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A B S T R A C T   

Background: Kirsten rat sarcoma virus (KRAS) has evolved from a genotype with predictive value to a therapeutic 
target recently. The study aimed to establish non-invasive radiomics models based on MRI to discriminate KRAS 
from epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) mutations in lung cancer 
patients with brain metastases (BM), then further explore the optimal sequence for prediction. 
Methods: This retrospective study involved 317 patients (218 patients in training cohort and 99 patients in testing 
cohort) who had confirmed of KRAS, EGFR or ALK mutations. Radiomics features were separately extracted from 
T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast- 
enhanced T1-weighted imaging (T1-CE) sequences. The maximal information coefficient and recursive feature 
elimination method were used to select informative features. Then we built four radiomics models for differ-
entiating KRAS from EGFR or ALK using random forest classifier. ROC curves were used to validate the capability 
of the models. 
Results: The four radiomics models for discriminating KRAS from EGFR all worked well, especially DWI and T2WI 
models (AUCs: 0.942, 0.942 in training cohort, 0.949, 0.954 in testing cohort). When KRAS compared to ALK, 
DWI and T2-FLAIR models showed excellent performance in two cohorts (AUCs: 0.947, 0.917 in training cohort, 
0.850, 0.824 in testing cohort). 
Conclusions: Radiomics classifiers integrating MRI have potential to discriminate KRAS from EGFR or ALK, which 
are helpful to guide treatment and facilitate the discovery of new approaches capable of achieving this long- 
sought goal of cure in lung cancer patients with KRAS.   

1. Introduction 

Brain metastases (BM) are the most common intracranial tumor in 
adults with an extremely poor prognosis [1]. Lung cancer (LC) has the 
highest frequency to metastasize to the brain that accounts for 40–50% 
of BM cases [1]. Increasing evidence has demonstrated that the mutation 
status in the primary tumor was also present in the metastases [2]. 

Recently, targeted therapies have significantly prolonged 
progression-free survival for non-small cell lung cancer (NSCLC) pa-
tients with BM, particularly in patients with specific genetic mutations 
[3]. Currently, epidermal growth factor receptor (EGFR) mutations, 
anaplastic lymphoma kinase (ALK) rearrangements and Kirsten rat sar-
coma virus (KRAS) are the most commonly tested oncogenic targets of 
NSCLC [4]. Moreover, multiple researches have shown that EGFR 
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mutations and ALK rearrangements are prone to developing BM, 
potentially associated with the extended survival for patients treated 
with systemic therapy [5,6]. However, unlike above two clinically 
actionable mutation status, KRAS which accounted for approximately 
20–25% of NSCLC was once considered not targetable [7,8]. Recently, 
KRAS has lost its title as "undruggable" officially with the approval of the 
KRAS G12C inhibitor [9]. Whereas, the data on the KRAS G12C in-
hibitors have shown that these agents are far from curative and sub-
stantial clinical practice is ongoing to further advance KRAS-targeted 
therapy [9]. Therefore, timely differentiating KRAS from EGFR or ALK 
not only guides targeted treatment strategies but also gets patients 
harboring KRAS mutations to join the clinical investigation as early as 
possible which could drive the development of effective treatments. 

Pathological examination through puncture biopsy is the gold stan-
dard for confirming genetic status. Nevertheless, because of its invasive 
nature, it is impractical and unrepeatable to obtain tissue samples from 
primary lesions or BM in some cases [10]. Magnetic resonance imaging 
(MRI) is the most significant tool to diagnose and monitor BM now [11]. 
Although MRI can clearly reflect the characteristics of BM, it still re-
quires substantial work and show strong variation between readers [10], 
particularly cannot provide molecular and genetic information. Devel-
oping a non-invasive, reproducible and easy-to-use method that can 
evaluate the whole tumor to help identify mutation status of BM would 

assist histological assessment. Radiomics is an emerging field of research 
associated with the extraction of radiomics features within medical 
images [12]. These quantitative metrics can describe tumor genotype or 
molecular phenotype and provide more detailed information than 
would be possible by human eyes [10,12]. Hence, MR images reflecting 
the whole tumor volume can be deeply mined by radiomics. 

Several studies have reported that a machine learning-derived 
radiomics approach based on CT image features in patients with 
NSCLC can predict the mutation status [13,14]. However, with the 
popularization and development of MRI, increasing number of small BM 
in asymptomatic patients can be detected even prior to the primary 
tumor [15]. There was limited literature to detect genetic mutation for 
LC patients with BM using MRI radiomics [16], especially the study 
related to identifying KRAS from the other two common mutation types. 
The aim of our study was to build and validate machine learning models 
based on MRI of BM to differentiate KRAS from EGFR or ALK mutations 
and explore the optimal MR sequence for predication. 

2. Methods 

2.1. Participants 

This study was approved by the Ethics Committee of local hospital. 

Fig. 1. The flowchart of patient selection.  

X. Lv et al.                                                                                                                                                                                                                                       



European Journal of Radiology Open 12 (2024) 100548

3

The institutional ethics committee approved all the data in the study for 
retrospective analysis and waived the demand for informed consent. 

The inclusion criteria were: (a) pathological diagnosis of NSCLC; (b) 
all patients had BM; (c) patients with the confirmation of KRAS, EGFR or 
ALK mutations in primary NSCLC or at least one of BM by surgery or 
biopsy; (d) all MR scans were performed before initiating treatment for 
BM. 

The exclusion criteria were: (a) patients with multiple primary lung 
cancer; (b) patients with a history of other central nervous system (CNS) 
disease such as acute cerebral hemorrhage, infarction and so on; (c) 
incomplete MRI images or the existence of image artefacts. 

Finally, 317 patients were enrolled in the study. Between January 
2004 and January 2016, we retrospectively collected 108 patients with 
EGFR mutations, 72 patients with ALK rearrangements and 38 patients 
with KRAS mutations as the training cohort. Then an independent 
testing cohort which included 46 patients with EGFR mutations, 35 
patients with ALK rearrangements and 18 patients with KRAS mutations 
was subsequently enrolled from January 2017 to September 2022. The 
whole patient enrollment was shown detailly in Fig. 1. 

2.2. MR imaging protocol 

All patients were imaged with a 3.0 T clinical MR scanner (SIGAL 
Pioneer, GE Healthcare, Milwaukee, Wisconsin) or 1.5 T MR scanner 
(Signa HDXT, GE Healthcare, Milwaukee, Wisconsin) which equipped 
with a sixteen channel or eight channel head coil at the time of their 
initial diagnosis of BM. Our MR imaging protocol for BM included 
routine axial T2WI (TR= 4000 ms, TE= 113 ms, slice thickness= 5 mm), 
axial T2 fluid-attenuated inversion recovery (T2-FLAIR) sequence (TR =
7000 ms, TE = 79 ms, inversion time (TI) = 2500 ms, slice thickness 
= 5 mm), axial diffusion weighted imaging (DWI) sequence with b 
values of 1000 s/mm2 and 0 s/mm2 (TR=4028 ms, TE=80 ms, slice 

thickness = 5 mm), and contrast-enhanced T1-weighted imaging (T1- 
CE) sequence (TR = 250 ms, TE = 2.46 ms, matrix = 256 × 256, FOV =
240 mm × 240 mm, slice thickness = 5 mm). Intravenous gadolinium- 
based contrast agent was used at a dose of 0.1 mmol/kg body weight. 

2.3. BM segmentation 

Registration was performed with all T2WI, T2-FLAIR, DWI and T1- 
CE images affinely co-registered into the same geometric space by the 
elastix toolbox before segmentation. Specifically, we registered T2WI, 
T2-FLAIR and DWI to the corresponding T1-CE sequence. Then we 
resampled all images to the same voxels of 3 × 3 × 3 mm3 to balance 
the effect of slice thickness variation. Both these two steps were per-
formed using 3D Slicer software (https://www.slicer.org). 

The tumors segmentations were manually performed on a slice-by- 
slice basis using 3D slicer, an open-source 3D image analysis software. 
The process of segmentation was strictly contoured by an experienced 
radiologist and confirmed by an independent radiologist with at least 10 
years of experience in brain MRI (Fig. 2). We segmented all tumors as 
regions of interest (ROIs) from each patient except the diameter of tu-
mors smaller than 5 mm because they were not reliably covered in two 
consecutive slices, which was the minimal requirement for the 3D 
approach. Besides, both radiologists were blinded to the gene mutation 
of BM. As a result, the training cohort and testing cohort included 773 
lesions and 355 lesions respectively. 

2.4. Radiomics features extraction 

According to ROIs, we separately extracted features based on the 
original images, LoG-sima-transformed images and wavlet-transformed 
images from four MR sequences. All of these features included seven 
groups: first-order features, shape-based features, grey level co- 

Fig. 2. Examples of MR images of BM patients used in this study: patient who is EGFR-mutant (A-E), ALK-mutant (F-J) and KRAS-mutant (K-O). (A), (F) and (K):DWI. 
(B), (G) and (L):T2WI. (C), (H) and (M):T2-FLAIR. (D), (I) and (N):T1-CE. (E), (J) and (O): 3D volume construction based on the ROI. 
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occurrence matrix (GLCM) features, grey level run length matrix 
(GLRLM) features, grey level size zone matrix (GLSZM) features, grey 
level dependence matrix (GLDM) features, and neighbouring grey tone 
difference matrix (NGTDM) features. The sigma values of the LoG filter 
were set 5.0 to 1.0 mm. Besides, the images were filtered with a low or 
high bandpass filter towards to x, y, and z directions. The detailed in-
formation of the radiomics features can be found in the PyRadiomics 
official documentation. (https://pyradiomics.readthedocs.io/en/latest 
/features.html). 

2.5. Radiomics feature selection 

To avoid bias toward majority class cases and achieve a high clas-
sification rate, we first used the synthetic minority oversampling tech-
nique (SMOTE) in the training cohort to separately balance KRAS to 
EGFR or ALK mutations separately in consideration of the unbalanced 
nature of the training dataset. Then the maximal information coefficient 
(MIC) was firstly used to select the top 200 relevant features based on 
four MR sequences according to the MIC values. Next, the recursive 
feature elimination (RFE) which was very popular due to its superiority 
in selecting features was used to choose predictable features and elim-
inate weak features. A tenfold cross-validation was utilized to avoid 
overfitting. According to the cross-validated score, we separately chose 
the ultimate features based on four MR sequences and visualized them. 

2.6. Model construction 

We used the random forest classifier (RFC) to construct the predic-
tive models because of its high variance-bias trade-off capability. Then 
we built four models based on BM from each MR sequence to discrimi-
nate KRAS from EGFR mutations. Besides, models based on four MR 
sequences for differentiating KRAS from ALK mutations were built using 
RFC method. The training cohorts were randomly divided into two parts 
by the ratio of 7:3. Then all these models were trained and validated in 
the corresponding training cohort using tenfold cross validation. At last, 
the best model which was separately selected from all models was tested 
in the independent testing cohort. Feature selections and model con-
struction were carried out by the Python scikit-learn package (version 
3.8, Scikit-learn Version 0. 21, http://scikit-learn.org/). 

2.7. Statistical analysis 

We used the statistical analysis package in the SPSS software (version 
26) and the Python Scikit-learn package. Qualitative variables were 
presented as frequencies and differences among groups were assessed by 
chi-squared tests. The continuous variable (age) was compared with t 
test. Receiver operator characteristic (ROC) curves and the area under 
the ROC curve (AUC) were used for assessing the ability of the radiomics 
features to predict the mutational status. Thereafter, we also evaluated 
accuracy, precision (positive predictive value), recall (sensitivity) and 
F1 score which was the harmonic average of the precision and recall, 
ranging from 0 to 1. For the statistical analysis, p < 0.05 was considered 
statistically significant. 

3. Results 

3.1. Basic clinical characteristics 

The basic clinical characteristics of the 317 patients were summa-
rized in Table 1. Our research showed that smoking has significant 
difference in KRAS compared to EGFR or ALK mutations whether in the 
training or testing cohort. As for the remaining clinical characteristics 
which included sex, age and alcohol consumption, there were no sig-
nificant difference among three gene mutations between two cohorts. 

3.2. Radiomics features selection 

In models of KRAS and EGFR mutations, we selected 22 most 
important predictive biomarkers based on T2WI, 22 features based on 
DWI, 21 features based on T2-FLAIR and 18 features based on T1-CE 
because of the highest cross-validated score as shown in Fig. S1. As for 
models of discriminating KRAS and ALK mutations, 11 features based on 
T2WI, 23 features based on DWI, 26 features based on T2-FLAIR and 13 
features based on T1-CE were respectively selected. The number of 
selected features for these four models were shown in Fig. S2. 

3.3. Model performance 

The performance of models for discriminating KRAS and EGFR mu-
tations based on four MR sequences in both training and testing cohorts 

Table 1 
Clinical characteristics from KRAS, EGFR and ALK in training cohort and testing cohort.  

Characteristic Training cohort（n = 218） Testing cohort（n = 99）  

KRAS EGFR ALK p p KRAS EGFR ALK p p  

（n = 38） (n = 108) (n = 72) (KRAS+/ 
EGFR+) 

(KRAS+/ 
ALK+) 

（n = 18） （n = 46） （n = 35） (KRAS+/ 
EGFR+) 

(KRAS+/ 
ALK+) 

Gender, n (%)           
Male 20 (52.63) 47 (43.52) 32 

(44.44) 
0.332 0.413 9 (50.00) 17 (36.96) 23 (65.71) 0.339 0.268 

Female 18 (47.37) 61 (56.48) 40 
(55.56)   

9 (50.00) 29 (63.04) 12 (34.29)   

Age (mean±SD 
years) 

61.4 ± 7.8 58.6 
± 10.1 

58.9 
± 8.3 

0.123 0.128 65.6 ± 8.1 62.0 
± 11.1 

62.9 ± 6.4 0.216 0.190 

Alcohol 
consumption, n 
(%)           

Yes 11 (28.95) 21 (19.44) 14 
(19.44) 

0.223 0.258 7 (38.89) 8 (17.39) 8 (22.86) 0.068 0.220 

No 27 (71.05) 87 (80.56) 58 
(80.56)   

11 (61.11) 38 (82.61) 27 (77.14)   

Smoking, n(%)           
Yes 30 (78.95) 35 (32.41) 27 

(37.50) 
* < 0.001 * < 0.001 10 (55.56) 11 (23.91) 8 (22.86) *0.015 *0.017 

No 8 (21.05) 73 (67.59) 45 
(62.50)   

8 (44.44) 35 (76.09) 27 (77.14)   

Note: Differences were assessed by t test or chi-square test. SD: standard deviation. 
* p < 0.05. 
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was shown in Fig. 3. The DWI and T2WI models yielded an AUC of 0.942 
(95% CI, 0.911 to 0.967) and 0.942 (95% CI, 0.914 to 0.967), F1 score of 
0.890 and 0.877, which were confirmed in the testing cohort with an 
AUC of 0.949 (95% CI, 0.899 to 0.986) and 0.954 (95% CI, 0.905 to 
0.993), F1 score of 0.903 and 0.933. The T1-CE model yielded an AUC of 
0.918 (95% CI, 0.882 to 0.949) and 0.954 (95% CI, 0.890 to 0.996) and 
F1 score of 0.826 and 0.900. The AUCs and F1 scores of T2-FLAIR model 
were 0.956 (95% CI, 0.929 to 0.978) and 0.838 (95% CI, 0.750 to 0.918) 
and 0.903 and 0.733 in two cohorts. Table 2 summarizes the accuracy, 
precision, recall and F1 score of these four models in two cohorts. 

As for models of differentiating KRAS from ALK mutations, the AUCs 
of the DWI model are 0.947 (95% CI, 0.915 to 0.974) and 0.850 (95% CI, 
0.735 to 0.944) in the training and testing cohort. And the F1 scores of 
the DWI model are 0.871 and 0.750 in the two cohorts respectively. The 
T2-FLAIR model achieved an AUC of 0.917 (95% CI, 0.875 to 0.952) and 
0.824 (95% CI, 0.705 to 0.924), F1 score of 0.837 and 0.708. The AUCs 
and F1 scores of the T2WI and T1-CE model were 0.896 (95% CI, 0.849 
to 0.940) and 0.892 (95% CI, 0.847 to 0.933), 0.831 and 0.824 in the 
training cohort, 0.795 (95% CI, 0.664 to 0.912) and 0.790 (95% CI, 
0.668 to 0.902), 0.739 and 0.766 in the testing cohort. The ROC curves 
and AUCs of these models in the training and testing cohorts are shown 
in Fig. 4. Besides, Table 3 summarizes the accuracy, precision, recall and 
F1 score of these three models in two cohorts. 

4. Discussion 

In this study, we proposed a retrospective radiomics analysis and 
developed non-invasive quantitative biomarkers using machine learning 
algorithms based on four normalized MR sequences (T1-CE, T2-FLAIR, 
T2WI and DWI) of BM to differentiate KRAS from EGFR or ALK muta-
tions. Finally, we found that radiomics models of multisequence MRI 
have the potential to differentiate mutation status in BM. 

This study collected basic clinical characteristics of all patients. The 
analysis showed that the smoking history of KRAS mutations patients 
had statistical significance with EGFR or ALK mutations patients in two 
cohorts. It was consistent with previous studies that KRAS mutations 
was associated with smokers whereas EGFR or ALK mutations was 
commonly observed in never or lighter smokers [15]. In terms of other 
characteristics such as sex, age and alcohol consumption, there was no 
significant difference among three mutations in two cohorts. 

Numerous previous studies have reported the capacity of CT image- 

based radiomics to predict genetic status in LC [21–23]. Tu et al. [21] 
compared the performance of radiomics signature and CT morpholog-
ical features for predicting EGFR mutation status, and showed that the 
radiomics features perform better with an AUC of 0.762 in the training 
cohort. Cheng et al. [22] established a radiomics model with 102 
selected features and presented an encouraging discrimination perfor-
mance to identify mutant and wild-type EGFR in ground-glass opacity 
featured lung adenocarcinoma with an AUC of 0.846 and 0.816 for the 
training and testing cohorts respectively. However, compared with these 
radiomics analysis based on the images of primary lung tumors, we 
mainly concentrated on features extracted from BM lesions. 

There are several reasons for us to choose MR-based radiomics to 
identify KRAS mutations. Firstly, brain was the most frequent metastatic 
site for NSCLC and initial site of relapse after treatment [11]. Recent 
clinical practice guidelines have recommended that it is mandatory for 
all locally advanced and metastatic NSCLC patients to perform molec-
ular testing including EGFR, ALK and KRAS [24]. Whereas, biopsy is 
invasive and polygenic testing is expensive. Currently, MRI has evolved 
to become the standard method to diagnose and monitor BM with 
excellent soft tissue contrast [25]. Secondly, nearly 80% patients 
discovered BM after primary tumor already has been diagnosed which 
means metachronous diagnosis [26]. Thus, it was always infeasible to 
extract radiomics features from primary lesions of these patients who 
have underwent a wide range of treatments such as radiotherapy, 
chemotherapy and even surgical resection. Finally, with the develop-
ment of MRI, increasing number of small BM in asymptomatic patients 
can be detected even prior to the primary LC [27]. As a result, our 
models based on BM radiomics signature could be served as a proper 
complementary and alternative method to predict mutation status that is 
desirable than relying solely on primary lesions. Previously, we have 
already indicated that radiomics features based on regular MR se-
quences have significant values in distinguishing EGFR mutations from 
ALK rearrangements in BM [27]. Wang et al. [28] developed MR-based 
radiomics signature of BM to predict EGFR mutations and found that the 
T2-FLAIR model achieved the best performance. Chen and colleagues 
[8] demonstrated that radiomics analysis of BM could be used to classify 
genetic mutations. In their study, the combined models of radiomics 
features and clinical characteristics yielded AUC values of 0.912, 0.915 
and 0.985 for classification of EGFR, ALK and KRAS mutation status 
respectively. The predictive ability of the models in above reports is 
satisfactory which demonstrated that radiomics based on BM can reflect 

Fig. 3. ROC curves of models for discriminating KRAS from EGFR mutations. (a) Training cohort. (b) Testing cohort.  
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mutation status effectively. 
Current researches of radiomics signature based on MR images of BM 

have paid extensive attention on detecting EGFR and ALK mutations but 
limited attention to KRAS mutations. Nevertheless, KRAS mutations is 
estimated to comprise a quarter of NSCLC and typically mutually 
exclusive with other clinically actionable mutation types including 
EGFR and ALK [15,29]. Pao et al. [30] have indicated that mutations in 
KRAS is associated with primary resistance to erlotinib and gefitinib 
which are both EGFR Tyrosine kinase inhibitors. Thus, distinguishing 
KRAS mutations from the two common mutation status (EGFR or ALK) 
in NSCLC can guide the selection of these kinase inhibitors. Targeting 
KRAS has long been marked by frustration due to the lack of unknown 
drug-pockets and anti-EGFR treatment [31,32]. Recently, KRAS has 
evolved from a genotype with predictive value to a therapeutic target 
recently with the observation of sotorasib——an inhibitor of the KRAS 
G12C approved by the FDA [31,33]. The numbers of clinical trials are 
ongoing to explore the mechanism of resistance pathways and novel 
agents targeting KRAS [34,35]. Therefore, early identifying KRAS mu-
tations and appealing these patients to participate in clinical 

investigations can not only evaluate novel agents and strategies but also 
bring patients with KRAS-mutant LC hope for long-sought goal of cure. 

In our current study, both two DWI models showed excellent per-
formance in discriminating KRAS from EGFR or ALK mutations with 
AUCs of 0.942, 0.947 in the training cohort and 0.949, 0.850 in the 
testing cohort respectively. Previous studies have demonstrated that the 
DWI sequence has a moderate diagnostic value for differentiating pri-
mary brain tumors from solitary BM and identifying the histology of BM 
from NSCLC [17,18]. The results of Jung et al. suggested that DWI pa-
rameters can also predict EGFR mutation status in BM [19]. These 
findings have indicated that DWI can reflect potential molecular and 
genetic information well through detecting motion of water altered by 
disease. Besides, the radiomics models for T2WI sequence can differ-
entiate KRAS from EGFR with high AUCs in two cohorts while the 
models for T2-FLAIR sequence can identify KRAS and ALK accurately. 
F1-score relies on the associated precision and recall, as the score varies 
more when the dataset is imbalanced, which is commonly used when 
developing prediction models in medicine [20]. Among the 
KRAS+ /EGFR+ classification models in our research, the T2-FLAIR 

Table 2 
Predictive performance of four models in discriminating KRAS and EGFR.  

Index Training cohort Testing cohort  

DWI model T2WI model T2-FLAIR model T1-CE model DWI model T2WI model T2-FLAIR model T1-CE model 

AUC  0.942  0.942  0.956  0.918  0.949  0.954  0.838  0.954 
Accuracy  0.884  0.865  0.899  0.827  0.900  0.933  0.733  0.900 
Precision  0.910  0.882  0.888  0.852  0.875  0.933  0.733  0.900 
Recall  0.871  0.872  0.919  0.802  0.933  0.933  0.733  0.900 
F1 score  0.890  0.877  0.903  0.826  0.903  0.933  0.733  0.900  

Fig. 4. ROC curves of models for discriminating KRAS from ALK mutations. (a) Training cohort. (b) Testing cohort.  

Table 3 
Predictive performance of four models in discriminating KRAS and ALK.  

Index Training cohort Testing cohort  

DWI model T2WI model T2-FLAIR model T1-CE model DWI model T2WI model T2-FLAIR model T1-CE model 

AUC  0.947  0.896  0.917  0.892  0.850  0.795  0.824  0.790 
Accuracy  0.871  0.829  0.837  0.816  0.700  0.700  0.650  0.725 
Precision  0.847  0.797  0.808  0.763  0.643  0.654  0.607  0.667 
Recall  0.897  0.868  0.868  0.897  0.900  0.850  0.850  0.900 
F1 score  0.871  0.831  0.837  0.824  0.750  0.739  0.708  0.766  
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model yielded the F1-score of 0.903 in the training cohort but 0.733 in 
the testing cohort, whereas the F1-scores of the other three models were 
relatively high particularly in the testing cohort all up to 0.90, which 
may indicate that the radiomics models for discriminating 
KRAS+ /EGFR+ in our study have better predictive performance when 
the datasets are imbalanced. However, the F1-scores of the four 
KRAS+ /ALK+ classification models ranged from 0.824 to 0.871 in the 
training set and 0.708 to 0.766 in the testing set were moderate. In 
addition, we found that all metrics of KRAS+ /EGFR+ classification 
models performed better than those of KRAS+ /ALK+ models, which 
may be related to the smaller dataset of ALK-mutant patients compared 
to EGFR mutations. 

There were several limitations of our study. Firstly, it was a retro-
spective single-institutional study and more prospective multicentric 
studies should be carried out to reduce the deviation of regional char-
acteristics. However, we recruited BM patients from two time points 
which may reduce the impact partly. Secondly, with a total of 317 pa-
tients, the sample size of our study is still modest although it is larger 
than similar studies. 

In summary, our study has demonstrated that radiomics classifiers 
integrating multisequence MRI may have potential to identify KRAS 
mutations, especially DWI and T2WI radiomics model when compared 
to EGFR mutations, DWI and T2-FLAIR radiomics model when 
compared to ALK mutations. They are helpful to guide clinical thera-
peutic strategies and facilitate the discovery of new approaches capable 
of achieving this long-sought goal of cure in populations of patients with 
KRAS-mutant NSCLC. 
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