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Communicating oscillatory networks: frequency
domain analysis
Adaoha EC Ihekwaba1,3† and Sean Sedwards2,3*†

Abstract

Background: Constructing predictive dynamic models of interacting signalling networks remains one of the great
challenges facing systems biology. While detailed dynamical data exists about individual pathways, the task of
combining such data without further lengthy experimentation is highly nontrivial. The communicating links
between pathways, implicitly assumed to be unimportant and thus excluded, are precisely what become important
in the larger system and must be reinstated. To maintain the delicate phase relationships between signals,
signalling networks demand accurate dynamical parameters, but parameters optimised in isolation and under
varying conditions are unlikely to remain optimal when combined. The computational burden of estimating
parameters increases exponentially with increasing system size, so it is crucial to find precise and efficient ways of
measuring the behaviour of systems, in order to re-use existing work.

Results: Motivated by the above, we present a new frequency domain-based systematic analysis technique that
attempts to address the challenge of network assembly by defining a rigorous means to quantify the behaviour of
stochastic systems. As our focus we construct a novel coupled oscillatory model of p53, NF-kB and the mammalian
cell cycle, based on recent experimentally verified mathematical models. Informed by online databases of protein
networks and interactions, we distilled their key elements into simplified models containing the most significant
parts. Having coupled these systems, we constructed stochastic models for use in our frequency domain analysis.
We used our new technique to investigate the crosstalk between the components of our model and measure the
efficacy of certain network-based heuristic measures.

Conclusions: We find that the interactions between the networks we study are highly complex and not intuitive:
(i) points of maximum perturbation do not necessarily correspond to points of maximum proximity to influence;
(ii) increased coupling strength does not necessarily increase perturbation; (iii) different perturbations do not
necessarily sum and (iv) overall, susceptibility to perturbation is amplitude and frequency dependent and cannot
easily be predicted by heuristic measures.
Our methodology is particularly relevant for oscillatory systems, though not limited to these, and is most revealing
when applied to the results of stochastic simulation. The technique is able to characterise precisely the distance in
behaviour between different models, different systems and different parts within the same system. It can also
measure the difference between different simulation algorithms used on the same system and can be used to
inform the choice of dynamic parameters. By measuring crosstalk between subsystems it can also indicate
mechanisms by which such systems may be controlled in experiments and therapeutics. We have thus found our
technique of frequency domain analysis to be a valuable benchmark systems-biological tool.

* Correspondence: sean.sedwards@inria.fr
† Contributed equally
2INRIA Rennes - Bretagne Atlantique Campus Universitaire de Beaulieu 35042
Rennes Cedex, France
Full list of author information is available at the end of the article

Ihekwaba and Sedwards BMC Systems Biology 2011, 5:203
http://www.biomedcentral.com/1752-0509/5/203

© 2011 Ihekwaba and Sedwards; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:sean.sedwards@inria.fr
http://creativecommons.org/licenses/by/2.0


Background
Introduction
Many problems related to systems biology remain com-
putationally hard (their difficulty increases exponentially
with instance size), meaning that a brute force computa-
tional approach will only be tractable for small instance
sizes. Despite apparently ever-increasing available com-
putational power, in order to take full advantage of
computational methods it is still necessary to apply
them judiciously. This means balancing the require-
ments of precision and accuracy and finding meaningful
abstractions which optimise them.
Representing signalling networks as dynamical systems

of interacting populations of molecules offers the tanta-
lising prospect of being able to predict the future beha-
viour of such networks by simulation. Precision in the
model is high, but such systems are critically dependent
on the accuracy of their parameters to produce valid
predictions of reality. For relatively small subsystems
(‘pathways’) it has nevertheless been possible to con-
struct mathematical models that adequately reproduce
the results of experiments, thus validating the model.
With many such dynamically modelled pathways avail-
able in the literature and databases, it thus seems plausi-
ble to combine them into larger models able to better
predict the behaviour of the whole system. This turns
out to be not so easy. Dynamical parameters optimised
in isolation and with respect to a particular set of
experimental conditions will not necessarily be optimal
in combination with other pathways. Moreover, the
assumptions of external substances in excess or at equi-
librium used to mathematically isolate the model may
mask complex mechanisms as yet unmodelled. Thus,
blindly re-connecting the disparate systems is not valid
and experimental validation of every combination of
pathways is impractical.
In order to take advantage of the vast repository of

accumulated data and the easy availability of computa-
tional power, we have devised an efficient systematic
approach that allows automatic analysis and verification
of large dynamical models in a meaningful way. Noting
that oscillatory behaviour is ubiquitous in biological sys-
tems, we present a new automated analysis technique
based on frequency domain analysis, able to measure pre-
cisely the behaviour (oscillatory or otherwise) of interact-
ing systems. To demonstrate the utility of this approach
we apply it to a novel coupled oscillatory model of p53,
NF-kB and the mammalian cell cycle. In what follows we
first describe the background to the modelling process
and explain our methodology in detail, we then present
and discuss our results and finally draw conclusions. An
additional file contains further background to the model-
ling and analysis process, plus detailed descriptions of the
models we have created.

Biological context
It is well-known that signalling pathways that govern
cellular death are of critical importance for normal tis-
sue development, homeostasis and function [1,2].
Many pathological implications are associated with
dysregulation of the delicate balance between cell life
and death. In mammalian cells, various signals, such as
hormones, cytokines, and cell-cell interfaces, elicit
changes at the gene expression levels, mediated by
inducible transcription factors that provide feedback
loops upon their signalling pathways. These feedback
genes, generally thought to functionally terminate the
signalling action of the transcription factor, create the
potential for the transcription factor activity to oscil-
late between active and inactive states over a period of
hours [3-6].
Oscillations are necessarily ubiquitous in biology and

are found, for example, in the pulse of the heart, the cir-
cadian rhythm, in the signal transduction that involves
adenosine 3’,5’-cyclic monophospate (cAMP) and in the
chemotaxis of Dictyostelium discoideum [7]. In the pre-
sent context it is important to note that oscillatory
behaviour is evident in the cell cycle, nuclear factor-�B
(NF-�B [3,8-10]) and p53 [4,11,12]). However, the pre-
cise significance of all such oscillations is still unclear;
how the cell uses oscillations to differentiate input con-
ditions and send specific signals to downstream genes
have been central questions in the study of signalling
pathways. This strongly motivates the need for an engi-
neering approach to quantify these effects in biological
systems exhibiting emergent oscillation.
In the literature, qualitative descriptions of the com-

ponents and mechanisms of oscillatory signalling sys-
tems have greatly improved our understanding of how
cells function and have given insights into their beha-
vioural properties, along with how to intervene thera-
peutically when such signals are mis-communicated
[13-15]. Theoretical studies have shown that many
important biological effects can be adequately modelled
as simple processes of information transfer on top of
assumptions of equilibrium concentrations of metabo-
lites and thus pathways have been successfully examined
in this fashion [13-15]. In reality, the architecture of sig-
nalling pathways is much more complex, involving time,
space and frequency. To account for the complex,
multi-dimensional behaviour now observed in experi-
ments, some simplifying assumptions (such as equili-
brium) can no longer be treated as valid and a greater
level of complexity must be considered [16-21]. It is this
paradigm shift and the demand for increased fidelity
and predictive accuracy of models that makes under-
standing signalling in general a challenging task and
that have made it necessary to include the many non-
linearities present in reality.
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Technical motivation
Full mathematical analysis of interesting biological systems
is usually impractical; the simplifications that are effective
for small systems are generally not scalable. Moreover, low
dimensional explanations of highly complex behaviour
seem to defeat the purpose of constructing large models.
For large systems we require a systematic approach, so
here we present an automated analysis technique based on
Fourier transformation of simulation traces. By transform-
ing the time series produced by stochastic simulations into
the frequency domain, it is possible to characterise mathe-
matically the behaviour of both oscillatory and non-oscilla-
tory systems over time. The use of stochastic models is
motivated by the presumption that the underlying
mechanism of molecular interactions is discrete and that
such models therefore more accurately represent reality.
As a consequence, our technique reveals more information
about the system than may be possible to extract from
deterministic simulations (i.e., the numerical solution of
differential equations); variance plays both qualitative and
quantitative roles. Improved computer hardware and the
development of simulation algorithms has made stochastic
simulation computationally viable: it is now usually possi-
ble to complete multiple parallel simulation runs of large
systems in a matter of minutes. Taking advantage of this,
we construct frequency spectra from multiple simulation
runs in order to characterise the average simulated beha-
viour. In contrast to deterministic simulations, these spec-
tra contain detailed (i.e., frequency and phase) information
about variance. Measures over these spectra may then be
used to quantify differences and similarities between dif-
ferent systems, different parts within a system, different
models of the same system or different simulation algo-
rithms etc. In the present investigation we use this techni-
que to analyse the crosstalk between linked oscillatory
systems and the effects of stochasticity. We do this by
measuring the differences between combinations of the
coupled and uncoupled systems and by measuring the dif-
ferences between stochastic and quasi-deterministic mod-
els (see Methods). The component subsystems have
different characteristic frequency ‘signatures’ that allow us
to identify which system(s) are responsible for a particular
perturbation, in addition to characterising its magnitude.

The model
To demonstrate the ideas and power of the proposed
method, we apply it to theoretical models of transcription
factors identified to play critical roles in cell differentia-
tion and cell death. Aberrant NF-�B (p50/p105, p52/
p100, RelA, c-Rel, RelB), best known for its role in
immune and inflammatory responses, is an active
growth- and division-promoting transcription factor [22].
By contrast, the activation of the p53 transcription factor
(a well-known tumour suppressor gene) in response to

DNA damage and hypoxia, transcribes a series of genes
that initiates cell cycle arrest, apoptosis or senescence,
eliminating clones of cells with DNA damage and the
resultant mutation. Thus the p53 response to its stress is
the opposite of the NF-�B response to infections or cyto-
kines. That is not to say that there is no overlap in the
functions of NF-�B- and p53-regulated genes. Under
appropriate stress signals the NF-�B have been shown to
initiate programmed cell death [23,24], while p53 initiates
the transcription of several cytokines [25]. In general,
however, these two systems respond to stress signals
using very different and often mutually exclusive tran-
scriptional mechanisms [26,27].
We have extended the chosen models to include their

involvement with the cell cycle. For example, an immune
response to a foreign organism results in the promotion of
the target gene cyclin D1; and a response to a high muta-
tion or error rate brought about by DNA damage results
in the transcriptional upregulation of target gene p21 via
p53 to initiate cell cycle arrest. Cyclin D1 promotes cell
cycle progression through G1-phase by forming active
holoenzymes with CDK (cyclin-dependent kinase) 4 and
CDK6. CDK4 and 6 phosphorylate the Rb (retinoblastoma
protein) [5,28] and cause Rb to release the E2F transcrip-
tion factor which can then activate genes essential for G1-
S transition and S-phase [29]. By contrast, association of
p21 with cyclin D-CDK4/6 inhibits Rb phosphorylation
and induces cell cycle arrest in G1. Through its negative
effects on various CDKs, p21 inhibits both the G1-to-S
and the G2-to-mitosis transitions. p21 also associates with
and inactivates E2F, leading to cell cycle arrest and cellular
senescence. Considering the deregulation of NF-�B and
p53 pathways, it is not surprising that an extensive cross-
talk between both pathways exists at various levels [30].

Methods
We are principally interested in the interactions of the
processes generating oscillation, so our approach is to
find simple models which nevertheless capture the funda-
mental characteristics of their oscillatory behaviour at a
mechanistic level. We considered published mathemati-
cal models of the IkB-NF-kB [8,10,31-35], mammalian
cell cycle [36] and p53-Mdm2 [4,11,37-40] systems that
describe their evolution in time. Our aim was then to
construct a simple, unified model that captures faithfully
the important elements of the original systems, including
stochasticity, thus facilitating efficient analysis and accu-
rate predictions.

Model creation
Models (networks) taken from the literature and data-
bases often contain elements not crucial to the observed
behaviour but included as the valid results of research
and experiments. With judicious pruning (see e.g. [41]
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chapter 6), such elements may be safely removed; in
addition to simplifying the task of simulating and ana-
lysing such networks, removing unimportant parts
reduces the possibility of over-fitting experimental data
when inferring dynamical parameters [42]. It is impor-
tant to note, however, that such simplification is not a
requirement of the frequency domain analysis we will
present below. The computational cost of our technique
tends to increase as a low order polynomial with respect
to system size (see below), while the cost of model crea-
tion (including, e.g., parameter estimation) tends to
scale exponentially. To generate our combined model,
we reduced experimentally validated models of the indi-
vidual pathways and linked them with plausible coupling
reactions. Traditionally for the NF-kB pathway, removal
of the other isoforms of the canonical IkB is a common
simplification in computational analysis of the pathway
[32,43,44], however it tends to overlook the fact that
IkBa negative feedback alone exaggerates oscillations.
To focus on the processes we were interested in, models
from [8,34] and [35] were chosen as our starting point,
with some specific parameter changes: rate values for
relevant reactions involved in the creation or destruction
of the IkB isoforms were averaged or summed (as
applicable to the parameters being changed), so that
only one IkB isoform was utilized in the end. Since the
inhibitors have been shown to maintain the dynamic -
oscillatory - behaviour observed for the NF-kB pathway
[10,31,34,45,46], all rate equations governing their reac-
tions have been taken into consideration as the system
is reduced. Since current knowledge of the p53 system
is incomplete, we analysed the simplest consistent
model, combining features of [11] and [40], where the
assumption is that a protein downstream of p53 inhibits
a signalling protein that is upstream of p53 (elements of
which could be, e.g., phosphorylated ATM) which may
or may not undergo oscillatory dynamics. This assump-
tion was inspired by the observation that phosphorylated
ATM, an upstream regulator of p53 [47], responded to
double-stranded DNA breaks (DSBs), showing a pulse of
activity [48,49]. The model (VI of [4]) uses two negative
feedback loops, one direct feedback and one longer loop
that impinges on an upstream regulator of p53.
For their involvement with the cell cycle, the two path-

ways were connected via components whose regulation is
activated by one pathway but coupled to substrates
belonging to the G1/S phase of the cell cycle network.
Such components are the promoter activity of cyclin D1
molecules (a protein required for cell cycle progression
from the G1 phase to S phase) that have been shown to
be activated by NF-kB transcription factor [50,51];, the
p21 molecules (an inhibitor of the G1/S progression pro-
tein) activated by p53 molecules, and finally the p14-ARF
(a cell cycle protein) known to inhibit Mdm2 activity.

Stochastic modelling
In designing the linked systems, both deterministic and
stochastic methods were utilized. Up-to-date models were
taken from the literature in the form of ordinary and delay
differential equations. Links were hypothesised based on a
literature search and the models were simplified and para-
meterised using the assumptions outlined above and in
Additional file 1. To validate our simplifications, determi-
nistic simulations were performed to verify that the key
behavioural characteristics of amplitude and period of
oscillation were consistent (better than ± 5%) with those
of the original, experimentally verified, models. Further
simulations were performed to verify that the behaviour of
the coupled models was equally consistent. The models
were then converted into quasi-deterministic and fully sto-
chastic forms for simulation using the method of arbitrary
partial propensities (MAPP [52]), an ‘exact’ variant of the
Gillespie direct method [53]. In the case of the quasi-
deterministic models, the transformation is essentially a
conversion of the ordinary differential equations (ODE)
from continuous concentrations into discrete numbers of
molecules. Although in theory our frequency domain ana-
lysis also works with fully deterministic simulations, deter-
ministic spectra contain no information about variance (so
are uninteresting from our point of view) and often con-
tain arbitrary artefacts arising from the practical limits of
numerical precision (ODEs assume infinite precision) and
the adaptive nature (variable internal time steps) of
numerical solvers. The inherently ‘spiky’ nature of these
spectra potentially make measurements more fragile in
comparison to those of stochastic spectra. Additional file 1
Figure S7B illustrates the spikiness of a deterministic spec-
trum and its relationship to non-deterministic spectra of
corresponding stochastic and quasi-deterministic models.
To discretise both the quasi-deterministic and stochastic
models the initial concentrations were multiplied by a
constant (denoted alpha) having units of l mol-1 that was
also used to transform the rate constants (see Additional
file 1 supplementary methods for details). To create the
fully stochastic models, the terms of the differential equa-
tions were separated to form elemental reactions of the
form A + B ® C + D, using mass action kinetics. Note
that three of the reactions of the p53 system, one of the
NF-�B system and the coupling between the NF-�B and
the cell cycle systems employ kinetics that are not mass
action and are converted to reactions with parameters that
respect their specific kinetic functions. While it may be
desirable to reduce the entire system to elemental reac-
tions in order to preserve the physical assumptions made
by the stochastic simulation algorithm [53], this is not
necessary from the point of view of our analysis. Indeed,
the questions raised by not using elemental reactions may
be answered by our technique and motivates the inclusion
here of quasi-deterministic versions of our models. It is
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important to note, however, that our conversion proce-
dure guarantees that for any specified initial state, the
instantaneous magnitude and direction of the average rate
of leaving the state in the stochastic and quasi-determinis-
tic models is identical (allowing for the change from con-
centration to numbers of molecules) to that of the
deterministic model. The subsequent traces would, of
course, be different, but by maintaining local consistency
we are justified in re-using the dynamical parameters of
the original models.

Stochastic simulation
Simulation is a very simple means to get an idea of the
behaviour of a dynamical system. In a deterministic frame-
work the evolution of concentration in time produced by
numerically solving a set of ODEs is a direct characterisa-
tion of its average behaviour, but individual stochastic
simulation traces may be quite different from one another.
There is often an intuitive notion of average behaviour,
apparently related to the solution of the corresponding
ODE, but this is merely coincidental. Since such an ODE
defines the behaviour of the stochastic system taken to the
thermodynamic limit [54], it is not in general the average
of the stochastic process. Importantly, the noise in sto-
chastic simulations is not merely superimposed on an
underlying deterministic trajectory, but is created by the
mechanism of the system and is therefore intrinsic to the
trajectory. Additional file 1 Figure S7B illustrates the sig-
nificant differences between deterministic and stochastic
models constructed from the same reactions and kinetic
parameters.
The stochastic models we consider here are governed by

the chemical master equation (CME, see e.g. [54]), which
is a linear differential equation that describes the evolution
in time of the probability of the system being in any parti-
cular state, considering all possible evolutions from the
initial state. It is possible to solve the CME numerically
and thus obtain the distribution of values that a molecular
species may assume at a given time point. Such a distribu-
tion is with respect to all evolutions and does not consider
how an individual trajectory may have arrived at a particu-
lar value (there will likely be multiple routes, via multiple
sequences of reactions). Causality is lost. Solving the CME
is therefore not useful in describing oscillatory behaviour:
neither the oscillations nor their properties may be evident
in the resultant distributions.
Thus, while the choice of a discrete stochastic frame-

work offers the potential to investigate chemically react-
ing biological systems in the most precise way, in order
to draw general conclusions about a model’s behaviour
from stochastic simulations it is necessary to characterise
some kind of average trajectory that preserves the beha-
viour. Averaging the time series of multiple stochastic
simulation runs, however, does not produce an average

trajectory: the amount of a molecular species at a given
time point in different simulation runs is a random vari-
able, the distribution of which being defined by the CME.
The consequence of this is that averaged oscillatory beha-
viour of stochastic time series tends to disappear with
increasing time because as time progresses the system is
less likely to be in a unique state. This is illustrated in
Additional file 1 Figure S7A, where it is clear that beha-
vioural information is progressively lost to the averaging
process. By considering the average frequency spectra,
however, we avoid this limitation and can take full advan-
tage of the information contained in the stochastic traces.

Statistical measures over frequency spectra
We make multiple simulation runs (100 for the pre-
sented results), having identical initial conditions and
length of simulated time, and the resulting time series
are converted to complex frequency spectra using the
discrete Fourier transformation (DFT):

fω =
N−1∑
n=0

xne
−

2iωn
N (1)

fω is the ωth frequency component (of a total of N)
and xn is the nth (of N) time sample of a given molecu-
lar species. In practice, this will be achieved efficiently
by using a standard Fast Fourier Transform (FFT) algo-
rithm. Stochastic simulations resulting from a variant of
the Gillespie algorithm [53], as used in our investiga-
tions (MAPP [52]), produce time series having irregular
time spacing between points. Hence, to apply Equation
(1), which assumes constant time steps, it is necessary
to sample the stochastic time series at regular time
intervals. The method adopted is to calculate xn = xt |
max(t ≤ n δt), where xt is the simulation point having
value x at time t and δt is the desired sampling time
step. Intuitively, this formula gives the last value
recorded prior or equal to the required sample time.
The combination of N and δt define the overall time
that the system is observed (Nδt), the frequency resolu-
tion ((Nδt)-1), and the maximum observable frequency
((2δt)-1). To maximise the range and the precision of the
analysis it is generally desirable to have large N and
small δt, however these must be optimised with respect
to the phenomena being investigated; in addition to the
computational cost of excessive range and precision,
there may also be an unforeseen loss of resolution. A
reasonable lower bound of δt might seem to be the time
of the shortest individual reaction event found in the
time courses, however this is often excessively short,
extending the frequency spectrum orders of magnitude
above the interesting phenomena. Similarly, lengthening
the overall simulation time, thus increasing N and the
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low frequency resolution of the analysis, may allow parts
of the system to demonstrate atypical or uninteresting
behaviour. The potential consequence is that the quanti-
tative significance of the interesting phenomena are
reduced in the resulting frequency spectra, reducing the
sensitivity of the technique. For the results presented
here, values of N = 4000 and δt = 1 minute were cho-
sen, corresponding to a frequency resolution of 0.00025
cycles per minute and a maximum observable frequency
of 0.5 cycles per minute.
The result of the DFT is N complex numbers per

simulation run, containing real and imaginary parts
(equivalently, amplitude [Equation 2] and phase
[arctan(f �

ω /f �
ω ) ]) for each of the N frequencies. Since

these frequencies correspond exactly between runs (by
virtue of the sampling), the data can be combined to
give an average distribution. Note, however, that it is
not sufficient to simply find the mean of the complex
spectra. Since the DFT is a linear transformation, aver-
aging the Fourier-transformed time series is equivalent
to performing a Fourier transformation on the average
of the time series. The result would suffer the same loss
of behavioural information described above and illu-
strated in Additional file 1 Figure S7A. We overcome
this problem by finding the mean of the amplitudes of
the spectral data, where the amplitudes are given by:

f̂ω =
√

(f �
ω )2 + (f �

ω )2 (2)

f̂ω is the ωth component of the amplitude spectrum,

f �
ω

and f �
ω
are the real and imaginary parts of fω, the ωth

component of the complex spectrum resulting from
Equation (1). The average amplitude spectrum is then
defined:

f̃ω =
1
K

K∑
i

f̂ω,i (3)

K is the number of simulation runs, f̃ω is the ωth

component of the average amplitude spectrum, f̂ω,i is

the ωth component of the amplitude spectrum from the
ith simulation run. By thus discarding the average phase
information (noting that amplitude and phase are not
independent in models of this kind and that phase infor-
mation encapsulating the causality of individual traces is
thus contained in the individual amplitude spectra), it is
possible to reveal the average oscillatory behaviour in an
intuitive way. We have found the average phase infor-
mation to be less informative (highly stochastic, with no
apparent coherence), although it can be examined inde-
pendently, if required.

The spectra created in this way form distributions
which tend to characterise the observed behaviour in a
compact, informative form. Although the frequency
spectra contain as many points as a single simulation
run and may also contain noise, the processes of trans-
formation and averaging serve to resolve and elucidate
the characteristic behaviour. Moreover, we are then able
to measure and compare the spectra so produced. In
particular, we use a discrete space version of the Kolmo-
gorov-Smirnov (K-S) statistic [55] as a measure of simi-
larity between distributions:

D = max(|F1
N − F2

N|) (4)

F1
N and F2

N are cumulative probability distributions of

two frequency amplitude spectra ( f̃ from Equation (3))

containing N elements. D is then a value in the interval
[0, 1], where 0 corresponds to identical distributions.
Our choice of this measure is based on the facts that its
convergence characteristics are well understood, it has
good discriminatory power and its calculation is effi-
cient. The K-S statistic (resulting from a K-S test) is
usually implemented in mathematical software as a
function which takes the amplitude spectra directly as
arguments. Note that to quantify the influence one spe-
cies has on another it might be more appropriate to use
information-theoretic measures such as mutual informa-
tion or cross entropy.
The following procedure is used to generate average

frequency spectra to characterise a set of simulations for
the purpose of visual comparison or analysis of
stochasticity.
Procedure A:

1. Perform a number of simulation runs which are
long enough to demonstrate a phenomenon of
interest.
2. Generate average frequency amplitude spectra for
each molecular species:

a. Sample each simulation trace according to N
and δt, chosen to suit the interesting phenom-
enon, and calculate a frequency amplitude spec-
trum based on Equations (1) and (2) using an
FFT algorithm.
b. Calculate term-wise means of the amplitude
spectra according to Equation (3).

3. Iterate 1 and 2, adding new simulations to the
average as necessary (e.g., until the average spectra
are sufficiently free of noise).

The following procedure is used to measure the differ-
ence between alternative systems or alternative simula-
tion algorithms.
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Procedure B:

1. Perform a number of pairs of simulation runs,
where

a. each pair comprises the two alternative sys-
tems/algorithms and
b. the number of runs is designed to take an
acceptable amount of time.

2. Generate average frequency amplitude spectra for
each molecular species of the alternative systems/
algorithms, as per Procedure A 2a and 2b.
3. For each molecular species of interest, calculate D
according to Equation (4) applied to its average
amplitude spectra from the alternative systems/algo-
rithms, using a K-S test.
4. Iterate 1-3, adding new simulations to calculate D,
until all Ds are known with sufficient precision.

The number of simulation runs required (K in Equa-
tion (3)) is dependent on the inherent stochasticity of
the systems under consideration and the resolution
required. Insufficient simulation runs produce average
distributions whose noise may obscure subtle differences
in D. Informally, the number of simulations may be con-
sidered sufficient when the average spectra look smooth
or when adding further simulations does not alter the
order of the calculated values of D above some desired
resolution threshold. In the present investigation, 100
runs reliably resolved differences in D of 0.05. For mod-
els which have a prohibitive computational cost of simu-
lation it may be desirable to formalise the criteria for
additional simulation runs to avoid unnecessary compu-
tation. One criterion might be to set a minimum accep-
table coefficient of variation for spectral component

means ( f̃ω ). Alternatively, a sequential hypothesis test

[56] could be used as the stopping criterion in Proce-
dure B. The idea would be to set the supposed pair-wise
order of various Ds as null hypotheses and define
desired probabilities of falsely rejecting a null hypothesis
or falsely accepting the alternative. Each iteration would
either confirm or reject the hypotheses, until the stop-
ping rule indicates that the result is known with suffi-
cient confidence. See [56] for details.

Efficiency
Our analysis methodology scales efficiently with respect to
model size (number of different molecular species), espe-
cially in comparison to numerical techniques for finding
the probability distribution of states in Markov chains (the
mathematical structure underlying our stochastic models)
[57]. Since the state space scales exponentially with model
size, such techniques rapidly become intractable. More-
over, expressing properties of behaviour in terms of

frequency using these techniques is cumbersome at best.
Statistical approaches based on the same measures, but
which circumvent enumerating the state space by using
simulation, suffer the same limitation when expressing fre-
quency. The principal computational cost of our technique
is the simulation runs: the DFT is performed by a standard
Fast Fourier Transform (FFT) algorithm on only a small
subset of points from each simulation trace. The size of
this subset is essentially independent of the number of
molecules and reactions in the system and is only related
to the bandwidth of the phenomena being compared. The
length of a simulation run is the total number of reaction
events that take place. In a system comprising isolated
subsystems, the total number of reaction events is the sum
of the reaction events in each subsystem - linear scaling.
In a system where the subsystems are coupled, additional
reaction events take place when the subsystems interact. If
such reactions apply to just a few coupling species and the
behaviour of the subsystems does not change radically (as
in the present investigation), the overall effect of coupling
on efficiency is minimal. Under other circumstances, the
increase in computational cost still only scales with a low
order polynomial.

Results and discussion
Our crosstalk experiment considers the vector of change
comprising the changes in behaviour of molecular spe-
cies in the cell cycle resulting from connection to the
NF-�B and p53 systems, relative to their behaviour
when the external systems are not connected. Precise
details of the models we constructed are given in Addi-
tional file 1, while Figure 1 contains a diagrammatic
representation of the fully coupled system.
We applied Procedure B (Methods) with pairs of K =

100 simulation runs to calculate values of D (Equation
(4)) for every species in the cell cycle model; for the cell
cycle coupled to the p53 pathway alone, the cell cycle
coupled to the NF-�B pathway alone and the cell cycle
coupled to both. The numerical values are tabulated in
Additional file 1 Table S1 and illustrated in Figure 2. In
what follows we use the term perturbation to mean these
values and equivalently refer to perturbation by p53a and
NF-�Bn, since p53a and NF-�Bn are the molecular spe-
cies which link the respective systems to the cell cycle in
our model. In order to validate our choice of parameters
for the coupling reactions we also investigated the effects
of double and ten times increased coupling strength. The
results of this are tabulated in Additional file 1 Tables S2
and S3 and illustrated in Additional file 1 Figures S1 - S6.
Figure 2A illustrates the effect on the cell cycle by

p53a alone. We see that p21 is strongly perturbed, as we
might expect given that it is directly influenced by p53a,
and that some of the species directly influenced by p21
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are also moderately or strongly perturbed. Less intui-
tively, we see that some species directly influenced by
p21 are only weakly perturbed (CycE-CDK2, CycD-
CDK4/6), while other species indirectly connected are
strongly perturbed. The effect of NF-�Bn (Figure 2B) is
even less intuitive. The species directly influenced by
NF-�Bn (CycD) is only weakly perturbed, while species
as far as five steps away in the network (i.e., CycA,
CycE) are moderately perturbed. With simultaneous
influence by both p53a and NF-�Bn (Figure 2C) the pat-
tern of perturbation broadly follows that expected by
combining the individual cases. Note, however, that
CycA and CycE (moderately perturbed at a distance of
five steps from NF-�Bn) are less perturbed in the full sys-
tem. The level of perturbation is apparently dependent

on how the perturbed species ‘resonates’ with the pertur-
bation and is therefore both amplitude and frequency
dependent. Moreover, we see that the magnitude of per-
turbation is not in general cumulative.
Previous work [52] has shown that the technique of fre-

quency domain analysis applied here is especially revealing
when applied to stochastic simulation traces; the variance
found in reality being absent in deterministic simulations.
While most of our results therefore concern stochastic
simulations, we duplicated many of our experiments using
quasi-deterministic models and used the presented techni-
que of frequency domain analysis to investigate the differ-
ences. The quasi-deterministic models are constructed
from exactly the same reaction scheme and kinetic para-
meters, however the kinetic functions for production and

Figure 1 Coupled model of cell cycle G1/S phase, p53 and NF-�B. Diagram showing the complete model described in the text, illustrating
how molecular species influence those to which they are connected by reactions. A complete mathematical description of the model is given
in Additional file 1.

Ihekwaba and Sedwards BMC Systems Biology 2011, 5:203
http://www.biomedcentral.com/1752-0509/5/203

Page 8 of 15



Figure 2 Perturbation of cell cycle components by p53a and NF-�Bn. Diagrams illustrate the quantitative influence of external oscillatory
networks (not depicted) on cell cycle components (the nodes). White nodes are most perturbed, black nodes least (values in Additional file 1
Table S1). Arrows denote direction and nature of influence. A Perturbation by p53a. B Perturbation by NF-�Bn. C Perturbation by simultaneous
influence of p53a and NF-�Bn.
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consumption of a particular species are combined in a sin-
gle, resultant, function, as in the case of deterministic
simulations (see Additional file 1 supplementary methods).
This function is then simulated stochastically (hence
quasi-deterministic), but produces much less stochasticity
than the reaction-based model. By maintaining the same
discrete state space and simulation framework between
the two types of models, it is possible to resolve the effects
of stochasticity more clearly and avoid the artefacts some-
times created by deterministic solvers. Moreover, we are
able to visualise and quantify the often cited ‘inaccuracy’
of not converting systems to elemental reactions. The arte-
facts of deterministic solvers and the relationship between
deterministic, quasi-deterministic and stochastic simula-
tions are illustrated in Additional file 1 Figure S7B.
Figure 3A shows time and frequency domain represen-

tations of p53a and NF-�Bn in the fully stochastic model.
For comparison, the time series of NF-�Bn in the quasi-
deterministic model is also shown in the left hand panel
(black). Note the order of magnitude difference in scales
for the two molecules. p53a has greater amplitude and a
primary oscillatory mode approximately five times slower
than that of NF-�Bn. While stochasticity is minimal in
these species, the stochastic model of NF-�Bn has quali-
tatively different behaviour to the quasi-deterministic
model from about 500 minutes onwards; whereas oscilla-
tions die out in the quasi-deterministic model, they
apparently continue in the stochastic model. We specu-
late that this is due to the system being neutrally stable at
this point and the stochastic noise ‘re-ignites’ the oscilla-
tory behaviour. The corresponding frequency spectra
(Figure 3A, right panel) are shown on a logarithmic scale
to reveal more detail at higher frequencies. Note that the
primary oscillatory mode of p53a, at around 0.002 cycles
per minute, is similar in magnitude to the peak corre-
sponding to its initial transient near zero. By contrast, the
principal oscillatory mode of NF-�Bn, at about 0.01
cycles per minute, is an order of magnitude lower than
the peak corresponding to its transient. This perhaps
explains why we find that the oscillatory mode of NF-
�Bn is less apparent in those species of the cell cycle that
it perturbs, with or without the presence of the p53 sys-
tem. This is illustrated in the right panel of Figure 3A,
which shows the average spectrum of E2F-Rbpp when
strongly perturbed by NF-�Bn alone: there is no evidence
of the characteristic oscillatory signature of NF-�Bn.
Figure 3B shows the effect of p53a on p21 in the fully

coupled model in the time and frequency domains. In the
time domain (left panel), the initial transient peak at
around 1000 minutes in the isolated cell cycle is amplified
considerably in the coupled model and the oscillatory fre-
quency of p53a is clearly visible. In the frequency domain,
the initial transient is represented by the peak near zero
(which extends beyond the axes in the case of the coupled

model), while the characteristic harmonic peaks of the
oscillation of p53a appear higher up in the frequency spec-
trum of p21.
Figure 3C shows the effect of stochasticity on CycE-

CDK2-p21 in the quasi-deterministic and fully stochastic
models. In the time domain there is no apparent structure
to the noise evident on the red curve (fully stochastic),
noting that the black curve (quasi-deterministic) has much
less noise. In the frequency domain, the noise manifests
itself as an apparently constant value added to the spec-
trum of the quasi-deterministic spectrum above about
0.003 cycles per minute. Due in part to the generally large
numbers of molecules in the three sub-networks that
comprise the system, stochasticity does not appear to play
a significant role in our findings. Note in particular from
Additional file 1 Table S4 that the two species that directly
perturb the cell cycle (namely p53a and NF-�Bn) have low
stochasticity, so any noise inherent in their respective net-
works does not propagate to the cell cycle. Some molecu-
lar species of the cell cycle, such as CycE-CDK2-p21, do
indeed remain in low copy number and show significant
stochasticity; however, due to the structure (e.g. negative
feedback) and parameters of the network, their influence
on overall behaviour is minimal. The effects of stochasti-
city on individual species are tabulated in Additional file 1
Table S4.
It is immediately apparent from our results that the

nature of crosstalk is at times counter-intuitive in terms
of causality. For example, the species directly influenced
by NF-�Bn is only weakly perturbed while the point of
maximum perturbation is three steps away from NF-�Bn.
Such phenomena are perhaps to be expected in coupled
non-linear dynamical systems. Nevertheless, we wished
to investigate whether there is in fact a simpler explana-
tion of crosstalk, based on network topology, that can be
inferred without simulation. In Figures 1 and 2 the nodes
are linked by lines indicating the direction and nature
(positive or negative) of the influence one species has on
another. In general, species A has a positive influence on
species B when A is a substrate or enzyme for the pro-
duction of species B: the more A that exists, the more B
is produced. Species A has a negative influence on spe-
cies B when B is consumed in a reaction and A is either
an enzyme or substrate in the same reaction: the more A
that exists, the more B is consumed. Using this network
abstraction we evaluated the correlation between the dis-
tance from the source of influence to each species in the
network and the crosstalk measured using our frequency
domain analysis technique. Figure 4 charts the results
considering the minimum distance (the minimum num-
ber of steps in the network) and the weighted distance
(combining the effects of all possible paths, weighted
inversely proportional to their length). Figure 4A shows
that the relatively simple measure of minimum distance
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Figure 3 Time and frequency domain representations of the behaviour of NF-�Bn, p53a, p21 and CycE-CDK2-p21. Individual time
courses (left) and average frequency spectra (right). A Left panel: time courses of stochastically simulated NF-�Bn (red) and p53a (blue). Quasi-
deterministic time courses superimposed in black. Right panel: average frequency spectra of NF-�Bn (red), p53a (blue) and E2F-Rbpp perturbed
by NF-�Bn alone (black). B Evidence of crosstalk in time (left) and frequency domain (right) of p21 in the fully coupled network (red), in
comparison to the isolated cell cycle (black). C Stochasticity in time (left) and frequency domain (right) of CycE-CDK2-p21 in isolated cell cycle,
using quasi-deterministic (black) and fully stochastic models (red).
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(black) is apparently able to adequately characterise the
measured perturbation caused by connecting the cell
cycle to the p53 system. By contrast, Figure 4C demon-
strates that the minimum distance is a completely inade-
quate model of the perturbation caused by the NF-�B
system; the corresponding coefficient of determination
(R2) value of 0 indicates that the minimum distance has
no predictive power in this case (R2 = 1 being perfect).
By including the influence of all possible paths between
NF-�Bn and cell cycle species the predictive power of the
model improves (red). In the case of influence by p53a
(Figure 3A), however, considering all paths actually
reduces the predictive power of the model (R2 = 0.145 vs.
R2 = 0.4). In the fully coupled model (Figure 4B) we
observe a similar diminution; considering all paths has
only weak predictive power.
Thus the prediction afforded by the minimum distance

may at times appear to be good but at other times is com-
pletely erroneous, while the weighted sum of paths gives
an overall weak performance. These results clearly indicate
the dangers of using heuristics without validation by a reli-
able benchmark. We also considered (but do not show)
weighted distances incorporating the nature (positive or
negative) of interactions, such that the length of any path
is taken to be either positive or negative depending on the
cumulative nature of the individual steps along it. Despite
this additional information, however, we found that this
was less satisfactory than when we excluded such phase
considerations. Since the rates of reactions and the con-
centrations of species may effectively (and dynamically)
alter the topology of the network, it is not surprising that

it is difficult to encapsulate the subtle non-linear fre-
quency-dependent interplay when these are excluded.

Conclusions
A key challenge of systems biology is to assemble the dis-
parate information gathered over years of experimentation
and research into a coherent whole. To avoid the intract-
able computational cost of re-parameterising existing
models, heuristic techniques, such as those of network
analysis, may be employed to simplify the task. To evaluate
the performance of these heuristics and verify what is cre-
ated, efficient, meaningful, high resolution analytic techni-
ques must be developed. This document presents one
such: a systematic technique for characterising behaviour
and for measuring the interactions and connections
between and within signal transduction pathways using
frequency domain analysis. We have constructed a novel
dynamical model of communicating oscillatory networks
of p53, NF-�B and the G1/S phase of the cell cycle and
have applied our technique to investigate it. In doing so,
our investigation has revealed complex counter-intuitive
dependencies and has demonstrated that the methodology
is reliable, precise and capable of distinguishing the effects
of multiple interactions.
As general conclusions for the model we have found

that (i) p21 and CycA-CDK2-p21 are the species most
strongly influenced by the p53 network and that the per-
turbation is primarily at the principal oscillatory frequency
of p53a and local to the perturbation; (ii) p21 and CycA-
CDK2-p21 are only weakly perturbed by the NF-�B net-
work; (iii) E2F-Rbpp is the species most strongly perturbed

Figure 4 Evaluation of network-based heuristics by frequency domain analysis. Correlation of minimum distance (black) and weighted
network distance (red) with measured perturbation of the cell cycle. A Perturbation by p53a. B Simultaneous perturbation by p53a and NF-�Bn.
C Perturbation by NF-�Bn. R2 is the coefficient of determination and indicates the ability of the heuristic to predict the measurement: R2 = 1 is
perfect; R2 = 0 shows no ability.
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by the NF-�B network and the perturbation is indirect and
from the low frequency transient of NF-�Bn, rather than
its higher frequency oscillations; (iv) increased coupling
strength tends to reinforce trends in crosstalk; however (v)
E2F-Rbpp is moderately perturbed by p53a with single
coupling strength, less perturbed with double strength
coupling and again moderately perturbed with ten times
coupling strength; (vi) species E2F-Rb, p16, Rb and Skp2
remain unperturbed for all combinations of perturbations
and coupling strengths. In the case of Skp2 this can be
immediately inferred from the topology; it is not influ-
enced by other species. We might also expect p16 to be
only weakly perturbed because it has both positive and
negative influence derived from a single species (CycD-
CDK4/6). Positive and negative influence do not in general
cancel each other (especially when the influence is at dif-
ferent frequencies) and we have shown that network
topology alone is an unreliable indicator of influence.
Quantifying in detail the extent to which molecular

species are robust or sensitive to perturbations poten-
tially indicates the mechanisms by which the system may
be manipulated in experiments and therapeutics. Strictly,
the dependencies we have discovered are features of the
models we have used, the simulation algorithm we have
chosen and the links we have hypothesised (the standard
modeller’s proviso). There are clearly many additional
interconnections with other pathways that we (and
others) have not yet modelled (the published models of
the systems we consider here are continually being
refined [58-66]), but given that the individual models
with which we started are experimentally validated and
of high quality, that we guarantee our conversion proce-
dure maintains their original properties while making
them more closely respect the underlying physical pro-
cesses and that our simulation algorithm is rigorous, it is
reasonable to assume that our results say something
about the real biological systems.
We have described how our methodology is efficient

with respect to the standard numerical techniques used
to investigate Markov chains and have observed that, in
addition, such techniques are cumbersome in describing
behaviour in comparison to ours. To add weight to these
claims and as a further demonstration of the utility of
our benchmark technique, we have shown the results of
investigating two network-based heuristics, finding that
they are not adequate in describing the complex fre-
quency-dependent interplay in our model and may give
misleading results. It is important to note here that our
methodology is a precise means of measuring and com-
paring simulation time series and that it has no obvious
inherent prejudice with respect to the type of model or
means of simulation. There are practical considerations,
relating to the efficacy and precision of numerical algo-
rithms, which make certain combinations of model and

simulation algorithm infeasible, but these considerations
are independent of our methodology. In our investigation
of the cell cycle - p53 - NF-�B system, we have used an
exact stochastic simulation algorithm, but have chosen to
investigate both a model which is, as far as possible,
reduced to elemental reactions (thus modelling the sup-
posed real physical process) and one which is essentially
a stochastic interpretation of the differential equations
(perhaps only weakly related to physics). While the quali-
tative differences between these two cases is clear, our
methodology is able to provide a quantification of the
differences and, importantly, can do so when the differ-
ences are not known a priori.
Our focus has been stochastic models, but there are

well-established techniques used to investigate the
dynamics of deterministic systems that can be seen as
potential alternatives to our methods (ignoring their fun-
damental limitation of not considering variance). Alge-
braic analysis tends to become infeasible for dynamical
systems of greater than five dimensions (unless there is
significant symmetry or possible simplification), hence
the principal deterministic analytic technique is simply to
numerically solve the set of differential equations that
describe the system, by simulating a trajectory in time
from some initial state. Phase plane analysis can reveal
the qualitative features in the state space (stable and
unstable fixed points etc.) which account for the
dynamics of systems with two dimensions or which can
be reasonably simplified to two dimensions. This repre-
sents a very small class of systems and such techniques
do not scale. Bifurcation analysis of a system may be
used to find the critical dependence of its equilibria and
fixed points (which define its dynamics) on parameters,
however this does not necessarily quantify or characterise
the typical behaviour of the system. Sensitivity analysis is
often used with deterministic models to identify their
most important parameters by quantifying the changes of
behaviour (according to some statistical model) with
respect to changes of the parameters. Such an approach
is not limited to deterministic systems and would, we
suggest, be more effective using our frequency domain-
based definition of behaviour. Overall, existing techni-
ques used on deterministic systems tend to be somewhat
ad hoc, depending on the intuition of the investigator,
and do not allow the convenient quantification of beha-
viour that our methodology provides.
Given the vast repository of individual models in the lit-

erature and in online databases that await combination
and validation, we have shown that our methods have
great potential for application in systems biology. We also
envisage further improvements and refinements to our
techniques. Biological systems often contain processes
working at orders of magnitude different scales of time
and size. Although transformation into the frequency
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domain has here proved to be both effective and intuitive,
in order to integrate and analyse large multi-scale systems,
we feel it may be efficacious to consider the more abstract
wavelet transformation.

Additional material

Additional file 1: Supplementary material. The supplementary material
contains supplementary results and methods, including details of the
mathematical models employed and other examples of the application
of frequency domain analysis.
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