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Cholangiocarcinoma (CCA) represents a heterogeneous group of epithelial tumours that are
classified according to anatomical location as intrahepatic (iCCA), perihilar (pCCA), or distal
(dCCA). Although surgical resection and liver transplantation following neoadjuvant therapy
are potentially curative options for a subset of patients with early-stage disease, the currently avail-
ablemedical therapies for CCA have limited efficacy. Immunotherapeutic strategies such as immune
checkpoint blockade (ICB) harness the host immune system to unleash an effective and durable
antitumour response in a subset of patients with a variety of malignancies. However, response
to ICB monotherapy has been relatively disappointing in CCA. CCAs are desmoplastic tumours
with an abundant tumour immune microenvironment (TIME) that contains immunosuppressive
innate immune cells such as tumour-associated macrophages andmyeloid-derived suppressor
cells. A subset of CCAs may be classified as immune ‘hot’ tumours with a high density of CD8+

T cells and enhanced expression of immune checkpointmolecules. Immune ‘hot’ tumour types are
associated with higher response rates to ICB. However, the suboptimal response rates to ICB
monotherapy in human clinical trials of CCA imply that the preponderance of CCAs are immune
‘cold’ tumours with a non-T cell infiltrated TIME. An enhanced comprehension of the immuno-
biology of CCA, particularly the innate immune response to CCA, is essential in the effort to develop
effective combination immunotherapeutic strategies that can target a larger subset of CCAs.
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Introduction
Cholangiocarcinoma (CCA) is the most common
biliary malignancy and the second most common
primary hepatic malignancy after hepatocellular
carcinoma (HCC). CCAs are heterogeneous biliary
epithelial tumours that are classified into intrahe-
patic (iCCA), perihilar (pCCA), and distal (dCCA)
subtypes based on their anatomic location within
the biliary tree. The overall incidence of CCA, par-
ticularly iCCA, has increased over recent decades.
Unfortunately, the 5-year overall survival (OS) for
CCA remains less than 10%.1,2 Surgical resection
or liver transplantation following neoadjuvant
chemoradiation are potentially curative treat-
ment options for the subset of patients who pre-
sent with early-stage disease.2 However,
diagnosing CCA at an early stage remains a signif-
icant challenge, and the majority of patients pre-
sent with advanced stage disease.2–5

Advances in our understanding of the immu-
nobiology of the tumour immune microenviron-
ment (TIME) have resulted in the advent of
cancer immunotherapies that modulate the host
immune response against tumours.6 Tumours
can escape the host immune attack by induction
of immune checkpoints such as programmed
death-1 (PD-1) and its ligand PD-L1, as well as
cytotoxic T-lymphocyte-associated protein 4
(CTLA-4). Accordingly, antibody-based therapies
targeting these mediators, so called immune
checkpoint blockade (ICB), unleash pre-existing
immunity and have become the major focus of
anticancer therapeutic interventions. ICB thera-
pies have demonstrated durable responses in a
subset of patients.7 ICB response is associated
with the TIME phenotype, with a T cell-
infiltrated TIME having a higher response to ICB
compared to a non-T cell infiltrated TIME.6,8 A T
cell-infiltrated TIME displays spontaneous
immune activation and is characterized by the
presence of high infiltration of CD8+ T cells, high
expression of PD-L1, chemokines and other fac-
tors implicated in T cell recruitment. A non-T
cell infiltrated TIME displays immune exclusion
and lacks T cells due to the absence of chemo-
kines and activation factors involved in T cell
recruitment.6,8 The latter phenotype also lacks T
cell priming, likely due to the absence of
upstream innate immune activation.

CCAs are desmoplastic tumours with a dense
TIME populated by cancer-associated fibroblasts
as well as immunosuppressive innate immune
cells such as tumour-associated macrophages
(TAMs) and myeloid-derived suppressor cells
(MDSCs). These stromal elements are essential in
promoting an immunosuppressive TIME and
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Key points

Infiltration of immunosuppressive innate immune cells such as TAMs and MDSCs in CCA is
associated with poor patient outcomes.

T cell-infiltrated or immune ‘hot’ CCAs have increased CD8+ T cell infiltration with enhanced
interferon γ and granzyme B activity, increased expression of immune checkpoint molecules
such as PD-1 and its ligand PD-L1, and enhanced responsiveness to ICB.

Non-T cell-infiltrated or immune ‘cold’ CCAs are devoid of CD8+ T cells and have a preponder-
ance of immunosuppressive cells such as TAMs, MDSCs, and tolerogenic DCs.

Conventional chemotherapy has limited efficacy in metastatic cholangiocarcinoma, prompt-
ing interest in immunotherapy approaches. The only FDA-approved immunotherapy in cho-
langiocarcinoma is pembrolizumab, an anti-PD-1 antibody, which received tissue-agnostic
approval for solid tumours with microsatellite instability or mismatch repair deficiency,
including cholangiocarcinoma.

The response rate to PD-1 blockade monotherapy is low in unselected cases of advanced cho-
langiocarcinoma, underscoring the need for biomarkers of response, novel immunotherapies,
and combination therapies.

Immune-mediated approaches currently under investigation include combining immune
checkpoint blockade with molecularly targeted therapy, local ablative therapy, chemother-
apy, and other agents. Cell-based therapies, cancer vaccines, and agents targeting novel
immune checkpoints, cytokines, colony stimulating factors, and the tumour microenviron-
ment are also under development.
foster CCA progression by producting cytokines
and chemokines. Herein, we review the innate
and adaptive host immune response to CCA and
emerging immunotherapies modulating the
immune system.9

The innate immune system in
cholangiocarcinoma
The liver has ample unique immunological features
including the ability to induce immune tolerance
as well as a robust innate immunity.10 The liver is
constantly exposed to intestinal microbial products
and must have the ability to suppress inappropriate
inflammatory responses while remaining alert to
potential harmful stimuli such as infectious agents
or cancer cells.10 The liver’s distinct immune envir-
onment includes the largest population of resident
macrophages (80–90% of total body population)
referred to as Kupffer cells (KCs) and an abundance
of natural killer (NK) cells.10,11 KCs are key media-
tors of induction of immunological tolerance in the
liver. The tolerogenic capability of the liver may be
important in tumour biology as cancers may
co-opt this machinery to promote immune
tolerance, facilitating tumour progression. Hence,
elucidating the innate immune response to CCA is
essential in the effort to uncover effective
immunotherapies.12

Macrophages in cholangiocarcinoma
Macrophages are phagocytic innate immune cells
which are extremely heterogeneous, and play an
essential role in hepatobiliary malignancy.11,13

They represent the first line of defence against
damage-associated molecular patterns expressed
by cancer cells, or pathogen-associated molecular
patterns.14 Hepatic macrophages may be categor-
ized by ontogeny as resident or recruited macro-
phages. Resident macrophages include yolk-sac
derived KCs which have the capacity to self-
renew, and a recently described population of
liver capsular macrophages which are replenished
from blood monocytes.15 Recruited hepatic
macrophages include circulating monocytes that
differentiate into macrophages, and a reservoir of
peritoneal macrophages which traffic through the
capsule into the liver parenchyma.11,16 Polariza-
tion refers to the functional activation of macro-
phages. In tumour biology, TAMs are an essential
component of the TIME, and are implicated in
tumour immune escape.17,18 The terminology for
TAM polarization is complex, and includes an
immunosuppressive, alternatively activated, pro-
tumour ‘M2-like’ phenotype and an antitumour,
classically activated ‘M1-like’ phenotype.18 TIME
factors contributing to TAM plasticity include cyto-
kines, as well as hypoxia and cancer cell-derived
extracellular vesicles (EVs).20–23,17,19 Several stu-
dies have demonstrated an association between
the presence of TAMs and patient outcomes in
CCA.24 In a cohort of 39 patients with iCCA, TAM
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infiltration was associated with angiogenesis,
increased infiltration of regulatory T cells (Treg),
and poor disease-free survival.24 The authors also
demonstrated that CCA cells induce an M2-like
phenotype via signal transducer and activator of
transcription 3 activation.17,24 Similarly, a retro-
spective analysis employing immunohistochemis-
try (IHC) in 114 patients with CCA demonstrated
a positive correlation between tumour-infiltrating
neutrophils, TAMs, and Tregs.25 Moreover, the
presence of these immunosuppressive immune
cell populations was significantly associated with
poor recurrence-free survival.25 Conflicting results
have been obtained from studies assessing a link
between TAM localization within the tumour and
patient outcomes; one study demonstrated worse
outcomes (47 patients with pCCA) and another
demonstrated improved OS (88 patients with
iCCA) with high infiltration of TAMs in the tumour
invasive front.26–30

Studies investigating the mechanism of TAM-
mediated CCA progression are limited. Yuan et al.
have demonstrated that chronic liver injury
induces mitochondrial dysfunction, resulting in
oxidative stress and the recruitment of KCs.31

Moreover, tumor necrosis factor (TNF) derived
from KCs promotes JNK-mediated CCA prolifera-
tion and oncogenic transformation, depletion of
KCs has been shown to reduce pre-malignant
CCA lesions.31 Canonical WNT signalling drives
cell proliferation, and is activated in CCA.32

Alternatively activated macrophages activate
WNT signalling in CCA with consequent CCA pro-
gression.32 Macrophage depletion in preclinical
models results in inhibition of WNT signalling,
and reduction in tumour growth.32 As TAM infil-
tration has been associated with poor patient out-
comes, it has been postulated that CCA cells may
modulate the surrounding stroma to a tumour
supportive immune niche. Cellular spheroids
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generated from CCA cells molded macrophages to
a TAM phenotype with high invasive capacity.33

TAMs isolated from resected human CCA speci-
mens recapitulated the phenotype of the in vitro
macrophages educated by CCA cells.33 Although
these studies have explored the mechanisms
underlying TAM-mediated CCA progression,
further work is needed to elucidate the mechan-
isms behind the pro-tumour role of macrophages
in CCA.

Myeloid-derived suppressor cells in
cholangiocarcinoma
MDSCs are a subset of immature myeloid cells with
potent immunosuppressive function.34 In a variety
of malignancies, MDSCs accumulate in the bone
marrow, peripheral blood, lymphoid tissues, and
the tumour microenvironment with resultant
augmentation of tumour immune evasion and
immunotherapy resistance.35 MDSCs are not an
independent lineage of myeloid cells. Instead, they
comprise immature myeloid cells that are patholo-
gically activated in the setting of chronic inflamma-
tion. MDSCs inhibit cytotoxic T cells (CTLs), NK cells
and other subsets via multiple antigen-specific and
non-specific mechanisms, including production of
arginase, inducible nitric oxide synthase (iNOS),
indoleamine 2,3-dioxygenase (IDO), reactive
oxygen species (superoxide, myeloperoxidase,
hydroxyl peroxide, and peroxynitrite) and
immunosuppressive cytokines (including trans-
forming growth factor-beta [TGF-β] and inter-
leukin [IL]-10).36–38 MDSC are subdivided into
monocytic and granulocytic or polymorphonuc-
lear (PMN) subsets (M-MDSC and PMN-MDSC),
that are phenotypically similar to macrophages
and neutrophils, respectively, albeit biochemi-
cally and functionally distinct.39 M-MDSC can
differentiate into TAMs in the tumour immune
microenvironment, while short-lived PMN-
MDSCs likely overlap with immunosuppressive
tumour-associated neutrophils.40

The majority of data regarding the role of
MDSCs in hepatobiliary cancers come from HCC.
Clinically, an increase in M-MDSC in peripheral
blood is prognostic, and has been associated with
decreased OS in HCC.41 In murine models of
HCC, MDSCs accumulate in the liver and polarize
Kupffer cells to an immunosuppressive pheno-
type.42,43 MDSC-mediated effects on lympho-
cytes include fostering Treg development,
promoting CD8+ T cell anergy, and inhibiting
NK cell cytotoxicity.44–46 Murine models of HCC
suggest that depletion of PMN-MDSC may
increase sensitivity to PD-L1 checkpoint inhibi-
tor therapy.47 However, MDSCs have been rela-
tively unexplored in CCA. A single publication
documented a significant increase in the percen-
tage of circulating M-MDSC (CD11b+/CD14+/
HLA-DR−) in whole blood from 17 patients with
CCA compared to healthy controls. However,
JHEP
further characterization or functional confirma-
tion was not carried out.48 Therefore, additional
studies are needed to characterize the contribu-
tion of MDSCs to CCA and explore their potential
as a viable immunotherapeutic target.

Natural killer cells in cholangiocarcinoma
Preclinical and clinical studies have demonstrated
that NK cell deficiency or impaired NK cell function
is linked to increased incidence of a variety of
malignancies. NK cells are ‘ready to kill’; indeed,
NK cells are able to identify and spontaneously
eliminate abnormal cells such as cancer cells with-
out prior sensitization.49 Activated NK cells med-
iate tumour immunosurveillance and modulate
the immune response via secretion of a large spec-
trum of cytokines and chemokines. NK cells also
play an essential role in cancer immunoediting
via secretion of interferon-gamma which induces
activation of M1-like macrophages.50 Nonetheless,
it has been postulated that the predominant role of
NK cells in tumour immunosurveillance might be
prevention of metastasis, as NK cells are abundant
in the circulation but relatively scarce in solid
tumours. NK cells comprise approximately 30-
40% of the total hepatic lymphocyte population; a
liver resident NK cell subset with adaptive immune
properties that originates from hepatic stem cells
has been described.51,52

Natural killer group 2D (NKG2D), an activating
NK cell receptor, is involved in NK cell-mediated
killing of tumour cells. Genetic variants of the
NKG2D receptor impair the cytotoxic function of
NK cells. Accordingly, NKG2D receptor variants
have been linked to CCA development in patients
with primary sclerosing cholangitis.53 In contrast,
high expression of NKG2D ligands in human CCA
are associated with improved disease-free and
overall patient survival, implying that treatment
strategies that encourage interaction between
NKG2D and its ligand may be a promising thera-
peutic approach in CCA.54 Preclinical data from
studies assessing therapeutic strategies that aug-
ment NK cell activity in CCA are encouraging, albeit
limited. Co-culture of CCA cells with the epidermal
growth factor receptor monoclonal antibody,
cetuximab, and NK cells significantly enhanced
CCA cell death by potentiating antibody-
dependent cellular cytotoxicity.55 Similarly, infu-
sion of ex vivo expanded human NK cells into CCA
xenograft mice resulted in inhibition of tumour
growth.56 Although these findings hold promise,
further work is needed to investigate NK cell-
based therapies in CCA.

Dendritic cells in cholangiocarcinoma
Dendritic cells (DCs) are antigen presenting cells
(APCs) which are essential in activation of the
adaptive immune response.57 DCs are categorized
broadly as classical DCs (cDCs) and plasmacytoid
DCs (pDC). cDCs are highly phagocytic APCs
Reports 2019 vol. 1 | 297–311 299



which are replenished from bone marrow precur-
sors.58 cDCs initiate adaptive immune responses in
secondary lymphoid organs following their inter-
action with antigens in peripheral tissues.58

pDCs, although developmentally related to cDCs,
are not phagocytic, and are ineffective at present-
ing exogenous antigens to CD4+ T cells. Following
activation, pDCs acquire typical DC morphology
and release interferon-gamma.59

Compared to healthy controls, patients with
CCA have a significant decrease in the absolute
number of peripheral blood cDCs as well as a
decline in the TNFα-producing cDCs.60 Immuno-
histochemical analysis has demonstrated a
correlation between CD83+ (mature) cDCs and
CD4+/CD8+ T cell infiltration at the invasivemargin
of cancer. Moreover, patients with an increased
number of CD83+ cDCs at the tumour invasive
margin had a lower incidence of lymph node
metastasis and overall better outcomes compared
to patients with a paucity of CD83+ cDCs.61 As
the presence of DCs confers a better patient out-
come, the therapeutic potential of DC-based
immunotherapies has been explored in limited
preclinical and clinical studies of CCA. DCs loaded
with aspartate-β-hydroxylase (ASPH), a tumour-
associated cell surface protein present in a number
of malignancies, induced suppression of tumour
growth and metastasis, as well as increased CD3+

lymphocyte infiltration in an orthotopic rat
model of iCCA.62 Interestingly, the remaining
tumour cells still expressed ASPH. This latter
finding implies that “escape mutants” mediating
tumour evasion had not developed, and additional
immunizations may be necessary for optimal
antitumour activity.62 Overall, the role of DCs and
various DC subsets in CCA needs to be further
delineated.

Adaptive immune response in
cholangiocarcinoma
Tumour-infiltrating lymphocytes (TILs) are a
highly heterogeneous population that includes
CD8+ cytotoxic T cells, CD4+ T helper cells, Tregs
and B lymphocytes.63–65 TILs are essential in can-
cer immune surveillance and in the elimination
of tumour cells. Adaptive immune response
components decrease with CCA progression.66

Conversely, an increase in CD8+ TILs is associated
with improved overall patient survival.66–69 Intra-
tumoural CD4+/CD8+ TILs are found in 57–68% of
CCA.70,71 Based on immunohistochemical ana-
lyses, CD8+ TILs appear to be the primary TILs
within the tumour tissue whereas CD4+ cells are
the predominant lymphocyte population in the
peritumoural area.61,72 The presence of mature
DCs at the invasive margin of CCAs correlates sig-
nificantly with CD8+ and CD4+ T cell infiltration
in the tumour region and improved patient
survival.61 However, the role of CD4+ TILs in the
tumour immune response is controversial.
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Although, CD4+ TILs can suppress tumour growth
through cytokine secretion, a low CD4/CD8 ratio
is associated with a better prognosis in colorectal
carcinoma, suggesting an immunosuppressive
effect of CD4+ TILs.73,74 However, in a cohort of
306 resected human CCA specimens immunohis-
tochemical analysis demonstrated that an increase
in tumour-infiltrating CD4+ T cells was associated
with longer patient survival.66 Interplay between
components of the innate immune system and
TILs can impact the antitumour immune response.
Patients with CCA and high tumour tissue expres-
sion of CD15, a carbohydrate epitope expressed on
neutrophils, have shorter OS and disease-free
survival.75 Accordingly, an elevated neutrophil-
lymphocyte ratio (NLR) is associated with a higher
percentage of PD-1+ TILs and lower percentage of
IFN-γ+ TILs.76 In a cohort of 102 patients with
iCCA, who had undergone surgical resection, an
elevated NLR was an independent predictor for
poor OS and recurrence-free survival.76 A subset
of CCAs are immune ‘hot’ tumours with increased
infiltration of TILs and high PD-L1 expression
(Fig. 1). Immunohistochemical analysis of human
resected specimens (n = 99, 58 iCCA and 41 pCCA)
demonstrated a significant correlation between
PD-L1 expression and a higher density of CD3+

TILs.70 PD-L1 expression in CCA varies between
different series, and has been reported to be
55–72%.70,77,78 Moreover, PD-L1 is expressed pre-
dominantly on immune cells in CCA (46–63%)70,78

rather than cancer cells (9–23%).70,71,79

High PD-L1 expression has been linked to an
increase in apoptotic TILs.80 FoxP3+ TILs have
also been implicated in CD8+ T cell apoptosis
and consequent tumour immune escape in
CCA.81 Indeed, downregulation of FoxP3 results
in the attenuation of CCA proliferation and inva-
sion, as well as enhanced tumour cell apopto-
sis.81 Although CD20+ B cells represent a minor
proportion of the total TIL population in CCA,
their presence has been linked to a favourable
prognosis in CCA.66,72 Collectively, our knowl-
edge of the adaptive immune system in CCA is
based primarily on small retrospective studies
utilizing immunohistochemical analysis. Future
studies should employ sophisticated immuno-
profiling techniques such as mass cytometry to
elucidate the role of the adaptive immune sys-
tem in CCA.

Immunotherapy clinical trials in
cholangiocarcinoma
Standard of care
The standard first-line treatment for advanced
biliary tract cancers (BTCs), including cholangio-
carcinoma, is gemcitabine and cisplatin combina-
tion chemotherapy. This regimen modestly
increased survival, with a median OS of 11.7
months in patients treated with gemcitabine/cis-
platin, compared to 8.1 months for those treated
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T cell-Infiltrated (Immune ‘Hot’) CCA
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Fig. 1. The evolving tumour immune microenvironment of CCA. T cell-infiltrated or immune ‘hot’ CCAs have increased CD8+ T cell infiltration with enhanced
interferon γ and granzyme B activity, antitumour DCs and NK cells, increased immune checkpoint molecules such as PD-1 and its ligand PD-L1, and enhanced
responsiveness to ICB. Non-T cell-infiltrated or immune ‘cold’ CCAs are devoid of CD8+ T cells and have a preponderance of immunosuppressive cells such as
M2-like TAMs, MDSCs, and tolerogenic DCs. These tumours are generally poorly responsive to ICB. CAF, cancer-associated fibroblast; CCA, cholangiocarcinoma;
DC, dendritic cell; ICB, immune checkpoint blockade; MDSC, myeloid-derived suppressor cell; NK, natural killer; PD-1, programmed death-1; PD-L1,
programmed death ligand 1; TAM, tumour-associated macrophage; TMB, tumour mutational burden.
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with gemcitabine alone in a phase III trial.82 The
use of other gemcitabine or fluoropyrimidine-
based chemotherapy regimens is supported by
phase II trials. An open-label, single-arm, phase II
clinical trial demonstrated prolonged median pro-
gression free survival (PFS) (11.8months) andmed-
ianOS (19.2months) in patientswith advanced BTC
(n = 62) treated with nab-paclitaxel plus
gemcitabine-cisplatin compared to historical con-
trols treated with gemcitabine-cisplatin alone.83

However, given the limited efficacy of these regi-
mens, there is a pressing need to develop additional
therapeutic approaches.

Immune checkpoint blockade
Immune checkpoint inhibitors are designed to
overcome inhibitory receptors on CTLs to promote
an antitumour immune response. Agents targeting
the PD-1 and CTLA-4 pathways have been
approved in multiple malignancies, and in some
cases provide durable responses. However, even
among immunogenically ‘hot’ tumour types such
as melanoma and non-small cell lung cancer,
response to ICB is variable. Current research priori-
ties in CCA and other tumour types include deter-
mining biomarkers of response, and developing
combination strategies to improve response rates
and circumvent immunologic tolerance and
resistance.84 One established predictor of response
to ICB is the neo-antigen burden of a tumour,
which may be secondary to carcinogen exposure,
oncoviral integration, APOBEC gene expression,
microsatellite instability due to mismatch repair
deficiency (MSI-high/MMR-deficient), or other
factors. In a comprehensive molecular analysis,
approximately 6% of biliary cancers were
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hypermutated (with a tumour mutation rate
>11.13/Mb), including 2% that were MMR-
deficient.85 This suggests that a subset of CCAs
may be primed to respond to ICB (Fig. 2). Indeed,
ICB has shown promise in patients with MSI-high/
MMR-deficient CCA. The efficacy of pembrolizumab,
a monoclonal anti-PD-1 antibody, was evaluated in
a prospective manner in 86 patients with advanced
MSI-high/MMR-deficient cancers including CCA (n =
4).86 The disease control rate (DCR) in patients with
CCA was 100%; 1 patient had complete response
(CR) and 3 had stable disease.86 An analysis of 5
uncontrolled, single-arm, open-label trials of pem-
brolizumab (KEYNOTE-012, 016, 028, 158, and
164) included 149 patients with MSI-high/MMR-
deficient tumours (90 metastatic colorectal cancers
and 59 other tumour types, including 11 BTCs).
The objective response rate (ORR, sum of CR and
partial response [PR]) was 39.6%, with 78% of those
having a duration of response of 6months or longer.
Out of 11 patients with BTC, 3 (27%) had a response,
with duration of response ranging from 11.6 to
19.6 months.87 These encouraging results led to
the accelerated food and drug administration
(FDA) approval of pembrolizumab for the first
tissue/site agnostic indication in MSI-high/MMR-
deficient tumours (www.fda.gov/Drugs/Information
OnDrugs/ApprovedDrugs/ucm560040.htm). Taken
together, these analyses suggest that PD-1 block-
ade may be effective for advanced MSI-high/
MMR-deficient CCA that has progressed on
standard therapies.

Tumour expression of PD-L1 is a biomarker for
response to ICB in other tumour types, but has
not been fully explored in CCA. KEYNOTE-028
(NCT02054806) was an open-label, phase I basket
Reports 2019 vol. 1 | 297–311 301
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Fig. 2. Schematic representation of therapeutic strategies for immune ‘hot’ CCA. The targets of immunotherapies currently under investigation in CCA that may
be beneficial in immune ‘hot’ CCA are represented schematically. CCA, cholangiocarcinoma; CTL, cytotoxic T lymphocyte; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; DC, dendritic cell; NK, natural killer; PD-1, programmed death-1; PD-L1, programmed death ligand 1; TAM, tumour-associated macrophage.
trial with 20 different solid tumour cohorts,
including BTCs.77 All selected patients had positive
PD-L1 expression, defined by expression on >1% of
tumour cells by IHC-based assay. The BTC cohort
included 23 patients, with an ORR of 17% (4 of
23), including 1 CR and 3 PR; an additional 3
patients had stable disease. Median PFS was 1.8
months, and median OS was 6.2 months. Multiple
biomarkerswere evaluated, including expression of
an 18-gene T cell-inflamed profile, PD-L1 expres-
sion, and tumour mutational burden (TMB). All 3
were correlated with higher response rates in the
study population overall, and the highest response
rates were found among patients with both ele-
vated TMB and a second biomarker (PD-L1 expres-
sion or T cell-inflamed gene expression profile).77

Although biomarker data was not presented for
the biliary cancer cohort specifically, these results
suggest that a combination of biomarkers can iden-
tify patients most likely to respond to ICB.

These encouraging results led to a follow-up
trial with an expansion cohort, KEYNOTE-158
(NCT02628067), the largest study to date of ICB
in BTCs. This is an ongoing phase II, single-arm,
open-label trial of pembrolizumab in multiple
advanced cancers. An interim report was pre-
sented in 2018 with data from 104 patients with
BTC.88 The ORR was only 5.8%, including 6 PR
and zero CR, with an additional 17 patients (16%)
having stable disease. The duration of response
(DoR) ranged from 6.2 to >15 months (in 2
patients), with the median DoR not reached. Inter-
estingly, PD-L1 expression was not predictive of
response. The cohort contained 61 patients with
PD-L1 positive tumours, and 31 patients without
PD-L1 expression. Although ORR was slightly
higher in the PDL-1 positive group (6.6% vs. 2.9%),
there were no significant differences in median PFS
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(1.9 vs. 2.1 months) or OS (7.2 vs. 9.6 months).88 In
this cohort, none of the evaluated patients had
MSI-high tumours. This limited response to ICB
monotherapy in an unselected cohort of advanced
biliary cancer further emphasizes the need for bio-
markers (that identify patients likely to respond),
and combinatorial treatment strategies (that over-
come limited antitumour responses in CCA).

Immune checkpoint blockade – combination
therapies
Given the limitations of ICB monotherapy, there is
tremendous interest in developing combination
immunotherapy strategies. Such strategies include
dual ICB as well as ICB combined with another
immunomodulatory agent, molecular targeted
therapy, cytotoxic chemotherapy, or local therapy
(Tables 1 and 2).89 The premise of dual ICB is that
blocking a single checkpoint may not be sufficient
to activate CTLs. Although combining CTLA-4 and
PD-1 blockade has increased efficacy, it has also
increased adverse events (AE) in melanoma.90,91

At least 2 early phase trials of dual CTLA-4 and
PD-1 blockade are ongoing in advanced solid
tumours, including CCAs (NCT02834013 and
NCT01938612). Interim results from an open-
label phase I/II study of durvalumab plus tremeli-
mumab in patients with HCC and BTC who had
progressed on prior therapy (NCT02821754) were
relatively disappointing for BTC. None of the
patients in the BTC cohort had PR or CR, and
only 5 (42%) had stable disease. The median PFS
was 3.1 months and OS was 5.5 months, while
multiple grade 3/4 treatment-related AEs were
reported.92 Efficacy in this study may have been
hampered by inclusion of an unselected BTC
population. However, given the increased risk for
adverse events and limited efficacy of combination
Reports 2019 vol. 1 | 297–311 302
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Table 1. Ongoing ICB-based clinical trials in cholangiocarcinoma.

Intervention Trial type Population
(# participants, estimated enrollment)

ClinicalTrials.gov
Identifier

Immune checkpoint blockade monotherapy

Pembrolizumab (anti-PD-1 antibody) Phase II, single arm, open label;
Phase II, non-randomized,
open label;
Phase Ib, single arm, open label;
Phase II, single arm, open label;
Prospective observational cohort

Advanced, refractory BTC (33 pts);
Microsatellite unstable cancers, including
BTC (171 pts);
PD-L1 positive cancers, including BTC
(477 pts);
Advanced, refractory cancers, including
BTC (1,350 pts);
HCC or BTC (100 pts)

NCT03110328;
NCT01876511;
NCT02054806;
NCT02628067;
NCT03695952

Nivolumab (anti-PD-1 antibody) Phase II, single arm, open label;
Phase II, non-randomized,
open label
Prospective observational cohort

Advanced, refractory BTC (52 pts);
Advanced, refractory cancers with MMR
deficiency (6,452 pts);
HCC or BTC (100 pts)

NCT02829918;
NCT02465060;
NCT03695952

Durvalumab (anti-PD-L1 antibody) Phase I, non-randomized,
open label

Advanced solid tumours, including BTC
(269 pts)

NCT01938612

Toripalimab (anti-PD-1 antibody) Phase Ib/II, single arm, open label HCC or iCCA, eligible for resection (20 pts) NCT03867370

Atezolizumab (anti-PD-L1 antibody) Phase II, Non-randomized,
open label

Advanced, refractory solid tumours,
including BTC, elevated tTMB (765 pts)

NCT02091141

Dual immune checkpoint blockade

Nivolumab + Ipilimumab (anti-CTLA-4 antibody) Phase II, single arm, open label;
Phase II, randomized, open label

Advanced, refractory solid tumours
including BTC (707 pts);
Unresectable, untreated BTC (64 pts)

NCT02834013;
NCT03101566

Durvalumab + Tremelimumab (anti-CTLA-4 antibody) Phase I, non-randomized,
open label

Advanced, refractory, biopsiable solid
tumours, including BTC (269 pts)

NCT01938612

Immune checkpoint blockade plus local ablative therapy

Durvalumab + Tremelimumab + TACE, RFA, or
cryoablation

Phase II, non-randomized,
open label

Unresectable, refractory HCC or BTC
(90 pts)

NCT02821754

Tremelimumab + RFA Phase I, non-randomized,
open label

Unresectable, refractory HCC or BTC,
eligible for RFA (61 pts)

NCT01853618

Pembrolizumab + SBRT vs. GEMCIS chemotherapy Phase II, randomized, open label Unresectable, untreated iCCA, eligible for
radiotherapy (184 pts)

NCT03898895

Durvalumab + Tremelimumab + radiation therapy Phase II, single arm, open label Unresectable HCC or BTC (70 pts) NCT03482102

Immune checkpoint blockade plus chemotherapy

Durvalumab + Tremelimumab + GEM or GEMCIS vs.
GEMCIS chemotherapy

Phase II, randomized, open label Untreated BTC (63 pts) NCT03473574

Durvalumab + Tremelimumab + GEMCIS chemotherapy Phase II, single arm, open label unresectable, untreated BTC (31 pts) NCT03046862

Durvalumab + Tremelimumab + Paclitaxel Phase II, randomized, open label Recurrent or advanced, refractory
BTC (102 pts)

NCT03704480

Durvalumab + GEMCIS vs. GEMCIS chemotherapy Phase III, randomized,
double-blind, placebo-controlled

Unresectable, untreated BTC (474 pts) NCT03875235

Durvalumab + Guadecitabine Phase Ib, single arm, open label Unresectable, refractory HCC, PDAC, or
BTC excluding ampullary (90 pts)

NCT03257761

Camrelizumab (anti-PD-1 antibody) + GEMOX
chemotherapy

Phase II, single arm, open label Advanced CCA (38 pts) NCT03486678

Camrelizumab + Apatinib (VEGFR2 inhibitor),
FOLFOX4 or GEMOX chemotherapy

Phase II, non-randomized,
open label

Advanced, untreated HCC or BTC
(152 pts)

NCT03092895

Pembrolizumab + CAPOX chemotherapy Phase II, single arm, open label Unresectable, refractory, biopsiable BTC
(19 pts)

NCT03111732

Pembrolizumab + GEMCIS Phase II, single arm, open label Unresectable, untreated BTC (50 pts) NCT03260712

Toripalimab + Gemcitabine Phase II, single arm, open label Advanced BTC (40 pts) NCT03796429

Nivolumab + GEMCIS Phase I/II, single arm, open label;
Phase II, randomized, open label

Unresectable BTC (30 pts);
Unresectable, untreated BTC (64 pts)

NCT03311789;
NCT03101566

nivolumab + nal-irinotecan + 5-fluorouracil + leucovorin Phase I/II, single arm, open label Unresectable, refractory BTC (40 pts) NCT03785873

KN035 (anti-PD-L1 antibody) + GEMOX vs. GEMOX
chemotherapy

Phase III, randomized, open label Unresectable, untreated BTC (390 pts) NCT03478488

(continued on next page)
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Table 1 (continued)

Intervention Trial type Population
(# participants, estimated enrollment)

ClinicalTrials.gov
Identifier

Immune checkpoint blockade plus molecularly targeted
therapy

Pembrolizumab + pemigatinib (FGFR1-3 inhibitor) Phase I/II, single arm, open label Advanced, refractory solid tumours,
including CCA, with genetic alteration
of FGF or FGFR genes (325 pts)

NCT02393248

Nivolumab + FT-2102 (mutant IDH1 inhibitor) Phase I/II, non-randomized,
open label

Selected solid tumours, including BTC,
with IDH1 mutations (200 pts)

NCT03684811

Atezolizumab + cobimetinib (MEK inhibitor) Phase II, randomized, open label Unresectable, refractory BTC (82 pts) NCT03201458

Durvalumab + tremelimumab + selumetinib
(MEK inhibitor)

Phase I, non-randomized,
open label

Advanced, refractory solid tumours,
including BTC (58 pts) NCT02586987

Nivolumab + rucaparib (PARP inhibitor) Phase II, single arm, open label Advanced, refractory BTC (35 pts) NCT03639935

TPST-1120 (PPARα antagonist) + Nivolumab, docetaxel
chemotherapy or cetuximab (anti-EGFR antibody)

Phase I, non-randomized,
open label

Advanced solid tumours, including CCA
(338 pts)

NCT03829436

Pembrolizumab + XL888 (Hsp90 inhibitor) Phase I, single arm, open label Advanced, refractory GI cancers,
including CCA (50 pts)

NCT03095781

Atezolizumab + DKN-01 (anti-Dickkopf-1 antibody) Phase I, single arm for BTC,
open label

Non-operable, refractory oesophageal
and BTC (123 pts)

NCT03818997

Nivolumab, pembrolizumab or chemotherapy + TRK-950
(monoclonal antibody targeting a proprietary tumour
antigen)

Phase I, non-randomized,
open label

Advanced solid cancers, including CCA
(36 pts)

NCT03872947

Ongoing clinical trials were identified by searching ClinicalTrials.gov using the terms "Biliary Cancer," "cholangiocarcinoma," "biliary carcinoma," "bile duct," or "biliary tract" and
manually curated for inclusion of an immunotherapy arm. Trials were includedwith status of "Recruiting," "Not yet recruiting," "Active, not recruiting," "Completed," or "Enrolling
by invitation." Trials of general solid tumours were excluded unless a BTC arm or inclusion was specified. Search was updated as of 4/1/19. BTC, biliary tract cancer; HCC,
hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; ICB, immune checkpoint blockade; MMR, mismatch repair; PDAC, pancreatic ductal adenocarcinoma; RFA,
radio frequency ablation; SBRT, Stereotactic body radiation therapy; TACE, transarterial chemoembolization; TMB, tumor mutational burden.
PD-1/CTLA-4 blockade, there is substantial
interest in investigating alternative combination
immunotherapies.

Beyond CTLA-4 and PD-1, there are a host of
additional immune checkpoints which may be
modulated to promote an antitumour immune
response, including the inhibitory receptors
LAG-3, TIM-3, TIGIT, and VISTA, and activating
receptors OX40, GITR, 4-1BB, and CD40 ligand.89

Preclinical and clinical data regarding these check-
points are far less mature, but there is early data
from melanoma and renal cell carcinoma suggest-
ing some clinical effect of LAG-3 inhibitors.93,94

Clinical trials are currently underway targeting
CD40 (NCT03329950) and OX40 (NCT03071757)
as single agent or combination therapies in
advanced cancers including CCA.

Several cytokine-targeted therapies have been
combined with ICB. Granulocyte–macrophage
colony-stimulating factor (GM-CSF), encoded by
the CSF2 gene, is a cytokine that can increase anti-
gen presentation and cytotoxic T cell function. Sys-
temic administration of GM-CSF in combination
with ICB prolonged OS compared to ICB alone in
a phase II trial in melanoma.95 Interim analysis of
an open-label, single-arm, phase II trial of pembro-
lizumab plus GM-CSF in CCA (n = 27; 70% iCCA)
showed an ORR of 21% (5 of 24 patients), including
PR in 4 patients with microsatellite stable (MSS)
tumours. Two additional MSS patients had durable
declines in CA19-9 for >11 months.96
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Interferon-alpha-2 is a cytokine that increases
antigen presentation via upregulation of host
MHC class I and II molecules, leading to increased
tumour infiltration of dendritic and T cells.97

Systemic administration of pegylated interferon-
alpha-2b is approved for use in the adjuvant set-
ting for treatment of melanoma.98 In CCA, clinical
trials evaluating interferon-alpha-2 with pembro-
lizumab (NCT02982720) or in combination with
chemotherapy (NCT00019474) are currently
ongoing. Other ongoing trials in CCA featuring
immunomodulators include a fusion protein
designed to inhibit PD-L1 and TGF-β, an immuno-
suppressive cytokine (NCT03825705),99 and
recombinant IL-12, a pro-inflammatory cytokine,
combined with HER2 targeted therapy
(NCT00004074; Table 2).

Combination of immune checkpoint blockade
and microenvironment-directed therapy
Agents targeting the tumour microenvironment
have also been combined with ICB. The vascular
endothelial growth factor (VEGF) pathway
mediates tumour angiogenesis, growth, and
metastasis. VEGF receptor (VEGFR) inhibitors
are approved for treatment of multiple cancers,
including HCC, but have shown limited activity
as monotherapy in CCA.100,101 KEYNOTE-098
(NCT02443324) is an open-label, phase I trial of
pembrolizumab combined with ramucirumab, an
anti-VEGFR-2 antibody, which recruited 26
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Table 2. Ongoing immunotherapy clinical trials targeting the immune microenvironment in cholangiocarcinoma.

Intervention Trial type Population
(# participants, estimated enrolment)

ClinicalTrials.gov
Identifier

Immune microenvironment targeted therapy

Interferon alpha + G-CSF + fluorouracil + hydroxyurea Phase II, single arm, open label Unresectable GI cancers, including BTC
(60 pts)

NCT00019474

INCB001158 (arginase inhibitor) + FOLFOX, GEMCIS
or paclitaxel chemotherapy

Phase I/II, non-randomized,
open label

Advanced solid tumours including BTC
(249 pts)

NCT03314935

Recombinant interleukin-12 + trastuzumab
(anti-HER2 antibody)

Phase I, single arm, open label Advanced, refractory, HER2-expressing
solid tumours, including BTC (15 pts)

NCT00004074

CDX-1140 (CD40 agonist antibody) +/- CDX-301
(dendritic cell growth factor)

Phase I, non-randomized,
open label

Advanced, refractory, biopsiable cancers,
including CCA (180 pts)

NCT03329950

ABBV-368 (OX40 agonist antibody) +/- ABBV-181
(anti-PD-1 antibody)

Phase I, non-randomized,
open label

Advanced solid cancers, including
CCA (170 pts)

NCT03071757

Immune microenvironment targeted therapy plus immune
checkpoint blockade

Peginterferon alpha-2b + Pembrolizumab Phase II, single-arm, open label Advanced, refractory, biopsiable
CCA (44 pts)

NCT02982720

Sargramostim (GM-CSF) + Pembrolizumab Phase II, single arm, open label Advanced BTC (42 pts) NCT02703714

Cabiralizumab (anti-CSF1R antibody) + Nivolumab Phase II, randomized, open label Resectable, biopsiable BTC (16 pts) NCT03768531

M7824 (anti-PD-L1/TGFbetaRII fusion protein) Phase II, single arm, open label Advanced, refractory BTC (141 pts) NCT03833661

Entinostat (histone deacetylase inhibitor) + Nivolumab Phase II, non-randomized,
open label

Advanced, untreated CCA or
PDAC (54 pts)

NCT03250273

Ramucirumab (anti-VEGFR-2 antibody) + Pembrolizumab Phase I, single arm, open label Select advanced, refractory, biopsiable
cancers, including BTC (155 pts)

NCT02443324

Lenvatinib (VEGFR2 inhibitor) + Pembrolizumab Phase II, single arm, open label;
Phase II, single arm, open label

Advanced, refractory, primary liver
cancer or BTC (50 pts);
Selected advanced, refractory solid
tumours, including BTC (180 pts)

NCT03895970;
NCT03797326

Anlotinib hydrochloride (multi-RTK and VEGFR2-3
inhibitor) + TQB2450 (Anti-PD-L1 antibody)

Phase Ib/II, single arm, open label Advanced, refractory BTC or HCC (60 pts) NCT03825705

Avelumab (anti-PD-L1 antibody) with Regorafenib
(multi-RTK and VEGFR 2/3 inhibitor)

Phase I/II, non-randomized,
open label

Advanced, refractory digestive tumours,
not MMR-deficient (212 pts)

NCT03475953

pegylated recombinant human hyaluronidase PH20 +
atezolizumab + GEMCIS chemotherapy

Phase I, randomized, open label Advanced, untreated BTC (70 pts) NCT03267940

Ongoing clinical trialswere identified by searching ClinicalTrials.gov using the terms "Biliary Cancer," "cholangiocarcinoma," "biliary carcinoma," "bile duct," or "biliary tract" andmanu-
ally curated for inclusion of an immunotherapy arm. Trials were included with status of "Recruiting," "Not yet recruiting," "Active, not recruiting," "Completed," or "Enrolling by invita-
tion." Trials of general solid tumours were excluded unless a BTC arm or inclusion was specified. Search was updated as of 4/1/19. BTC, biliary tract cancer; GI, gastrointestinal; HCC,
hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma; MMR, mismatch repair; PDAC, pancreatic ductal adenocarcinoma.
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patients with biliary cancer (42% iCCA).102 Of 24 eva-
luable patients, only 1 patient had PR (4%) while an
additional 9 patients had stable disease, and no
patients had CR. Median PFS was 1.6 months, and
median OS 6.4 months. Overall, there was no
response to this combination compared to historical
controls. Of note, PD-L1 positive patients had no
change in PFS, but had improved OS compared to
patients with PD-L1 negative disease (11.3 vs. 6.1
months). Although these data support PD-L1 as a
biomarker for ICB response, the small sample size
and the lack of significant difference in outcomes in
PD-L1 positive patients reported for KEYNOTE-158
suggests that further studies are necessary. At least
3 additional ongoing trials are evaluating the combi-
nation of VEGFR blockade and ICB (Table 2).

CCAs are characterized by a desmoplastic
stroma with dense extracellular matrix (ECM).
Hyaluronidase is an enzyme that breaks down
JHEP
hyaluronic acid in the ECM. In pancreatic
cancer, which is similarly desmoplastic, an
interim analysis of a phase II trial showed that
PEGylated recombinant human hyaluronidase
(PEGPH20) increased ORR and PFS.103 This
agent is now being evaluated in combination
with ICB and chemotherapy in CCA
(NCT03267940).

Combination of immune checkpoint blockade
and molecular targeted therapy
Integrative genomic analysis of BTCs has identi-
fied recurrent genetic alterations which may be
amenable to targeted therapy.104 A tantalizing
rationale for combining targeted therapies and
immunotherapies is that molecular targeted
therapies can produce significant but often
short-lived responses in susceptible tumours,
which could theoretically be prolonged with
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induction of an effective antitumour immune
response. A pan-cancer analysis of tumour
mutational burden and specific targetable
mutations in The Cancer Genome Atlas dataset
suggested that 9% of cancers could be amenable
to combined molecular and immune-targeting
therapy.105 There are several ongoing human
clinical trials evaluating the combination of ICB
with a variety of targeted therapies including
inhibitors of FGFR, mutant IDH, MEK, PARP,
PPAR-alpha, and HSP90 (summarized in Table 1).

Combination of immune checkpoint blockade
and local ablative therapy
Radiation and other local ablative techniques are
tumouricidal. Thus, they potentially increase pre-
sentation and immune recognition of tumour
neoantigens that are released by cell death, pro-
viding a rationale for the combination with ICB.
NCT01853618 was an open-label, phase I study
of tremelimumab (anti-CTLA4 antibody) with
radiofrequency ablation in 20 patients with
advanced biliary cancer. Among 16 patients with
evaluable disease, 2 (13%) had PR lasting 8.0 and
18.1 months, respectively and 5 (31%) had stable
disease. The median PFS was 3.4 months, and the
median OS was 6.0 months. Interestingly, this
study included assays for the assessment of effec-
tive tumouricidal immune responses, including
expansion of CD8+ T cells with an activated pheno-
type and expansion of the T cell repertoire.
Although conclusions are limited from this small
study, there was some correlation between mar-
kers of immune activation and clinical response
(HLA-DR+).106

Combination of immune checkpoint blockade
and cytotoxic chemotherapy
Chemotherapy can also increase tumour neo-
antigen release by direct tumour cell killing, and
alters TIME through cytotoxicity of immune sub-
sets. MDSCs can be eliminated by chemotherapy,
providing a rationale for combining cytotoxic
chemotherapy with ICB or other immunother-
apy.107,108 At least 14 clinical trials are ongoing in
this category, none have yet reported interim
results (Table 1).

Macrophage and myeloid-directed
immunotherapies
Given the importance of macrophages and MDSCs
in shaping tumour immunity, there is great
interest in targeting these cell types, particularly
in combination with ICB.109,110 TAMs depend
upon trophic support from macrophage colony-
stimulating factor (M-CSF), encoded by the CSF1
gene, which signals through the myeloid CSF1
receptor (CSF1R). Inhibition of the CSF1/CSF1R
axis leads to TAM depletion, enhanced CTL
function and improved tumour response to che-
motherapy or ICB in multiple preclinical models,
JHEP
although this has not been investigated in CCA
specifically.111,112 Initial results of the phase I,
first-in-human study of combination CSF1R and
PD-1 blockade in pancreatic cancer
(NCT02526017), another highly desmoplastic
tumour type with low ICB monotherapy response
rates, showed a promising ORR of 10%. However,
43% of patients had grade 3-5 treatment-related
AEs attributed to cabiralizumab.113 Based on
these results, combined treatment with cabiralizu-
mab and nivolumab is currently being assessed for
BTC in a phase II trial (NCT03768531). Alternative
therapeutic strategies target the recruitment,
polarization, and activity of TAMs and MDSCs.
Inhibiting chemokine receptors (CCR2, CCR5, and
CXCR2 etc.) to prevent recruitment of TAMs and
MDSCs to the TIME is under investigation in
pancreatic cancer and other tumour types, but
has not yet been explored in BTC. CD40 agonists
under clinical investigation in CCA
(NCT03329950) are known to modify macro-
phage polarization in addition to their effects
on adaptive immunity.114,115 The histone deace-
tylase inhibitor entinostat was shown to inhibit
MDSC activity and increase the efficacy of PD-1
blockade in preclinical models of lung and renal
cell cancer.116 This combination is currently
under investigation in a phase II clinical trial of
advanced CCA and pancreatic cancer
(NCT03250273). INCB001158 is an arginase inhi-
bitor designed to inhibit the activity of
MDSCs,117 and is currently being evaluated in
combination with chemotherapy (FOLFOX, gemci-
tabine/cisplatin, or paclitaxel) in a phase I/II study
of advanced solid tumours including CCA
(NCT03314935).

Adoptive cell therapy
As the response to ICB in CCA has been subpar, it is
possible that these are immunologically “cold”
tumours that lack a substantial tumour-reactive T
cell population. Adoptive cell therapy using CTLs or
NK cells attempts to overcome this limitation
(Fig. 3), with encouraging early results. In a single
patient with metastatic CCA, adoptive transfer of
TILs enriched for a CD4+ T helper 1 population of
cells that recognized a tumour-specific mutation
resulted in PR lasting 13months.118 A single patient
with metastatic CCA was treated with subse-
quent infusions of CAR T cells targeting EGFR
and CD113, with partial responses to each infu-
sion (8.5 and 4.5 months respectively, although
complicated by toxicities).119 DC-based adju-
vant immunotherapy was investigated in a
small study of 62 iCCA undergoing surgical
resection. Patients who received autologous
tumour lysate pulsed DCs plus ex vivo activated
T cell transfer following surgery had improved
median PFS and OS (18.3 and 31.9 months,
respectively) compared to patients who under-
went surgery alone (7.7 and 17.4 months,
Reports 2019 vol. 1 | 297–311 306
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respectively).120 These results indicate that
adoptive cell therapy could generate durable
antitumour responses. Multiple clinical trials
assessing the antitumour efficacy of adoptive T
cell transfer in solid organ malignancies includ-
ing CCA are ongoing (Table 3).

Other immunotherapeutic strategies
Other immunotherapeutic strategies of interest in
CCA include peptide or DC-based vaccines, oncoly-
tic viruses, and attenuated bacteria-based thera-
pies. Peptide and DC-based vaccines are designed
to increase antigen presentation and T cell priming
in immunologically “cold” tumours, while viral and
bacterial vectors simultaneously lyse tumour cells,
increase antigen presentation, and stimulate a
T cell response (Fig. 3). Peptide-based cancer vac-
cines have been designed to target immunogenic
and tumour-associated antigens.121 Several small,
early phase studies of peptide vaccines targeting
proteins such as Wilms tumour 1 (WT1) and
mucin 1 (MUC1) have shown limited clinical effi-
cacy in CCA to date.122–125 DC-based therapy was
FDA-approved in metastatic prostate cancer after
showing a modest benefit in OS.126 DC-based
therapies have been investigated in CCA.127 A ret-
rospective analysis of 65 patients with BTC
treated with DCs pulsed with peptides from
WT1, MUC1 or both, showed adequate safety and
a median survival of 7.2 months following
vaccination.128
Non-
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Talimogene laherparepvec is an oncolytic viral
therapy that is FDA-approved for metastatic mela-
noma. It consists of a modified HSV with tumour-
selective replication and GM-CSF overexpression,
and it is delivered intratumourally.129 In CCA,
preclinical studies have attempted to identify
viral vectors capable of tumour-cell selective repli-
cation and lysis.130–132 An oncolytic adenovirus
encoding immunostimulatory transgenes is
currently being assessed in a clinical trial in solid
tumours including CCA (NCT03225989; Table 3).
There is an intriguing preclinical rationale behind
the use of live, attenuated bacterial vectors, as
they exhibit tropism for the hypoxic tumour
microenvironment and the ability to stimulate
innate and adaptive immune responses. However,
there are significant safety concerns with this
approach, and no therapies are currently FDA-
approved.133 NCT01099631 is an ongoing trial in
patients with metastatic liver cancer including
biliary cancer, treated with attenuated salmonella
expressing IL-2.

Future perspectives
The prevailing knowledge on the immunobiology
of CCA is based primarily on IHC analyses. Future
studies should employ sophisticated techniques
such as mass cytometry and single cell transcrip-
tomics to delineate the role of innate and adap-
tive immune cell subsets in CCA progression. In
view of the subpar response rates to ICB
T cell-infiltrated (immune ‘Cold’) CCA

Tolerogenic
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Table 3. Ongoing cell-based and vaccine immunotherapy clinical trials in cholangiocarcinoma.

Intervention Trial type Population
(# participants, estimated enrolment)

ClinicalTrials.gov
Identifier

Adoptive cell therapy

Autologous central memory T cell therapy + radiotherapy
or chemotherapy

Phase II, randomized, open label iCCA after radical resection with CR
(20 pts)

NCT03820310

Autologous CD8+ T-cell therapy + pembrolizumab Phase I, single arm, open label Advanced GI malignancies, including
CCA (40 pts)

NCT02757391

Autologous tumour infiltrating lymphocytes (TIL) Phase II, single arm, open label Unresectable, refractory BTC (59 pts) NCT03801083

Autologous TIL + pembrolizumab + adesleukin
(recombinant IL-2) + conditioning chemotherapy

Phase II, non-randomized,
open label

Selected metastatic, refractory
cancers including CCA (332 pts)

NCT01174121

Autologous MUC-1 CAR T-cell therapy +
fludarabine/cyclophosphamide

Phase I/II, single arm, open label MUC-1 positive iCCA (9 pts) NCT03633773

Autologous Anti-CEA CAR T-cell therapy Phase I, single arm, open label Advanced, refractory, CEA+ cancer
including BTC (not specified)

NCT00004178

Allogeneic NK cell therapy Phase I, single arm, open label Advanced, refractory BTC (9 pts) NCT03358849

Autologous cytokine-induced NK cells + RFA vs. RFA Phase II/III, non-randomized,
single blind

Unresected CCA, without extrahepatic
metastasis (50 pts)

NCT02482454

Vaccine and DC-based therapies

Autologous dendritic cells pulsed with CEA RNA Phase I, single arm, open label Metastatic, refractory, CEA-expressing
cancers, including BTC (24 pts)

NCT00004604

Autologous dendritic cells infected with fowlpox vector
encoding CEA and costimulatory molecules
(fowlpox-CEA-TRICOM)

Phase I, single arm, open label Advanced, CEA-expressing cancers,
including BTC (14 pts)

NCT00027534

Recombinant fowlpox-CEA-TRICOM vaccine + sargramostim
(GM-CSF) or recombinant fowlpox-GM-CSF vaccine

Phase I, single arm, open label Advanced, CEA-expressing cancers,
including BTC (48 pts)

NCT00028496

Oral vaccine V3-X (pooled, inactivated CCA antigens) Phase I/II, single arm, open label CCA with elevated CA19-9 (20 pts) NCT03042182

Attenuated oncolytic vaccinia virus encoding RUC-GFP Phase I, single arm, open label Advanced solid cancers, including CCA
(36 pts)

NCT02714374

DNA vector encoding E-PRA and E-PSM peptides Phase I, single arm, open label Advanced solid cancers, including BTC
(12 pts)

NCT00423254

Other viral and bacterial vectors

Oncolytic adenovirus encoding immunostimulatory
TMZ-CD40L and 4-1BBL

Phase I/II, single arm, open label Selected advanced solid tumours,
including BTC (50 pts)

NCT03225989

Attenuated Salmonella Typhimurium expressing IL-2 Phase I, single arm, open label Any solid tumour, including BTC, with
liver involvement or metastasis (22 pts)

NCT01099631

Ongoing clinical trials were identified by searching ClinicalTrials.gov using the terms "Biliary Cancer," "cholangiocarcinoma," "biliary carcinoma," "bile duct," or "biliary tract" and
manually curated for inclusion of an immunotherapy arm. Trials were includedwith status of "Recruiting," "Not yet recruiting," "Active, not recruiting," "Completed," or "Enrolling
by invitation." Trials of general solid tumours were excluded unless a BTC arm or inclusionwas specified. Searchwas updated as of 4/1/19. BTC, biliary tract cancer; CAR, chimeric
antigen receptor; CR, complete response; GI, gastrointestinal; iCCA, intrahepatic cholangiocarcinoma.
monotherapy in CCA, effective combination
immunotherapeutic strategies which harness the
innate as well as the adaptive immune response
to CCA are required (Figs. 2 and 3). Such strate-
gies would couple ICB with immunotherapies tar-
geting immunosuppressive immune cells in
CCA. Consequently, a greater understanding of
the immunobiology of CCA will direct develop-
JHEP
ment of combination immunotherapeutic strate-
gies. Although a T cell-inflamed TIME, high TMB,
and even PD-L1 expression may correlate with
response in other tumour types, the utility of
these biomarkers in CCA is unknown. Accord-
ingly, investigative efforts should also be directed
towards development of biomarkers which pre-
dict response to immunotherapy in CCA.
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