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Abstract. Pulmonary hypertension (PH) is a life‑threatening 
cardiopulmonary condition caused by several pathogenic 
factors. All types of PH are characterized by the exces‑
sive proliferation of pulmonary artery endothelial cells and 
pulmonary artery smooth muscle cells, apoptosis resistance, 
pulmonary vascular remodeling, sustained elevated pulmo‑
nary arterial pressure, right heart failure and even death. 
Over the past decade, next generation sequencing, particularly 
RNA‑sequencing, has identified some long non‑coding RNAs 
(lncRNAs) that may act as regulators of cell differentiation, 
proliferation and apoptosis. Studies have shown that lncRNAs 
are closely associated with the development of several diseases, 
including cardiovascular diseases. In addition, a number of 
studies have reported that lncRNAs, including maternally 
expressed gene 3, metastasis‑associated lung adenocarcinoma 
transcript 1, taurine upregulated 1 and cancer susceptibility 
candidate 2, serve important roles in the pathogenesis of 
PH. Despite the development of novel drug treatments, the 
mortality rate of PH remains high with no evident downward 
trend. Therefore, certain lncRNAs may be considered as thera‑
peutic targets for the treatment of incurable PH. The present 
review summarizes the latest research on lncRNAs and PH, 
aiming to briefly describe PH‑associated lncRNAs and their 
mechanisms of action.
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1. Introduction

Pulmonary hypertension (PH). PH is a condition with 
relatively high morbidity and an annual global incidence of 
3‑10 cases per 1 million adults. In individuals >65 years of age 
the prevalence of PH is estimated to be as high as ~10%. The 
prognosis of PH is poor and the 5‑year survival rate in newly 
diagnosed patients is only 57% (1,2). The main symptoms 
of PH include progressive dyspnea during exercise, fatigue, 
including chest pain and syncope (3). However, patients with 
PH do not usually exhibit specific symptoms, which may 
result in delays in diagnosis, ranging from several months to 
years (4).

Regarding the pathogenesis of the disease, PH is clas‑
sified into the following five categories (4): i) pulmonary 
arterial hypertension (PAH); ii) left heart disease‑induced 
PH; iii) hypoxia‑ or lung disease‑induced PH; iv) chronic 
thromboembolic PH (CTEPH); and v) PH caused by unclear 
or multifactorial mechanisms. The pathogenesis of PH is 
very complex, and includes impaired angiogenesis, metabolic 
disorders, chronic inflammation, abnormal proliferation, and 
the resistance of pulmonary artery endothelial cells (PAECs) 
and pulmonary artery smooth muscle cells (PASMCs) to 
apoptosis (5). The abnormal proliferation of VSMCs is consid‑
ered to be the main cause of vascular remodeling. Under 
hypoxic conditions, abnormal PASMC proliferation promotes 
thickening of the media layer, pulmonary vasoconstriction 
and pulmonary vascular remodeling, which together result 
in sustained increased pulmonary artery pressure and right 
ventricular hypertrophy (6). Although several molecules and 
signaling pathways, including bone morphogenetic protein 
receptor type 2, platelet‑derived growth factor (PDGF), 
Rho/Rho‑associated coiled‑coil containing protein kinase, 
serotonin, endothelin, nitric oxide and NADPH oxidase, have 
been found to be involved in the pathogenesis of PH, others 
may as yet be unidentified (7‑9).

Despite significant progress in understanding the basic 
mechanisms of PH and the reduction in the number of 
PH‑associated hospitalizations that has occurred over the 
past few decades (10), PH remains an incurable disease 
with high treatment costs. In addition, an upward trend in 
hospitalization time with no significant decrease in mortality 
has been reported (11). Therefore, further clarification of 
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the pathophysiological mechanisms of PH is important for 
understanding the disease and developing novel treatments.

Long non‑coding RNAs (lncRNAs). Non‑coding RNAs 
(ncRNAs) were originally considered as ‘transcriptional 
noise’. However, in the past few decades, the roles of ncRNAs, 
including microRNAs (miRNAs) and lncRNAs, in normal 
physiology and disease pathology have been widely investi‑
gated, and ncRNAs have been reported to participate in cell 
homeostasis and disease processes (12). Several studies have 
confirmed the importance of ncRNAs as transcriptional 
regulators and further explored their potential molecular 
mechanisms, thereby demonstrating the vital role of ncRNAs 
in several biological processes (13). The development of 
next‑generation sequencing, particularly RNA‑sequencing 
(RNA‑seq), has led to the discovery of numerous lncRNAs 
for which biological functions have been identified (14). There 
is considerable evidence of associations between lncRNAs 
and the onset of diverse human diseases, including cancer, 
cardiovascular and neurodegenerative diseases. Abnormal and 
uncontrolled cell proliferation and migration, as well as an 
imbalance between cell growth and apoptosis are character‑
istic pathological changes of PH. Several studies on the roles 
of lncRNAs and their mechanisms of action in the regulation 
of PH pathogenesis have indicated that lncRNAs act as key 
regulators in the aforementioned biological changes.

lncRNAs are a class of ncRNAs >200 nucleotides in length 
that are synthesized by RNA polymerase II and subjected to 
post‑transcriptional processing, including capping, splicing and 
polyadenylation. The majority of lncRNAs are located in the 
cell nucleus, expressed at low levels and show poor sequence 
conservation (15). lncRNAs serve an important epigenetic 
role by acting as activators or repressors of gene transcription 
and mRNA translation, RNA stabilizers, miRNA precursors 
and sponges (16). In addition, the interaction of lncRNAs with 
RNA, DNA or proteins may promote or inhibit protein‑coding 
gene expression (17).

It is now recognized that lncRNAs regulate cell 
differentiation and apoptosis, chromatin remodeling and 
carcinogenesis at transcriptional and post‑transcriptional 
levels (18,19). In addition, lncRNAs are closely associated 
with hypoxic diseases, and their abnormal expression has been 
associated with different types of cancer and cardiovascular 
diseases (20‑22). For example, it has been reported that the 
lncRNAs Nkx2.1‑associated non‑coding intergenic RNA 
(NANCI) and growth arrest‑specific transcript 5 (GAS5) are 
associated with lung diseases (23,24). PH and cancer share 
some common features, such as excessive cell proliferation 
and apoptosis resistance (25), and it has been suggested that 
lncRNAs participate in the proliferation, apoptosis and cell 
cycle of PASMCs and PAECs in PH (26). PAECs, PASMCs 
and inflammatory cells contain lncRNAs, some of which 
serve important roles in the pathological process of PH and 
are of great significance in its occurrence and development. 
Abnormal levels of lncRNAs in the blood have been suggested 
to be a novel diagnostic marker for PH.

lncRNAs and miRNAs. miRNAs are single stranded RNA 
molecules that are ~22 nucleotides in length, and so are shorter 
than lncRNAs. miRNAs are derived from primary miRNAs, 

and when mature are mainly located in the cytoplasm. By 
contrast, lncRNAs are derived from different cells and are 
mainly localized in the cell nucleus (15).

miRNAs inhibit the translation of mRNA or promote its 
degradation to silence downstream gene expression through 
binding to the 3'untranslated region of the mRNA (27). 
Regarding the pathological mechanisms of PH, lncRNAs 
mainly act as miRNA sponges (28). Each miRNA has been 
reported to regulate the expression of >100 mRNAs (29). 
Studies using animal models of PH have shown that miRNA 
mimics or inhibitors may delay pulmonary vascular remod‑
eling to some extent and exhibit therapeutic effects by 
reducing pulmonary artery pressure and ameliorating right 
heart failure (30,31). In addition, clinical studies have iden‑
tified a variety of differentially expressed miRNAs in the 
peripheral blood of patients with PH, suggesting the diagnostic 
and prognostic value of miRNAs in PH (32). lncRNAs interact 
with miRNAs to regulate the expression and biological activi‑
ties of the miRNA, and also act as competitive endogenous 
RNAs by binding to miRNA, thereby inhibiting the ability of 
the miRNA to bind to its target genes (33). Thus, miRNAs 
are regulated by lncRNAs. These two types of RNA molecule 
complement and interact with each other to form a complex 
network of interactions in which lncRNAs act as miRNA 
sponges, some miRNAs are derived from lncRNAs while 
others degrade them, and lncRNAs and miRNAs both bind 
to mRNAs, indicating a competitive relationship between 
them (19,34).

2. lncRNAs and PH

Numerous studies have indicated that lncRNAs have essential 
roles in the occurrence and development of PH. Therefore, the 
present review summarizes the characteristics of lncRNAs 
that have been identified to be involved in the pathogenesis 
of PH.

Maternally expressed gene 3 (MEG3). The lncRNA MEG3 
is located on human chromosome 14q32 and is 1.6 kb in 
length. It acts as a tumor suppressor and has a vital role in 
several types of cancer, including breast, liver, gastrointestinal 
and lung cancer (35‑37). It has been reported that the down‑
regulation of MEG3 increases the sensitivity of lung cancer 
to cisplatin treatment (38,39). MEG3 also serves a key role in 
cardiovascular diseases and is involved in hypoxia, abnormally 
expressed in cardiac fibroblasts and downregulated during late 
cardiac remodeling (40). Furthermore, elevated MEG3 levels 
have been detected in vascular endothelial cells (41).

A study conducted by Piccoli et al (40) demonstrated that 
MEG3 was mainly localized in the cytoplasm of hypoxic 
PASMCs, and expressed at significantly increased levels in 
a hypoxia‑induced animal model of PH and PASMCs from 
idiopathic PH patients. The increased expression of MEG3 
was further confirmed in hypoxia‑induced human and mouse 
PASMC cell lines. Furthermore, fluorescence in situ hybrid‑
ization analysis revealed that MEG3 was primarily localized 
in PASMCs and the media layer of the vascular wall, and 
translocated to the cytoplasm when exposed to hypoxia. 
Additionally, the authors suggested that MEG3 associated 
with miR‑328‑3p to regulate multiple targets, particularly 
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insulin‑like growth factor 1 receptor (IGF1R), the upregulation 
of which further induced PASMC proliferation and pulmonary 
vascular remodeling (42). However, Zhu et al (43) demon‑
strated that MEG3 was downregulated in hypoxia‑induced 
human PASMCs (HPASMCs), and that the downregulation of 
MEG3 significantly promoted the proliferation and migration 
of PASMCs under both normal and hypoxic conditions. The 
underlying mechanism of MEG3 was suggested to involve a 
MEG3/miR‑21/PTEN axis. Similarly, a study by Sun et al (44) 
detected the downregulation of MEG3 in pulmonary arteries 
derived from PH patients and demonstrated that MEG3 
promoted PASMC proliferation and migration via the p53 
pathway.

In an animal model, experiments using a lung‑specific 
small interfering (siRNA)‑loaded liposomal delivery system 
demonstrated that hypoxic PH was significantly ameliorated 
when MEG3 was knocked down, as the right ventricle systolic 
pressure, right ventricular hypertrophy index and pulmo‑
nary artery pressure were relieved. These findings indicate 
the potential of MEG3 as a novel therapeutic target for the 
pharmaceutical treatment of PH (42).

Notably, the findings regarding MEG3 up‑ or downregula‑
tion in PH are not consistent in the aforementioned studies. 
This may be associated with differences in the distribution of 
MEG3 in cells, the time of measurement and study objects. 
Further research is needed to clarify the role of MEG3 in PH.

Hoxa cluster antisense RNA 3 (HOXA‑AS3). The HOX 
gene cluster is a group of highly homologous transcription 
factors (45). It has been reported that members of the HOXA 
cluster, namely HOTAIR and HOTTIP, regulate the prolif‑
eration of lung cancer cells (46). A study by Zhang et al (47) 
demonstrated that Hoxaas3, a member of the HOX gene 
cluster, was upregulated in hypoxia‑ and monocrotaline 
(MCT)‑induced PH models as well as in PASMCs isolated 
from patients with idiopathic PH. Furthermore, the knockdown 
of Hoxaas3 reduced the expression of proliferating cell nuclear 
antigen (PCNA), Ki‑67 and cyclins A, D and E in PASMCs, 
suggesting that Hoxaas3 promotes PASMC proliferation and 
accelerates the cell cycle. In addition, histone acetyltransferase 
p300 inhibitors downregulated Hoxaas3 expression under 
hypoxic conditions, suggesting histone acetyltransferase was 
involved in Hoxaas3 upregulation under hypoxia. Another 
study demonstrated that HOX genes are overexpressed in the 
lung tissues of patients with PH, suggesting that they may have 
an important role in endothelial cell proliferation and vascular 
remodeling (48). These studies provide new data that improve 
our understanding of the role of Hoxaas3 lncRNA in PASMC 
proliferation. However, further research is required to confirm 
the role of Hoxaas3 in patients with different clinical subtypes 
of PH.

MANTIS. In a study by Leisegang et al (49), exon array 
analyses were performed to investigate the effect of histone 
demethylase JARID1B knockdown on endothelial RNA 
expression. The expression levels of several lncRNAs were 
found to be significantly altered, including MANTIS which 
was significantly downregulated. The study also revealed that 
MANTIS lncRNA was downregulated in the lung tissues of 
patients with end‑stage idiopathic PH and in MCT‑induced rat 

models of PH, in which endothelial dysfunction and apoptosis 
serve important roles (49). MANTIS lncRNA has also been 
reported to be overexpressed during the regression of athero‑
sclerosis in high‑fat feeding monkeys restored to a normal 
diet (50). These findings indicate a novel and potent epigenetic 
regulatory mechanism for MANTIS in endothelial cells.

Taurine upregulated gene 1 (TUG1). TUG1 is a 7.1‑kb lncRNA 
that is expressed in the cytoplasm and nucleus of PASMCs (51). 
Studies have shown that TUG1 is involved in the regulation of 
protein and miRNA expression, serves an important role in 
the regulation of cell proliferation, apoptosis and chromatin 
remodeling, and is associated with hypoxia (52‑54).

TUG1 is a tumor suppressor gene that is highly conserved 
in mammals (55). Two studies have demonstrated that TUG1 
is upregulated in the pulmonary arteries of hypoxic PH 
mice and in hypoxic PASMCs, where it leads to pulmonary 
vascular remodeling via the regulation of PASMC prolifera‑
tion and apoptosis. In one study, Yang et al (56) reported that 
TUG1 knockdown downregulated Foxc1 expression through 
a TUG1/miR‑374c/Foxc1/Notch pathway. Furthermore, 
TUG1 knockdown inhibited the proliferation and migration 
of HPASMCs, promoted apoptosis and regulated pulmonary 
vascular remodeling via the regulation hypoxia‑inducible 
factor 1α (HIF‑1α) and vascular endothelial growth factor 
expression (57). In the other study, Wang et al (58) showed that 
TUG1 regulated the proliferation and cell cycle of ΗPASMCs 
by directly binding to miR‑328. However, whether TUG1 
also regulates PH via other mechanisms, such as phenotypic 
switch, endothelial‑to‑mesenchymal transition (EndMT), 
immunological dysregulation and inflammatory responses 
remains to be further clarified.

Metastasis‑associated lung adenocarcinoma transcript 1 
(MALAT1). MALAT1 is a highly conserved lncRNA involved 
in the pathogenesis of several types of cancer, including 
prostate, gastric and non‑small cell lung cancer (59,60). 
The expression of MALAT1 is significantly increased in 
hypoxia‑induced human endothelial cells and is involved in 
the phenotype switch of endothelial cells (41).

Brock et al (61) first reported that MALAT1 expression 
was significantly increased in hypoxic HPASMCs and the lung 
tissues of mice with hypoxia‑induced PH. They also demon‑
strated that MALAT1 promoted the proliferation and migration 
of PASMCs, and regulated their phenotype. Furthermore, 
MALAT1 knockdown was indicated to inhibit PASMC prolif‑
eration in vitro and cardiac hypertrophy in the mouse model 
via upregulation of the expression of cyclin‑dependent kinase 
inhibitors.

In addition to its role in PASMCs, MALAT1 also serves 
a vital role in PAECs. In one study, the downregulation of 
MALAT1 increased the migration of human umbilical vein 
endothelial cells (HUVECs) and slightly upregulated their 
apoptosis under hypoxic conditions. A microarray analysis 
performed to investigate the mechanism of MALAT1 indi‑
cated that cell cycle inhibitory genes were significantly 
increased in the HUVECs transfected with MALAT1 siRNA, 
suggesting that MALAT1 is involved in regulation of the cell 
cycle (41). MALAT1 has also been proposed to regulate the 
phenotypic transition of endothelial cells (62).
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A previous study has confirmed that MALAT1 binds to 
hsa‑miR‑124‑3p and the latter directly targets kruppel‑like 
factor 5 (63). Zhuo et al (64) conducted a case‑control study 
involving 587 patients with PH and 736 healthy individuals. 
The results showed that the MALAT1 gene rs619586 A>G 
polymorphism was significantly associated with increased 
PH risk. The study further demonstrated that MALAT1 acts 
as a competitive endogenous RNA for miR‑124 and thereby 
regulates X‑box binding protein 1 expression and participates 
in the pathogenesis of PH. Furthermore, MALAT1 was signifi‑
cantly increased in the pulmonary artery tissues and PASMCs 
of patients with PH (63). The knockdown of MALAT1 signifi‑
cantly decreased the proliferation and migration of PASMCs, 
and the expression levels of PCNA and cyclin in HPASMCs, 
suggesting that the mechanism of MALAT1 in PH involves 
modulation of the proliferation, migration and cell cycle of 
PASMCs. Furthermore, bioinformatics analysis and lucif‑
erase reporter assays confirmed that hsa‑miR‑124‑3p.1 was a 
downstream target of MALAT1.

In summary, there is considerable evidence that 
MALAT1 contributes to PH. MALAT1 is significantly 
differently expressed in hypoxia‑induced PAECs, PASMCs, 
hypoxia‑induced animal models and pulmonary arterial tissues 
isolated from patients with PH. MALAT1 gene polymorphism 
is also significantly associated with the risk of PH.

CPS1‑intronic transcript 1 (CPS1‑IT1). It has been 
documented that CPS1‑IT1 lncRNA is involved in the 
pathogenesis of lung cancer and other malignancies. In 
one study, the overexpression of CPS1‑IT1 in lung cancer 
cell lines restrained cell proliferation and migration, and 
induced cell apoptosis, indicating that CPS1‑IT1 has protec‑
tive effects on lung cancer. Therefore, it was suggested that 
CPS1‑IT1 may be used for the early diagnosis of lung cancer 
and could be applied as a targeted therapy (65). With regard 
to PH, a study found that CPS1‑IT expression levels were 
decreased in the pulmonary tissues of rats with obstructive 
sleep apnea‑induced PH. In addition, the overexpression of 
CPS1‑IT1 significantly alleviated pulmonary arterial remod‑
eling in the rat model. Analysis of the mechanism of action 
in vitro indicated that CPS1‑IT overexpression attenuated 
PH by downregulating interleukin (IL)‑1β via the inhibition 
of the nuclear factor κB (NF‑κB) signaling pathway and 
HIF‑1 transcriptional activity (66). However, further in vitro 
studies are required to clarify the cells in which CPS1‑IT1 
exerts biological functions, and research of CPS1‑IT1 in 
patients with PH is also necessary.

Cancer susceptibility candidate 2 (CASC2). The lncRNA 
CASC2 is a tumor suppressor gene, located on human 
chromosome 10 (67). CASC2 is closely associated with 
PH. CASC2 upregulation has been shown to inhibit 
cell proliferation and migration, promote apoptosis and 
ultimately suppress pulmonary artery remodeling. The 
contractile‑to‑synthetic phenotypic switching of PASMCs 
is vitally important for the biological processes associated 
with hypertension, atherosclerosis, PH and other cardio‑
vascular diseases (68). The upregulation of CASC2 has 
been demonstrated to reverse the phenotypic transition 
of PASMCs, thereby delaying the progression of PH (25). 

The specific mechanism of CASC2 in the regulation of PH, 
however, requires further exploration.

TCONS_00034812. Liu et al (26) performed a microarray 
analysis on the pulmonary arteries of rats with PH and found 
that the expression of TCONS_00034812 was 8.7881‑fold 
higher in the control rats compared with the rats with PH. 
Consistent with this, reverse transcription‑quantitative PCR 
(RT‑qPCR) demonstrated that TCONS_00034812 expression 
levels were 6.1‑fold higher in the controls compared with the 
rats with PH. In addition, TCONS_00034812 knockdown 
was demonstrated to promote the proliferation of PASMCs 
and inhibit their apoptosis. Gene Ontology (GO) analysis 
was also performed to identify potential target genes of 
TCONS_00034812. The results indicated that storkhead box 
1 (Stox1), Met and neurotrophin 3 were upregulated in PH and 
have an association with cell proliferation. The direct targeting 
of Stox1, a transcription factor of the expanded forkhead 
box gene family, by TCONS_00034812 was confirmed by 
RT‑qPCR analysis.

The mitogen‑activated protein kinase (MAPK) signaling 
pathway is important for cell survival and apoptosis (69) and is 
involved in pulmonary vascular remodeling (70). In PASMCs, 
TCONS_00034812 silencing activates the MAPK signaling 
pathway and thereby increases Stox1 expression, which in 
turn regulates PASMC proliferation and apoptosis, resulting 
in PH. Therefore, TCONS_00034812 may be a potential novel 
therapeutic target for PH (26).

H19. It is well documented that H19 serves a key role in tumor‑
igenesis and metastasis (71,72). In addition, H19 is involved 
in pathophysiological processes associated with hypoxia (73). 
A study demonstrated that the expression levels of H19 were 
5‑fold higher in the lung tissues of rats with MCT‑induced 
PH compared with those in healthy rats. H19 levels were also 
significantly increased in the serum of the MCT‑induced PH 
rats. The stimulation of PASMCs with different concentrations 
of IL‑1β and PDGF‑BB significantly increased H19 expression 
in a dose‑dependent manner. Furthermore, H19 upregulated 
angiotensin II (Ang II) type 1 receptor expression by sponging 
the miRNA let‑7b to regulate PASMC proliferation, resulting 
in PH. The knockout of H19 was demonstrated to protect 
mice from MCT‑induced pulmonary vascular remodeling and 
alleviate PH (74).

Melatonin has been indicated to have a therapeutic effect on 
PH, and may act via antiproliferative effects on PASMCs and 
anti‑inflammatory activity (75). Wang et al (76) suggested that 
H19 plays a significant role in the pathological process of PH 
through the miR‑675‑3p/IGF1R and miR‑200a/programmed 
cell death 4 (PDCD4) signaling pathways. In a rat model 
of MCT‑induced PH, melatonin treatment upregulated the 
expression of H19 and miR‑675‑3p and downregulated that 
of miR‑200a, resulting in increased PDCD4 and decreased 
IGFR1 expression. The differential expression levels of PDCD4 
and IGFR1 ultimately led to the apoptosis of PASMCs and 
inhibition of their proliferation, resulting in reduced vascular 
remodeling and PH.

Urothelial carcinoma associated 1 (UCA1). There is evidence 
to suggest that the lncRNA UCA1 is involved in the pathogenesis 
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of lung cancer (77,78). In addition, it has been reported that 
UCA1 is highly expressed in hypoxia‑induced HPASMCs 
and promotes cell proliferation under hypoxic conditions (79). 
By contrast, inhibitor of growth family 5 (ING5) promotes 
tumor cell apoptosis and inhibits tumor growth, thus playing a 
protective role in tumor development (80). ING5 also inhibits 
the proliferation and promotes the apoptosis of PASMCs. 
However, UCA1 competes with ING5 for binding to hetero‑
geneous ribonucleoprotein I (HnRNP I), which contains an 
RNA‑binding domain with mRNA splicing activity (61), thus 
decreasing ING5‑HnRNP I binding and promoting PASMC 
proliferation, pulmonary vascular remodeling and ultimately 
PH (79). Elevated UCA1 might aid in the diagnosis of PH, and 
targeting UCA1 may provide novel therapeutic approaches.

Lnc‑Ang362. Lnc‑Ang362 was first identified as a lncRNA 
that is differentially upregulated in Ang II‑induced VSMCs. 
It regulates cell proliferation and the expression of miR‑221 
and miR‑222 (81). In another study, lnc‑Ang362 was found 
to be abnormally elevated in the lung tissues of patients with 
PH. Furthermore, the overexpression of lnc‑Ang362 promoted 
HPASMC proliferation and migration, reduced apoptosis and 
was involved in the pathological process of PH. In addition, 
lnc‑Ang362 upregulated miR‑221 and miR‑222, thereby 
activating the NF‑κB signaling pathway (82). However, the 
expression of lnc‑Ang362 in PASMCs and PAECs induced by 
hypoxia requires further clarification.

lncRNA regulated by PDGF and transforming growth factor 
β (LnRPT). PDGF plays an important role in PASMC hyper‑
proliferation and pulmonary vascular remodeling (83). Using 
RNA sequencing, 95 differentially expressed lncRNAs were 
identified in PDGF‑BB‑induced rat PASMCs. These included 
LnRPT, the expression of which was significantly lower in rat 
PASMCs following PDGF‑BB treatment compared with that 
in the control PASMCs. Furthermore, LnRPT knockdown 
promoted PASMC proliferation (84). These results suggest 
that LnRPT participates in PH pathogenesis by inhibiting the 
proliferation of PASMCs.

The Notch receptor is a cell surface receptor responsible 
for cell signaling between adjacent cells (85). The Notch 
signaling pathway is also involved in the development of 
PH (86). In one study, RNA sequencing and RT‑qPCR assays 
demonstrated that the downregulation of LnRPT increased the 
expression of two important Notch signaling pathway genes, 
namely notch3 and jag1, and that inhibition of the Notch 
signaling pathway attenuated, to some extent, the proliferation 
of PASMCs. These findings indicate that LnRPT regulates 
the Notch signaling pathway and that PDGF‑BB participates 
in PH by affecting the expression of LnRPT. Furthermore, 
inhibition of phosphoinositide 3‑kinase (PI3K) diminished 
the PDGF‑BB‑induced downregulation of LnRPT, indicating 
that a PDGF‑BB/PI3K/LnRPT pathway participates in the 
pathological process of PH (84). However, the involvement of 
LnRPT in apoptosis and PAECs, and in animals and patients 
with PH require further investigation.

NONRATT015587.2. In addition to hypoglycemic effects, it has 
been reported that metformin has a vascular protective activity 
and may delay cell senescence (87). Studies have shown that 

metformin reverses hypoxia and has therapeutic effects in 
MCT‑induced PH (87,88). To elucidate the specific mecha‑
nisms of metformin, microarray analyses were performed to 
analyze the differential expression of lncRNAs and mRNAs. 
The results showed that NORNATT015587.2 was significantly 
increased in hypoxia‑induced PASMCs. It was also reported 
that NORNATT015587.2 promotes PASMC proliferation, 
inhibits apoptosis and affects pulmonary vascular remodeling. 
In addition, GO enrichment analysis, Kyoto Encyclopedia 
of Genes and Genomes pathway analysis and western 
blot assays verified that p53 and HIF‑1 participated in the 
NORNATT015587‑induced vascular remodeling (89). In vivo 
experiments and clinical research are required to verify 
whether NONRATT015587.2 is involved in PH.

Although RNA sequencing technology has identified large 
numbers of lncRNAs, and lncRNA has been indicated to 
perform key epigenetic modifications in PH, the role of lncRNA 
in PH requires further elucidation. The lncRNAs involved in 
the pathological process of PH reviewed in this article mainly 
exert an influence through regulating the proliferation, migra‑
tion and apoptosis of PAECs and PASMCs. A series of studies 
have shown that lncRNA can be involved in regulation of the 
phenotype switch of smooth muscle cells, which contributes 
to cell migration and proliferation (90). EndMT is involved 
in the occurrence and development of a variety of cardiovas‑
cular diseases, including PH. Three specific lncRNAs have 
been found to be associated with EndMT: MALAT1, GATA6 
antisense RNA and H19 (91). Immunological and inflam‑
matory disorders also play an important role. The activation 
and release of a variety of cellular inflammatory factors are 
involved in PH (92), but the roles of lncRNA in the regula‑
tion of the vascular inflammation associated with PH remain 
unclear. Therefore, in the future, researchers may investigate 
whether lncRNAs participate in the regulation of PH through 
phenotypic switch, EndMT and immunological effects and the 
specific mechanisms.

Translational potential of the reviewed lncRNAs. Numerous 
studies have shown that some ncRNAs, including lncRNA, have 
the potential to translate into proteins (93,94). Methodologies 
combining ribosome profiling and scoring schemes have been 
developed for the evaluation of lncRNA translation. When we 
used the Coding Potential Assessment Tool 2.0.0 (http://lilab.
research.bcm.edu/cpat/index.php) to determine whether or 
not specific lncRNAs have translational potential, the results 
indicated that only MANTIS and H19 have translational 
potential.

lncRNA and PH with dif ferent etiologies. PH can be 
divided into five categories according to its etiologies, as 
briefly summarized in the Introduction. Table I shows the 
underlying causes for each category (95). Basic research on 
lncRNA and PH is mostly based on hypoxia‑induced cell or 
animal models. However, only data obtained on lncRNAs 
identified from research using tissues from patients with PH 
are summarized in Table I. The study populations were all 
patients with PAH and CTEPH. No studies on lncRNAs in 
patients with the other three classes of PH were identified, 
which may be due to the small number of patients with these 
PH types. There have been few clinical studies on lncRNAs 
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in patients with PH, and the included populations are all 
patients with PAH (64,96,97).

lncRNAs and the pathological stages of PH. The patho‑
logical process of PH includes the following stages: PAEC 
dysregulation, EndMT, PASMC proliferation, migration 
and apoptosis, adventitial thickening of lexiform lesions 
and perivascular inflammation. At present, research on 
the pathological stages of PH in association with lncRNA 
expression has mainly focused on PASMC proliferation, 
migration and apoptosis, and PAEC dysfunction. However, 
no studies have been conducted on the association of 
lncRNAs with the adventitial thickness of plexiform lesions. 
The lncRNAs associated with each pathological stage are 
listed in Table II.

Therapeutic targets for lncRNAs in PH. lncRNAs have the 
potential to be used in combination with other PH‑treating 

drugs such as endothelin receptor antagonists, PDE‑5 
inhibitors and prostacyclin analogs as novel treatments for PH; 
however, no studies have yet been performed to investigate 
this. The use of a combination of lncRNA and PH‑treating 
drugs has the following theoretical basis: lncRNAs are stably 
expressed in the circulation and have the potential to be used as 
biomarkers, which is of great significance for the treatment of 
PH and judgement of the curative effect. Taking into account 
the tissue specificity of lncRNA, lncRNA‑based therapies 
should be tissue‑ and dose‑specific interventions. However, 
as of yet no clinical research has been conducted on targeted 
lncRNAs in the treatment of PH as a number of obstacles 
remain. First, lncRNAs are poorly conserved among different 
species, thus increasing the difficulty of drug development 
and clinical application. Second, the functions and underlying 
mechanisms of lncRNAs are significantly more complex and 
diverse than those of miRNAs (34). The use of siRNAs to 
silence the expression of target lncRNA is not always possible, 

Table I. Underlying causes of PH and their associated lncRNAs.

Classification Underlying cause Associated lncRNA (Refs.)

1. Pulmonary arterial hypertension PAXIP1‑AS1, MEG3, HypERlnc, (42,44,63,64,82,100,101)
  MALAT1, lncRNA‑Ang362
2. PH due to left heart disease
3. PH due to lung diseases and/or hypoxia
4. Chronic thromboembolic PH CTEPH1, NR_036693, NR_027783, (102‑104)
  NR_033766, NR_001284, PAFAH1B1,
  lncRNA NONHSAT073641
5. PH with unclear multifactorial mechanisms

PH, pulmonary hypertension; lncRNA, long non‑coding RNA; PAXIP1‑AS1, PAX‑interacting protein 1‑ antisense RNA1; MEG 3, maternally 
expressed 3; HypERlnc, hypoxia‑induced endoplasmic reticulum stress regulating long non‑coding RNAs; MALAT1, metastasis‑associated 
lung adenocarcinoma transcript 1; CTEPH1, chronic thromboembolic pulmonary hypertension 1; PAFAH1B1, platelet‑activating factor acetyl 
hydrolase 1B1.

Table II. Involvement of lncRNAs in each pathological stage of pulmonary hypertension.

Pathological stage lncRNA (Refs.)

PAEC dysregulation and EndMT NR_001284, NR_036693, NR_033766, NR_027783, (103,105‑108)
 MIR22HG, MIR210HG, H19, MEG9, MALAT1,
 GATA6‑AS
PASMC proliferation and migration H19, MALAT1, lnc‑Ang362, PAXIP1‑AS1, TUG1, (25,47,56,74,82,84,100,109)
 HOXA‑AS3, MEG3, LnRPT, CASC2
PASMC apoptosis TCONS_00034812, UCA1 (26,79)
Adventitial thickening ‑ ‑
Plexiform lesions ‑ ‑
Perivascular inflammation H19 (74)

lncRNA, long non‑coding RNA; PAEC, pulmonary artery endothelial cell; EndMT, endothelial‑to‑mesenchymal transition; PASMC, pulmo‑
nary artery smooth muscle cell; MEG9,3, maternally expressed 9,3; MALAT1, metastasis‑associated lung adenocarcinoma transcript 1; 
GATA6‑AS, GATA6 antisense RNA 1; PAXIP1‑AS1, PAXIP1 antisense RNA 1; TUG1, taurine upregulated 1; HOXA‑AS3, HOXA cluster 
antisense RNA 3; LnRPT, lncRNA regulated by PDGF and transforming growth factor β; CASC2, cancer susceptibility candidate 2; UCA1, 
urothelial carcinoma associated 1. 
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as most lncRNAs are localized in the nucleus. Furthermore, 
the toxicity of chemically modified siRNAs has not yet been 
fully clarified (98). In addition, the secondary structure of 
lncRNAs, their delivery into the human body, the speed of 
onset and duration of their action, as well as the prevention of 
off‑target effects require further investigation.

Outlook. Using second generation sequencing, especially 
RNA‑seq and other methods, a number of studies have 

identified lncRNA networks involved in the regulation of PH. 
However, the sequences, structures and functions of lncRNAs 
are poorly conserved among different species; therefore, the 
in vivo study of lncRNAs is a challenging task. The number 
of large‑scale clinical studies regarding the diagnosis, assess‑
ment of disease severity and prognosis of lncRNA‑induced PH 
is limited. This may be explained by the following: First, it 
is difficult to achieve a perfect match between patients with 
and without PH as clinical patients may also exhibit different 

Table III. lncRNA expression, targets and effects on PH.

lncRNA Expression Target Effect (Refs.)

MEG3 Upregulated miR‑328‑3p/IGF1R Promotes proliferation of PASMCs (42)
MEG3 Downregulated miR‑21/PTEN; p53 pathway Inhibits proliferation and migration (43,44)
   of PASMCs
HOXA‑AS3 Upregulated Hoxa3 Promotes proliferation and regulates (47)
   the cell cycle
MANTIS Downregulated BRG1 Facilitates endothelial angiogenic (49)
   function, promotes apoptosis
TUG1 Upregulated miR‑374c/Foxc1/Notch;  Promotes proliferation and migration,  (56)
  miR‑328 and inhibits apoptosis of HASMCs
MALAT1  Upregulated Cyclin‑dependent kinase Promotes proliferation and migration,  (41,61,63)
  inhibitors; cell cycle regulator; slightly inhibits cell apoptosis, 
  hsa‑miR‑124‑3p.1/KLF5 regulates cell cycle and phenotype
   switch of PASMCs
CPS1‑IT Downregulated IL‑1β; inhibits HIF‑1 Alleviates PH in a rat model (66)
  transcriptional activity and the
  NF‑κB signaling pathway
CASC2 Downregulated Unknown Inhibits proliferation and migration,  (25)
   promotes apoptosis and inhibits the
   phenotypic switch of hypoxia‑induced
   PASMCs.
TCONS_00034812 Downregulated Stox1/MAPK signaling  Promotes PASMC proliferation and (26)
   inhibits apoptosis
H19 Upregulated miRNA let‑7b AT1R;  Promotes PASMC proliferation and  (74,76)
  H19/miR‑675‑3p/IGF1R and pulmonary vascular remodeling
  H19/miR‑200a/PDCD4
Lnc‑Ang362 Upregulated miR‑221, miR‑222 Promotes PASMC proliferation and  (82)
   migration, inhibits apoptosis
UCA1  Upregulated HnRNP I Promotes PASMC proliferation (79)
LnRPT Downregulated  Notch signaling pathway PASMC proliferation (84)
NONRATT0155  Upregulated p53 and HIF‑1 signaling  Promotes PASMC proliferation,  (89)
87.2  pathway inhibits cell apoptosis

lncRNA, long non‑coding RNA; PH, pulmonary hypertension; miR, microRNA; MEG3, maternally expressed 3; PASMC, pulmonary 
artery smooth muscle cell; PTEN, phosphatase and tensin homolog; Hoxaas3, Hoxa cluster antisense RNA 3; Hoxa3, homeobox a3; 
BRG1, Brm/SWI2‑related gene 1; TUG1, taurine upregulated 1; Foxc1, forkhead box C1; HASMCs, human aortic muscle cells; MALAT1, 
metastasis‑associated lung adenocarcinoma transcript 1; KLF5, kruppel‑like factor 5; CPS1‑IT, carbamoyl phosphate synthetase 1‑intronic 
transcript; IL‑1β, interleukin 1β; HIF‑1, hypoxia‑inducible factor 1; NF‑κB, nuclear factor κΒ; CASC2, cancer susceptibility candidate 2; 
Stox1, storkhead box 1; MAPK, mitogen‑activated protein kinase; AT1R, angiotensin II type 1 receptor; IGF1R, insulin‑like growth factor 1 
receptor; PDCD4, programmed cell death protein 4; UCA1, urothelial carcinoma associated 1; HnRNP I, heterogeneous ribonucleoprotein I; 
LnRPT, lncRNA regulated by PDGF and transforming growth factor β.
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comorbidities and complications. Second, lncRNAs are poorly 
conserved among different species; therefore, the results of 
in vitro animal experiments cannot be directly applied to clin‑
ical practice. Third, lncRNA tests are more complicated and 
expensive compared with commonly used clinical detection 
methods. However, the screening of lncRNAs with excellent 
sensitivity, specificity or predictive value and the development 
of drugs targeting specific lncRNAs for PH treatment would 
be of great significance in the future.

3. Conclusions

PH is a multifactorial disease characterized by pulmonary 
vascular remodeling, resulting in sustained increased pulmo‑
nary arterial pressure, right heart failure and even death. 
lncRNAs are key molecules that control cellular biological 
activities by regulating gene expression at the transcriptional 
and post‑transcriptional levels (99). A considerable body of 
evidence has demonstrated that lncRNAs are essential regu‑
lators of the pathogenesis and progression of PH. Numerous 
studies have greatly improved our understanding of the roles 
of lncRNAs in PH. Novel PH‑associated lncRNAs, their 
expression and targets are listed in Table III. The dysregu‑
lation mechanisms of differentially expressed lncRNAs 
involved in cell proliferation, migration and apoptosis, regu‑
lation of the cell cycle, and phenotypic switching are shown 

in Fig. 1. lncRNAs have the potential to become novel diag‑
nostic markers in clinical practice and lncRNAs may become 
potential pharmacological targets for PH treatment. 
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