Dual-coa-R primers
(Table 2). PstI and BamHI was used to digest the coa amplification product as well as pDM17, and these
two digest products were ligated together to generate pDM19 (Table 1). Sequencing was performed on
dual reporters using primers sDsRed-S-r, sGFP-S-r, pCN51-S1-f, and pCN51-S-r (Table 2) to ensure that the
appropriate dual reporters were generated. Plasmids were heat shocked into DH5� E. coli. As performed
previously (19), the plasmids were purified using a Wizard Plus SV Miniprep DNA purification system
(Promega Corporation) and transferred by electroporation into S. aureus strain RN4220. Transduction of
the plasmids into AH1263 was performed using �11 phage propagated on the plasmid-containing
RN4220 strain.

BioFlux 1000 biofilm assays. A BioFlux 1000 microfluidic system (Fluxion Biosciences, Inc.) was used
to assess biofilm development as previously described (19). BioFlux 1000 48-well plates were used for all
experiments. Biofilm growth channels were primed by adding 200 �l of 50% TSB to the output wells and
using a reverse flow for 5 min at 5.0 dynes/cm2. TSB in the output wells was replaced with 200 �l of fresh
inoculum made from overnight-grown S. aureus cultures diluted to an optical density at 600 nm (OD600)
of 0.8. A 300-�l volume of fresh TSB was added to the input wells. The growth channels were then
seeded by applying a reverse flow for 2 s at 2.0 dynes/cm2. The seeded plate was left to incubate on the
heated (37°C) stage of a BioFlux 1000 system for 1 h to allow cells to attach to the growing channel walls.
Inoculum remaining in the input and the output wells was aspirated, and 1.3 ml of fresh 50% TSB was
added to the input wells. A forward flow at 0.6 dynes/cm2 was then applied to the channels for 18 h.
Bright-field and epifluorescence images were taken in 5-min intervals for a total of 217 time points. All
epifluorescent images monitoring GFP expression were acquired using a fluorescein isothiocyanate (FITC)
filter, and images representing DsRed expression were acquired using a tetramethylrhodamine (TRITC)
filter. All biofilm experiments were repeated for a total of three independent experiments, each
containing at least two technical replicates for each strain.

Quantification of acquired biofilm assay images. Images representative of the phenotypes
recorded were observed and selected using BioFlux Montage software (Fluxion Biosciences, Inc.).
Bright-field and epifluorescence images were calibrated to 0.323445 �m/pixel. For bright-field images, a
threshold was set using the Threshold tool and Slider tool to include all cells within each image while
excluding any background area. The total percentage of area covered within this threshold was
designated the percentage of biofilm coverage, and these values were plotted over time. For epifluo-
rescence images, the threshold was set to include all light areas (which were considered to represent
fluorescing cells) and the total percentage of area covered within this threshold was designated the
percentage of fluorescing cells. The area covered by fluorescing cells was divided by the total area
covered by biofilm to produce the percentage of biofilm that was GFP positive. These values were also
plotted over time. All time points were plotted in 15-min intervals using GraphPad Prism (GraphPad
Software).

Statistical analysis of biofilm quantifications. Statistical analysis was performed by members of the
College of Public Health Biostatistics Division at the University of Nebraska Medical Center as follows. PC
SAS version 9.4 was used for all summaries and analyses. The SAS procedure GLIMMIX was used to fit
B-splines for each of the outcomes (cell coverage and percentage of fluorescing cells) for each of the
strains of interest. All possible pairwise comparisons were made at selected time points, and the P values
were subjected to Holm simulation adjustment for multiplicity with a Holm-simulated stepdown proce-
dure.

Microscopy imaging of GFP- and DsRed-expressing reporters in planktonically grown S. aureus
strains. A 1-ml volume of fresh overnight cultures of S. aureus containing fluorescent reporter plasmids
was centrifuged at 16,000 rpm for 5 min, and the pelleted cells were resuspended in 1� phosphate-
buffered saline (PBS) to an optical density at 600 nm (OD600) of 8. A 5-�l volume of resuspended cells was
added to a glass slide, and the glass slide was covered with a coverslip and sealed with clear nail polish.
The samples were examined with a Zeiss LSM710 AxioObserver microscope (Zeiss Inc., Thornwood, NY).
Cells were excited using 488-nm and 561-nm lasers for green and red fluorescent proteins, respectively.
The images were acquired using a 63� oil objective. All planktonic culture experiments were repeated
for a total of two independent experiments.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.9 MB.
FIG S2, TIF file, 2.4 MB.
FIG S3, TIF file, 1.2 MB.
FIG S4, TIF file, 4.7 MB.
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