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Abstract

Brain activity during wakefulness is associated with high metabolic rates that are believed to 

support information processing and memory encoding. In spite of loss of consciousness, sleep still 

carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking 

place during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking 

behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction 

of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage 

of interstitial fluid. These events are accompanied by changes in neuronal discharge patterns, 

astrocyte-neuron interactions, synaptic transactions and underlying metabolic features. Internally-

generated neuronal activity and network homeostasis are proposed to account for the high sleep-

related energy demand.

Introduction

Sleep is a universal and evolutionarily conserved behavior shared by species in the animal 

kingdom regardless of the great diversity of their ecological constraints. Although we do not 

yet have a fundamental understanding of why animals need to sleep, it is generally accepted 

that sleep allows the brain to perform critical operations that are largely incompatible with 

wakefulness [1]. The brain is a constant energy sink, accounting for up to one fifth of total 

body metabolism. Most of this energy utilization is due to information processing by 

neuronal-glial networks in the cortical grey matter [2]. The latter is necessary to implement 

appropriate behavioral responses to the afferent stimuli that are constantly barraging sense 

organs during wakefulness. Sleep interrupts the connection with the external world, but not 

the high cerebral metabolic demand. First, brain energy expenditure in non rapid eye 

movement (NREM) sleep only decreases to ~85% of the waking value, which is higher than 

the minimal amount of energy required to sustain consciousness [3**]. Second, rapid eye 

movement (REM) sleep is as expensive as wakefulness and the suspension of 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
*correspondence to: Mauro DiNuzzo, Ph.D., Center for Basic and Translational Neuroscience, Division of Glial Disease and 
Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark, 
mauro.dinuzzo@sund.ku.dk. 

Conflict of interest statement
Nothing declared.

HHS Public Access
Author manuscript
Curr Opin Neurobiol. Author manuscript; available in PMC 2017 December 16.

Published in final edited form as:
Curr Opin Neurobiol. 2017 December ; 47: 65–72. doi:10.1016/j.conb.2017.09.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


thermoregulation during REM sleep is paradoxically associated with increases in brain 

metabolic heat production and temperature [4]. Third, neither torpor/hibernation (for 

instance, in mammals undergoing daily hypothermia) [5] nor several anesthetic states [6] can 

completely redeem sleep need and recovery, in spite of the loss of consciousness and the 

accompanying decrease of energy use. Sleep must be related to some essential functions that 

are adaptive to the organism in the face of their relatively high energy requirements. Here we 

discuss how the glymphatic and ionostatic functions of the brain contribute to shape the 

metabolic correlates of sleep and associated neuronal network homeostasis.

Oxidative shift in brain energy metabolism during state transitions

Cerebral energy production is reliant on uptake and metabolism of circulating glucose as 

well as oxygen diffusing from bloodstream supporting the near-complete oxidation of the 

sugar. The oxygen-glucose utilization stoichiometry (oxygen-glucose index, OGI) is about 

5.1–5.4 in quiet waking conditions (note that 6 mol of oxygen are required to fully oxidize 1 

mol of glucose). The excess carbohydrates are processed through aerobic glycolysis, so 

termed because the pyruvate generated from glucose is reduced to lactate instead of being 

oxidized within the tricarboxylic acid cycle, regardless of adequate oxygenation (i.e. 

independent of oxygen availability) [7]. Aerobic glycolysis produces only 6% the amount of 

ATP generated by oxidative phosphorylation, yet it is substantially upregulated during active 

waking resulting in elevated production of lactate. Advances in amperometric substrate-

specific biosensors technology have allowed to monitor on a second-by-second time 

resolution the extracellular concentration of several important metabolites in the brain of 

freely-behaving rodents. Together with microdialysis and biochemical assays, these studies 

show that during NREM sleep cerebral glucose increases [8–10,11*] and lactate decreases 

[8,11*,12–16] relative to quiet waking. Glucose and lactate levels are reported to be 

somewhat similar in REM sleep and waking [9,17], although during engagement in complex 

tasks glucose drops [17,18] and lactate rises [13,17] further than during quiet waking. The 

extracellular glutamate concentration is lower during NREM sleep compared with 

wakefulness and REM sleep, supporting a decrease in glutamatergic neurotransmission [11*,

19,20]. Finally, the transition from wakefulness to sleep comes along with a transient surge 

in ATP levels in wake-active brain regions [21] that likely reflects the initial decrease in ATP 

degradation as sleep supervenes [22].

The above-mentioned changes in brain metabolite levels confirm and extend previous 

reports obtained in human subjects (but also in other mammals) that measured alterations in 

cerebral metabolic rates in different states relative to resting conditions. Specifically, active 

waking (e.g., sensory stimulation) is accompanied by much higher increases in metabolic 

rate of glucose than oxygen (with OGI decreasing to 4–5) [23–26]. Opposite, sleep is 

characterized by much higher decreases in metabolic rate of glucose than oxygen (with OGI 

approaching or exceeding 6; OGI>6 implies oxidation of substrates other than glucose, e.g., 

fatty acids) [27–34]. To summarize, state transitions are associated with changes in brain 

energy metabolism whose magnitude is governed by oxygen consumption and is thus 

relatively modest (about 15%). However, on top of these absolute changes there is a state-

dependent metabolic shift affecting the degree of aerobic glycolysis, with sleep being more 

oxidative than wakefulness [35] (Figure 1). For comparison, body metabolic rates fall at 
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least by 25% from quiet wakefulness to sleep, and by much more when physical activity is 

taken into account. Interestingly, the physiological changes taking place during sleep (e.g., 

decrease in muscle activity and thermogenesis) come with a slight reduction in respiratory 

quotient, indicating a transition to lower carbohydrate/fat oxidation ratio at the whole body 

level.

Coupling between aerobic glycolysis and plasticity by norepinephrine

The benefits for adopting the inefficient metabolic strategy of aerobic glycolysis during 

active waking behavior are presently unknown, but aerobic glycolysis is abolished by 

noradrenergic blockade, suggesting that it is related to the processing of sensory information 

[reviewed by 7]. Indeed, responsiveness to and discrimination between meaningful and 

meaningless environmental stimuli hinges on the activation of wake-promoting systems. 

During NREM sleep, firing of cholinergic and noradrenergic neurons is dramatically 

suppressed and forebrain acetylcholine (Ach) and norepinephrine (NE) levels are reduced 

(during REM sleep cholinergic activity is reinstated while noradrenergic neurons cease 

firing altogether). As a result, in the sleeping state the brain no longer process information in 

a task-relevant manner [e.g., 36] and memory encoding (i.e. formation) is set aside [37].

Aerobic glycolysis is developmentally regulated and correlates with expression of genes 

involved in synaptic growth and plasticity [38]. In the adult human brain, aerobic glycolysis 

is elevated in sites exhibiting intense plasticity genes expression and sustained activity like 

the medial prefrontal cortex, an area extensively implicated in learning and memory [39]. A 

recent human study reported high levels of aerobic glycolysis in task-relevant neocortical 

regions that strongly correlated with behavioral adaptation and functional connectivity 

[40**]. In rodent hippocampus and amygdala, increased glucose utilization and degradation 

of astrocytic glycogen contribute to the increase in extracellular lactate concentration 

required for memory processing [41–43]. Lactate potentiates neuronal N-methyl-D-aspartate 

(NMDA) receptor signaling (necessary for long-term potentiation) and triggers the 

expression of genes involved in synaptic plasticity [44,45]. The induction of plasticity-

related genes depends on the activity of the noradrenergic system and thus can only occur 

during wakefulness [46]. In turn, lactate can regulate NE availability by stimulating its 

release from locus coeruleus axonal varicosities [47]. Notably, sleep stimulates the clearance 

of brain lactate through the glymphatic system [48*], a process dependent on reduced 

noradrenergic activity and mediated by astrocytic aquaporin-4 (AQP4) water channels [49]. 

Cerebral perivascular-lymphatic drainage is an important route for lactate dispersal [50] and 

its suppression during wakefulness may thus contribute to maintain brain lactate levels, 

noradrenergic tone and synaptic plasticity [48*,51]. It should be noted that changes in 

neuromodulatory tone drive brain state changes and influence plasticity-related processes in 

all brain cell types, including astrocytes, neurons, oligodendrocytes and microglia [reviewed 

by 52].

State-dependent astrocyte-neuron functional and metabolic interactions

The transition from wakefulness to sleep is accompanied by a marked expansion of 

extracellular space [49,53] as well as rapid and sustained decrease in extracellular K+ and 
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increase in extracellular Ca2+ and Mg2+ [54**]. These changes in interstitial fluid volume 

and ionic composition are reversed during the transition from sleep to wakefulness and are 

largely dependent on neuromodulators, while they survive suppression of neuronal firing 

[49,54**]. As wake-promoting neuromodulators generally decrease membrane K+ 

conductance, these findings suggest the involvement of Na+/K+-activated adenosine 

trisphosphatase (NKA) activity. During sleep-wake cycle, NE has been reported to stimulate 

neuronal and inhibit astrocytic NKA [55], advancing the possibility that sleep promotes 

extracellular K+ removal and volume increase by a transient disinhibition of the osmogenic 

astrocytic NKA. Both neurons and astrocytes swell upon elevated extracellular K+ or 

oxygen/glucose deprivation, however neurons are remarkably more osmo-resistant than 

AQP4-expressing astrocytes [56,57]. Interestingly, NE has repeatedly been found to alter 

astrocytic morphology in vitro and in situ, a mechanism seemingly associated with 

increments of distal processes volume and surface area [53 and references therein]. Arousal 

upregulates genes related to extracellular matrix and cytoskeleton involved in the elongation 

of peripheral astrocytic processes, bringing them closer to the synaptic cleft during 

wakefulness compared with sleep [58*]. Alternatively or in addition, alike for lactate the 

enhancement of glymphatic system may contribute to K+ clearance during sleep (Figure 1).

The combination of interstitial fluid ionic changes brought about by sleep onset and 

progression might affect the balance between presynaptic and postsynaptic activation. Low 

extracellular K+ is associated with reduced synaptic failures and high extracellular Ca2+ is 

known to enhance transmitter release, whereas high extracellular Mg2+ increases blockade 

of NMDA receptors [54**,59]. The decrease in insterstitial K+ concentration is consistent 

with widespread neuronal hyperpolarization and consequent reduction in neuronal firing 

rates. Compared with quiet waking, average neuronal firing rates do indeed slightly decrease 

during NREM sleep, increase during active waking and do not appreciably change during 

REM sleep [60,61*]. Declines in neuronal firing rates (e.g., periodic neuronal silence during 

NREM slow-wave activity) are intrinsically associated with reduced synaptic failures in the 

majority of central synapses [62]. In addition, decreased Ach and NE levels during sleep 

might suppress astrocytic release (or astrocyte-mediated neuronal release) of ATP/adenosine 

and D-serine, thereby abrogating the effects of adenosine in inhibiting presynaptic glutamate 

release and potentiating postsynaptic responses as well as the effect of D-serine in acting as 

co-agonist at NMDA receptors [63]. Reduced synaptic coverage by astrocytes during sleep 

also entails decreased glutamate reuptake and consequent increase in glutamate dwell time 

and spillover, with profound consequences on neuronal synchronization and synaptic 

plasticity rules [58*]. Together, these observations indicate that sleep is seemingly 

characterized by an increase in release probability (i.e. decrease in synaptic failures). 

Synaptic failures enhance information transmission efficiency [2] and are necessary for basic 

neuronal computations, such as sensory adaptation, gain control and direction selectivity 

[64], something that is manifestly important during wakefulness.

Fundamental differences in the balance between presynaptic and postsynaptic activation can 

be well responsible for the changes in OGI observed during the sleep-wake cycle. The 

machinery for axonal vesicle transport and presynaptic vesicle recyling largely depends on 

glycolytic energy [65–68], consistent with low mitochondrial density in presynaptic 

terminals [69]. Action potential waveform and transmitter release can be modulated by 
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astrocytes [70] and are influenced by glycolytic energy provision [71] as well as axonal 

mitochondrial trafficking [72]. Uptake of extracellular K+ (most of which exits neurons via 

NMDA receptors) and glutamate by astrocytes causes and perhaps requires upregulation of 

glycogenolysis and glycolysis [73–75]. Dendritic spine remodeling during long term 

potentiation is to a large extent dependent on astrocytic glycogenolysis [76]. High rates of 

Ca2+ entry (e.g., through postsynaptic NMDA receptors) above the threshold for 

mitochondrial calcium uniporter stimulate tricarboxylic acid cycle dehydrogenases but at the 

same time favor lactate production by impairing malate-aspartate NADH shuttle [7,77]. The 

ability of glycolysis and oxidative phosphorylation to sustain different aspects of 

neurotransmission has been hitherto difficult to determine, but it likely depends on neuronal 

presynaptic and postsynaptic transactions [78]. At least in part, the aforementioned events 

are directly or indirectly the result of astrocytic response to neuromodulators, consistent with 

the idea that these cells can drive state transitions [79].

Network homeostasis as an energy-consuming facet of sleep

Sleep is an adaptive behavior that increases fitness and behavioral performance, as 

evidenced by the dramatic adverse effects of sleep deprivation, including reduced alertness 

and ability to acquire and store information [1]. Adaptation to the environment, a crucial 

factor impacting on the probability of survival, entails the capacity to modify behavior to 

mutating conditions. Refinement of neuronal circuits occur in an experience-dependent 

manner, whereby synapses constantly undergo Hebbian forms of synaptic plasticity like 

long-term depression and potentiation. If unopposed such mechanism may result in severe 

widening of neuronal firing rate distribution [80], so that distinct neuronal populations either 

fire together or are silent, even in the presence of synaptic rescaling. Against this 

destabilizing force, homeostatic plasticity mechanisms are proposed to maintain the stability 

of average neuronal activity by adjusting (i.e. either upscaling or downscaling) synaptic 

strengths [81].

Sleep and wakefulness have recently been found to produce distinct plasticity effects on 

neuronal networks. In particular, wakefulness is associated with homeostatic changes 

targeting average neuronal firing set-points [82*] whereas sleep is associated with 

homeostatic changes targeting neuronal firing distribution [61*]. It seems that sleep brings 

about a spike rate homogenization effect, that is increasing the activity of slow-firing 

neurons and decreasing the activity of fast-firing neurons. To this end, the drifting levels of 

NE and other subcortical neuromodulators occurring during sleep have been suggested to 

shift plasticity rules between depression and potentiation [61*]. These findings can be 

interpreted in keeping with the concept of predictive coding, in a nutshell being the idea that 

the brain contains a representation of the reality used during wakefulness for unconscious 

inference [83]. The role of NE would be that of inducing the processing of the sole residual 

mismatch between external information and the inner model of the world, something that 

dramatically improves energy efficiency. Accordingly, NE decreases the influence of the 

internal representation to the afferent sensory input, suggesting that it prevents the 

interpretation of sensory information based only on previous learning [84]. The 

representation of reality is altered during wakefulness in the presence of environmentally-

oriented sensory-motor cortical activity and requires NE, lactate and astrocytic participation 
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in synaptic plasticity [51]. As illustrated above, cessation of noradrenergic firing during 

sleep substantially modifies astrocyte-neuron interactions. The resulting internally-generated 

neuronal activity may enable environment-independent changes to internal representations, 

which would otherwise become progressively resistant to, and worsen the efficiency of, 

reorienting behavioral responses.

Conclusions

The varying degree of aerobic glycolysis between sleep and wakefulness likely reflects the 

altered astrocytic participation in neuronal activity and the ensuing changes in synaptic 

plasticity brought about by differences in neuromodulatory tone. During sleep, selective 

homeostatic changes are obtained by exposing synapses to neuronal discharge patterns that 

are energy demanding. Overall, both in terms of energy metabolism and neuronal activity, 

the immediate sleep “savings” are quantitatively minor as they might support processes 

necessary to improve and/or restore the ability to learn and remember during subsequent 

wake periods. The exact biological mechanisms underlying the homeostatic control of 

cortical synapses are largely unknown, but astrocytes are undoubtely involved in the 

remodeling of neuronal activity and synaptic plasticity occurring in response to wake-

promoting neuromodulators [85,86].
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Highlights

• Cerebral aerobic glycolysis and lactate levels are elevated during wakefulness

• Sleep is metabolically expensive and increases oxygen-glucose utilization 

stoichiometry

• Noradrenergic tone targets brain ionostatic, glymphatic and metabolic 

functions

• Astrocytes affect state-specific presynaptic/postsynaptic neuronal activity and 

plasticity
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Figure 1. Physiological correlates of brain state changes across the sleep-wake cycle
(A) Electroencephalographic, ionostatic, glymphatic and metabolic features of wakefulness 

and sleep states. Sleep is characterized by the appearance of synchronous slow wave activity 

underlying a reduction in neuronal firing rate and reshaped firing patterns. Neuronal 

excitability is suppressed through alterations in interstial fluid ion composition as well as 

glymphatic clearance of neuroactive compounds. These events are accompanied by a 

metabolic shifts from elevated aerobic glycolysis during wakefulness to more oxidative 

metabolism during sleep. Approximate values of main cerebral ions and metabolites are 

shown. (B) Schematics of state-dependent astrocyte-neuron interactions. Noradrenergic tone 
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drives state transitions and maintains brain state by acting at different targets, including 

ionostatic and glymphatic control systems. During wakefulness, neuronal and astrocytic 

metabolism is characterized by high rates of aerobic glycolysis, glycogen degradation and 

lactate production in a NE-dependent manner. Lactate in turn potentiates NE release by 

noradrenergic terminals and it is involved in NMDAR-mediated synaptic plasticity 

mechanisms and expression of plasticity-related genes. During sleep, suppression of 

noradrenergic activity enhances glymphatic clearance of lactate and possibly also glutamate 

and K+. Clearance is facilitated by increased extracellular space volume (i.e. reduced 

intracellular volume) and decreased synaptic coverage by astrocytic processes. K+ is also 

sequestrated by astrocytic NKA, which contributes to the decreased extracellular K+ and 

associated neuronal excitability underlying sleep. In this state, increased levels of 

extracellular Ca2+ and Mg2+ enhances release probability of vesicles (possibly with reduced 

quantal content) while blocking NMDAR activation, thereby changing synaptic plasticity 

rules. EAAT, excitatory amino acid transporter; NMDAR, N-methyl-D-aspartate receptor; 

AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NKA, Na+/K+-

activated adenosine trisphosphatase.
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