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A novel inflammatory response‑related 
signature predicts the prognosis of cutaneous 
melanoma and the effect of antitumor drugs
Jiahua Xing1,2, Yan Li1, Youbai Chen1* and Yan Han1* 

Abstract 

Cutaneous melanoma (CM) is a skin cancer that is highly metastatic and aggressive, with a dismal prognosis. This 
is the first study to use inflammatory response-related genes to build a model and evaluate their predictive signifi-
cance in CM. This study used public databases to download CM patients’ mRNA expression profiles and clinical data 
to create multigene prognostic markers in the UCSC cohort. We compared overall survival (OS) between high- and 
low-risk groups using the Kaplan-Meier curve and determined independent predictors using Cox analysis. We also 
used enrichment analysis to assess immune cell infiltration fraction and immune pathway-related activity using KEGG 
enrichment analysis. Furthermore, we detected prognostic genes’ mRNA and protein expression in CM and normal 
skin tissues using qRT-PCR and immunohistochemistry. Finally, we developed a 5-gene predictive model that showed 
that patients in the high-risk group had a considerably shorter OS than those in the low-risk group. The analysis of the 
receiver operating characteristic (ROC) curve proved the model’s predictive ability. We also conducted a drug sensitiv-
ity analysis and discovered that the expression levels of prognostic genes were substantially linked with cancer cell 
sensitivity to antitumor medicines. The findings show that the model we developed, which consists of five inflamma-
tory response-related genes, can be used to forecast the prognosis and immunological state of CM, giving personal-
ized and precision medicine a new goal and direction.
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Introduction
Melanoma is a highly aggressive and invasive tumor that 
arises from melanocytes, often in the skin and mucous 
membranes [1]. According to the American Joint Com-
mittee on Cancer (AJCC), between 2018 and 2021, there 
will be 91,270 and 106,110 new melanoma cases, respec-
tively [2, 3]. According to statistics, the global incidence 
of melanoma was around 3.9/100,000 in 2017, represent-
ing a 41.2% increase since 1990 [4]. Despite accounting 

for a small percentage of skin cancers, cutaneous mela-
noma (CM) has a significant recurrence rate, mortality, 
and medication resistance compared to other skin malig-
nancies [5–7]. After complete resection, early-stage CM 
has a high cure rate, with a mortality rate of 70% and 
a 5-year survival rate of fewer than 16% in stages 3/4 
patients [8]. As a result, novel CM biomarkers must be 
investigated to guide clinical treatment and enhance the 
prognosis of CM patients. Gene-based biomarkers have 
gotten much attention since human gene sequencing 
technologies developed [9].

Researchers have been studying the role of inflamma-
tion in the genesis and progression of cancer [10–12]. 
Inflammation can both promote and prevent cancer 
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[13, 14]. The link between cancer and indicators of the 
inflammatory response can be investigated by evalu-
ating basic blood measurements. Many inflamma-
tory response-related characteristics in the peripheral 
blood of patients with CM, such as thrombocytosis, 
leukocytosis, hypoproteinemia, and increased plasma 
fibrin, have been established in investigations [15, 16]. 
In the overall survival analysis of cancer, clinical sys-
temic inflammatory markers such as neutrophil ratio, 
platelet-lymphocyte ratio, and lymphocyte-monocyte 
ratio revealed substantial predictive potential inde-
pendent of previously identified prognostic variables 
for CM [17]. The link between inflammatory response-
related genes and CM prognosis, on the other hand, is 
uncertain [18].

In this study, we utilized the UCSC database to down-
load the mRNA expression profiles of CM patients as 
well as the corresponding clinical data, used differential 
analysis to find the inflammatory response-related genes 
differentially expressed in CM, built a CM prognostic 
marker model, and validated the model’s stability and 
reliability using training and validation sets. We used 
functional enrichment analysis to investigate the model’s 
potential mechanisms of action and looked at the asso-
ciation between predictive gene expression and the type 
of immune infiltration. In addition, we looked at the rela-
tionship between prognostic gene expression and tumor 
chemoresistance, and our findings were then confirmed 
using qRT-PCR and IHC (data from the Human Protein 
Atlas), resulting in novel concepts for predicting CM 
prognosis.

Material and methods
Data download
We used the UCSC database (https://​xena.​ucsc.​edu/) to 
find the GDC TCGA melanoma dataset and downloaded 
the HTSeq-fpkm dataset (n = 472) as the tumor group. 
As the control group (n = 323), we looked for the GTEX 
dataset on UCSC, retrieved the TOIL RSEM fpkm data-
set, and extracted the skin data from it. We next joined 
the tumor and control groups to create our gene expres-
sion matrix. In addition, we obtained data on inflamma-
tion-related genes (n = 200) from the GSEA database 
(http://​www.​gsea-​msigdb.​org/). For the following study 
analysis, we shall merge the above datasets.

Screening for differential genes (DEGs) related 
to inflammatory response
We used the limma package in R language to identify 
differential genes (DEGs) associated with inflammatory 
responses, and we set the value of corFilter ≥ 0.4 and 
pvaluefilter ≤ 0.01. In the search for differential genes 

(DEGs), we set the significance threshold to |log2FC| ≥ 2 
and the false-positive rate (FDR) ≤ 0.05.

Modeling of inflammatory response‑related prognosis 
in the training and validation groups
Overall survival (OS) was used as a clinical endpoint 
in our study, and to improve the model’s accuracy, we 
screened patients with prognostic information in the 
tumor group patient group and then divided them into a 
training group (n = 228) and a validation group (n = 226). 
We then used one-way Cox analysis to screen for overall 
survival (OS) associated with inflammatory differential 
genes (n = 15) and then adjusted P-values using the Ben-
jamini and Hochberg (BH) method. Hazard ratios (HR) 
were utilized to assess if an inflammatory factor was a risk 
factor (HR > 1) or a protective factor (HR < 1).

We used the least absolute shrinkage and selection 
operator (LASSO) Cox regression analysis to develop 
prognostic models for fitting overall survival (OS) in 
CM patients based on these inflammatory differen-
tial genes. We used the R language’s glmnet package 
to select and shrink variables such that some of the 
regression coefficients were strictly equal to 0 to obtain 
the best prognostic model [19]. We used the normal-
ized expression matrix of potential prognostic factors 
identified by DEGs as the independent variable and 
the overall survival (OS) and status of patients as the 
dependent variable in the regression analysis. We used 
tenfold cross-validation to determine the prediction 
model’s penalty parameter (λ) and followed the mini-
mum criterion (the value of λ corresponds to the lowest 
likelihood deviation). We produced patient risk scores 
and risk profile models based on the expression levels 
of important inflammatory response genes and their 
accompanying regression coefficients. The risk score is 
calculated as follows: β (hub gene1) × expression (hub 
gene1) + β (hub gene2) × expression (hub gene2) + β 
(hub genen) × expression (hub genen)

Model evaluation
We classified patients in the training and validation 
groups into low- and high-risk groups using the risk 
score formula and the median score value of the risk 
score in the training group as the cutoff point. We then 
used the R package survminer to plot Kaplan-Meier 
survival curves for overall survival (OS) in low- and 
high-risk groups, as well as ROC (receiver operating 
characteristic) curves to assess the model’s predic-
tion usefulness and accuracy. We used the rtsne and 
ggplot2 packages in R to perform principal component 
analysis (PCA) [20] and t-SNE [21] analysis on the gene 
expression levels in the built models to minimize the 
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dimensionality and analyze the distribution of the low- 
and high-risk groups.

Independent prognostic analysis
We employed univariate and multivariate Cox regression 
to determine if our prognostic model was independent 
of other commonly used clinical variables (e.g., age, gen-
der) associated with OS in CM patients. Independent 
prognosis analyses were performed on all sample groups, 
the training group, and the validation group (P < 0.05). 
To predict the chance of survival in CM patients, we 
utilized a multifactor logistic model that included a risk 
score model and traditional clinical data (including age 
and gender). We used the model and examined its accu-
racy in the training and validation groups.

Functional enrichment: GSEA analysis
Gene set enrichment analysis (GSEA) ranks genes based 
on their differential expression in two types of sam-
ples and then determines whether the preset gene set is 
enriched at the top or bottom of this ranking table. We 
analyzed inflammatory response-related prognostic 
genes across high- and low-risk groups using GSEA anal-
ysis (version 4.2.0) to identify differential KEGG signaling 
networks and putative biological processes influencing 
tumor growth [22]. We set the number of permutations 
to 1000 and the type of permutation to phenotypic, with 
a significance threshold of P < 0.05. The immune infil-
tration status of patients with CM and the immunologi-
cal differences between high- and low-risk groups were 
determined using single-sample gene set enrichment 
analysis (ssGSEA). We calculated the infiltration frac-
tion of 16 immune cells and the activation of 13 immune-
related pathways in the high-risk and low-risk groups 
using the R language package GSVA.

Tumor microenvironment (TME) and immune scoring
Malignant tissues include not just tumor cells but also 
normal epithelial and stromal cells, immune cells, and 
vascular cells associated with tumors. Infiltrating stromal 
and immune cells, on the other hand, constitute the major-
ity of normal cells in tumor tissue and play a critical role 
in tumor biology. We typically utilize immune, stem cell, 
and stromal scores to quantify the degree of immune and 
mesenchymal stromal cell infiltration in various tumor 
tissues. Spearman correlation analysis determined the 
link between risk and various scores. To examine the link 
between risk score and immune infiltration subtypes, we 
utilized a two-way analysis of variance (2-way ANOVA). 
Tumor stem cell characteristics are frequently employed 
to quantify the stem cell-like properties of tumors, and the 
link between tumor stemness and risk score was analyzed 

using Spearman correlation. The ESTIMATE algorithm in 
the R language ESTIMATE package was used to estimate 
the rate of the immune stromal component in TME for 
each sample, which is reported as three scores: stemnessS-
core, immuneScore, and stromalScore. Additionally, we 
employed computational approaches such as ESTIMATE 
[23], TIMER [24], MCP-counter [25], CIBERSORTx [26], 
and ssGSEA in the training group to synthesize immuno-
logical differences in the risk model using the R language’s 
pheatmap package to visualize the graphs.

Drug sensitivity analysis
To study the association between inflammation-related 
prognostic gene expression and drug sensitivity, we used the 
CellMiner database (https://​disco​ver.​nci.​nih.​gov/​cellm​iner/​
home.​do) for drug sensitivity prediction and Pearson cor-
relation analysis. After selecting the processed data set and 
downloading the RNA expression data and drug data (com-
pound activity: DTP NCI-60), we read the drug-related data 
and screened the drug criteria, and after completing the 
preparation of the gene expression data, we completed the 
drug sensitivity analysis using the R packages impute and 
limma. Finally, we visualized and completed the scatter plot 
using the R packages ggplot2 and ggpubr.

Validation of key genes in CM and paraneoplastic tissues
Following permission from the Chinese PLA General 
Hospital’s Human Research Ethics Committee, we col-
lected eight pairs of CM and para-cancerous normal tis-
sue specimens. All patients were informed and signed 
an informed consent form. The relative expression of 
five key genes was determined using qRT-PCR. We iso-
lated total RNA from cancer and paraneoplastic tissues 
using TRIzol and determined the quantity of RNA using 
a NanoDrop spectrophotometer. We then reverse-tran-
scribed the RNA into cDNA using a 5 × RT Master Mix 
(BioRad) and analyzed mRNA expression levels using a 
2 × SYBR Green PCR Kit. The expression of each gene 
was standardized to GAPDH. Using the 2−∆∆Ct tech-
nique, we quantified the real-time PCR analysis and 
determined the relative expression of genes linked with 
the validation reaction. The following primer sequences 
were used: C3AR1: forward, AAG CCA ATC TGG TGT 
CAG AAT C; reverse, CAG GAA TGC ACA TCA CAA 
AAG C; CXCL10: forward, GTG GCA TTC AAG GAG 
TAC CTC; reverse, TGA TGG CCT TCG ATT CTG 
GAT T; EIF2AK2: forward, GCC GCT AAA CTT GCA 
TAT CTT CA; reverse, TCA CAC GTA GTA GCA AAA 
GAA CC; EMP3: forward, CCT GAA TCT CTG GTA 
CGA CTG C; reverse, GCC ATT CTC GCT GAC ATT 
ACT G; ICAM1: forward, ATG CCC AGA CAT CTG 
TGT CC; and reverse, GGG GTC TCT ATG CCC AAC 
AA. The Huada Corporation synthesized all our primers 
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(Beijing, China). We next used the online database HPA 
(https://​www.​prote​inatl​as.​org/) to confirm the differen-
tial expression of immunohistochemical proteins associ-
ated with important genes in normal tissues and CM.

Statistical analysis
The Wilcoxon test was used to compare DEGs in CM 
and para-cancerous normal tissue, and the chi-square 
test was used to compare various proportions. The 
Mann-Whitney test was used to compare the ssGSEA 
scores of immune cells or immunological pathways 
across high- and low-risk groups, and the P-values were 
adjusted using the BH technique. We analyzed variations 
in OS between groups using Kaplan-Meier analysis and 
screened for independent determinants of OS using uni-
variate and multivariate Cox analysis. The correlation 
study of prognostic model risk scores or prognostic gene 
expression levels with stemnessScore, immuneScore, 
stromalScore, and drug sensitivity was performed using 
Spearman and Pearson correlation analysis. All statistical 
analyses were conducted using the R programming lan-
guage (version 4.1.1). All statistical tests were two sided, 
and a significance level of P < 0.05 was considered statis-
tically significant.

Result
Acquisition of genes related to inflammatory response
The study’s flow chart is depicted in Fig. 1. The study pop-
ulation included 472 patients with CM from the UCSC 
cohort and 323 patients with normal skin tissue expres-
sion data. The clinical characteristics of these patients are 
summarized in Table 1 (including age, gender, stage, and 
TNM stage). The screening of prognostic genes associ-
ated with inflammation was conducted with data on 200 
prognostic genes associated with inflammation received 
from the GSEA database (Additional file 1).

Construction and validation of a predictive model related 
to inflammatory response
We removed samples with identical ID values and miss-
ing clinical data, leaving 454 samples with survival 
days and survival status. These samples were randomly 
divided into a training group (n = 228) (Additional 
file  2) and a validation group (n = 226) (Additional 
file  3). We initially screened using one-way Cox anal-
ysis and identified 15 inflammatory genes linked with 
OS (P < 0.01) (Fig. 2A) (Additional file 4) and demon-
strated their correlation (Fig.  2B). We then performed 
LASSO regression analysis on these genes and screened 
inflammatory genes with more than 900 replicates in 
1000 replacement samples. We then constructed a 
model containing five genes to predict the prognosis of 
CM patients based on their λ values (Fig. 3). The model 

consists of five key genes, including C3AR1, CXCL10, 
EIF2AK2, EMP3, and ICAM1. The hazard ratio (HR), 
95% confidence interval (95% CI), and P-value of five 
hub gene could be seen at Table 2. The risk score is cal-
culated as follows: (−0.00195702921106954) × expres-
sion (C3AR1) + (−0.0717393323519231) × expression 
(CXCL10) + (−0.178228168474953) × expression 
(EIF2AK2) + (0.0821050910327823) × expression 
(EMP3) + (−0.000851776035203931) × expression 
(ICAM1).

We split all patients in the training and validation 
groups into high- and low-risk groups based on the 
training group’s median risk score. In the training group, 
we discovered that patients’ chance of death increased, 
and their survival time reduced (Fig.  4A). Scatter plot 
analysis revealed that patients classified as high risk had 
a greater likelihood of dying sooner than patients classi-
fied as low risk (Fig. 4B). Kaplan-Meier curves revealed 
that OS was substantially worse in high-risk individuals 
than in low-risk patients (P < 0.01) (Fig.  4C). The risk 
heat map depicted the expression of many inflammatory 
genes associated with prognosis in high- and low-risk 
groups (Fig. 4D). We next revalidated our results in the 
validation group, where we noticed substantial varia-
tions in OS between the high-risk and low-risk groups 
(Fig.  4E–G) and inflammatory prognostic gene expres-
sion in the heat map (Fig. 4H) proving the model’s accu-
racy once again. We then used principal component 
analysis (PCA) (Fig. 5A–B) and t-SNE (Fig. 5C–D) analy-
sis to demonstrate the discrete distribution of patients 
into different risk groups. Because patients in the high-
risk group may die earlier and have shorter survival 
times than those in the low-risk group, we can intuitively 
assume that the model constructed using inflamma-
tory prognosis-related genes can better differentiate the 
prognosis of patients with CM.

Independent prognostic analysis of OS
We utilized univariate and multivariate Cox regression 
analyses to determine if clinical parameters (age, gender), 
and risk score was significant independent predictors 
of OS. We showed that risk score, gender, and age were 
independent predictive predictors of OS in univariate 
and multivariate Cox regression analyses in the training 
group (Fig. 6A–B), validation group (Fig. 6C–D), and all 
samples (Fig. 6E–F). Additionally, the ROC areas at 1, 2, 
and 3 years were 0.754, 0.660, 0.654 (Fig. 7A), and 0.670, 
0.709, 0.682 (Fig.  7B), respectively, for the training and 
validation groups. Our findings indicated that the risk 
score model was considerably better in predicting OS in 
patients with CM than other clinical factors, such as age 
and gender (Fig. 7C–D).

https://www.proteinatlas.org/
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Fig. 1  Flow chart of this study, including data collection, analysis, and experiment
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Immune status and tumor microenvironment analysis
To further synthesize the immune cell infiltration in CM 
patients and to explore the differences in immune status 
between high- and low-risk groups, we applied TIMER, 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCP-
COUNTER, XCELL, and EPIC in the training group, and 
the results were presented in a heat map (Fig. 8). We then 
used ssGSEA to quantify the enrichment scores of different 
immune cell subpopulations, related functions, and path-
ways to explore the differences in immune cell enrichment 
scores between the high-risk and low-risk groups. In the 
training set, we found that the antigen presentation process 
contained significantly higher levels of aDCs, pDCs, APC-
co inhibition, APC-co stimulation, HLA, and MHC class 1 
in the low-risk group compared to the high-risk group. In 
addition, we found that CD8+T cells, T helper cells, Tfh 
cells, Th1 cells, Th2 cells, TIL cells, Treg cells, T-cell co-
inhibition, and T-cell co-stimulation associated with T-cell 
regulation were all significantly higher in the low-risk group 

than in the high-risk group. The T helper cells, Tfh cells, 
Th1 cells, Th2 cells, TIL cells, Treg cells, T-cell co-inhibi-
tion, and T-cell co-stimulation were all significantly higher 
than those in the high-risk group, suggesting that there 
were differences in T-cell regulation between the low-risk 
and high-risk groups. In addition, we found that the score 
of CCR and checkpoint, cytolytic activity, B cells, NK cells, 
neutrophils, inflammation promoting, para-inflammation, 
type 1 IFN response, and other biological processes and 
cellular contents were significantly higher in the low-risk 
group. Response and other biological processes and cellular 
content were significantly higher than those in the high-risk 
group (Fig. 9A and C). We found similar results in the vali-
dation set as in the training set (Fig. 9B and D).

To examine the association between risk scores and 
immunological components in further detail, we con-
ducted a correlation analysis between risk scores and 
immune infiltration. Six distinct immune infiltration 
types were identified in human tumors, including C1 
(wound healing), C2 (IFN-γ dominant), C3 (inflamma-
tory), C4 (lymphocyte depleted), C5 (immunologically 
quiet), and C6 (TGF-β dominant), although the C5 and 
C6 immune subtypes were excluded due to their absence 
in CM patients. We evaluated immune infiltration of CM 
in the training set and connected it with the risk score, 
finding that a high-risk score was strongly associated 
with C3, whereas a low-risk score was significantly asso-
ciated with C2 (Fig. 9E).

Tumor stemness can be determined using RNA 
stemness based on mRNA expression (RNAss) or DNA 
stemness based on DNA methylation pattern (DNAss). 
Additionally, we evaluated tumor immunological micro-
environment using the immuneScore and stromalScore. 
Correlation analysis examined the relationship between 

Table 1  Characteristics of patients with skin cutaneous 
melanoma (SKCM) in TCGA​

Variables Number of cases

Tumor sample 471

Normal sample 1

Age (years): < 60/≥ 60/unknown 252/212/8

Gender: male/female 98/80

Stage: I/II/III/IV/NA 77/140/171/24/60

T: T0/T1/T2/T3/T4/NA 23/42/78/90/154/55

N: N0/N1/N2/N3/NA 235/74/49/56/36

M: M0/M1/NA 418/25/29

Fig. 2  Identification of the candidate inflammatory response-related genes in the UCSC cohort. A The 15 overlapping genes expression between 
cutaneous melanoma and adjacent normal tissues. B The correlation network of 15 candidate genes
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risk score and tumor stemness and immune microenvi-
ronment. The results indicated that the risk score was not 
significantly correlated with DNAss or RNAss but was 
significantly negatively correlated with immuneScore and 
stromalScore (P < 0.05) (Fig. 9F).

Biological function and pathway analysis
We used GSEA to conduct enrichment analysis on KEGG 
pathways in the high- and low-risk group (Fig. 10A). The 
results analysis revealed that the five pathways with the 
highest content in the high-risk group were Alzheimer’s 
disease, aminoacyl tRNA biosynthesis, chemokine sign-
aling pathway, cytokine receptor interaction, and Hun-
tington’s disease (P < 0.05, FDR < 25%) (Fig.  10B). The 
JAK-STAT signaling route, oxidative phosphorylation, 
RNA polymerase, toll-like receptor signaling pathway, 
and viral myocarditis were the five pathways with the 

highest levels in the low-risk group (P < 0.05, FDR < 25%) 
(Fig. 10C).

Prognostic gene expression and sensitivity of melanoma 
cells to chemotherapy
To make this study more therapeutically relevant, we 
examined the expression of prognostic genes in NCI-60 
cell lines and the association between prognostic gene 
expression levels and drug sensitivity. The results indi-
cated that all prognostic genes were significantly associ-
ated with drug susceptibility to certain chemotherapy 
agents (P < 0.01). The figure depicts the findings of the 
drug sensitivity analysis with the highest correlation. 
CXCL10 expression was associated with increased can-
cer cell resistance to LDK-378, brigatinib, alectinib, and 
PF-06463922, among others. C3AR1 expression was 
associated with higher resistance of cancer cells to deni-
leukin diftitox ontak, isotretinoin, carmustine, estramus-
tine, fluphenazine, nelfinavir, megestrol acetate, alectinib, 
cyclophosphamide, lomustine, and dromostanolone pro-
piona, among others (Fig. 11).

Validation of key genes in melanoma and paraneoplastic 
tissues
To confirm the changes in expression of 5 important 
genes (C3AR1, CXCL10, EIF2AK2, EMP3, ICAM1) 
between CM and para-cancerous normal tissue, we first 
investigated their mRNA expression using quantitative 
real-time PCR (qRT-PCR). qRT-PCR analysis revealed 

Fig. 3  Constructing five-gene-based classifier by LASSO Cox regression model. A Trajectory of each independent variable. Horizontal axis 
represents log of independent variable λ. Vertical axis represents coefficient of independent variable. B Tenfold cross-validation of tuning 
parameters in LASSO model

Table 2  Hazard ratio (HR), 95% confidence interval (95%CI), and 
P-value of hub gene

Hub gene HR 95% CI p-value

C3AR1 0.79 (0.71, 0.89) 7.70564873394629e-05

CXCL10 0.85 (0.80, 0.90) 9.77794000855977e-08

EIF2AK2 0.71 (0.57, 0.90) 0.00408088388593594

EMP3 1.28 (1.11, 1.46) 0.000421012048490471

ICAM1 0.84 (0.77, 0.93) 0.000392970240176971
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Fig. 4  Development and prognostics analysis of 5-gene signature in the training set (A, B, C, D) and test set (E, F, G, H). A and E The median value 
and distribution of the risk score. B and F The distribution of overall survival (OS) status. C and G Kaplan-Meier curves for OS of patients in the 
high-risk and low-risk groups. D and H Heat map for training group and validation group
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that prognostic genes were expressed at a higher level in 
melanoma than in normal tissues adjacent to malignancy 
(P < 0.01) (Fig. 12A–E). We then validated the expression 
of key genes in CM and normal skin using the Human 
Protein Atlas (HPA) database; however, because the HPA 
database lacked immunohistochemical images of normal 
and tumor tissues for CXCL10 and EMP3, we validated 
only the expression of the remaining three key genes, 
which were all significantly different (Fig. 13A–C).

Discussion
Cutaneous melanoma (CM), a highly malignant tumor 
that develops on the skin and mucosa, has increased 
incidence and increased clinical attention in recent 
years. Although CM treatment and prognosis have 
improved in recent years, clinical efficacy has not yet 
reached the predicted level due to the disease’s com-
plicated genetic and molecular pathways. Apart from 

the conventional gold standard for pathological diag-
nosis, we frequently struggle with the early diagnosis 
and prognosis of CM due to the scarcity of melanoma 
biomarkers. S100B [27], VEGF (vascular endothelial 
growth factor) [28], IGF-1R (the insulin-like growth 
factor 1 receptor) [29], Wnt-5a [30], LDH (lactate 
dehydrogenase) [31], and MIA (melanoma inhibitory 
activity) [32] have all been shown to correlate posi-
tively with prognosis in CM. In contrast, indicators 
such as RUNX3 (human runt-related transcription 
factor 3) [33] have a high degree of accuracy in pre-
dicting the prognosis of CM, and traditional inflam-
mation-related serum biomarkers such as neutrophil 
ratio and lymphocyte/monocyte ratio have also per-
formed well in predicting the prognosis of CM, but no 
report of inflammatory response-related gene models 
as prognostic markers of CM has been made. Thus, 
in this investigation, we attempted to leverage genes 

Fig. 5  A and B Principal component analysis (PCA) was performed in training group and validation group, respectively. C and Dt-Distributed 
stochastic neighbor embedding (t-SNE) analysis was performed in the training and validation groups, respectively
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associated with the inflammatory response to develop 
a predictive model for CM patients to enhance overall 
survival.

This study used multivariate Cox regression analysis 
to assess five prognostic genes related to inflammation 
and successfully developed a clinical prediction model 
for CM. We randomly assigned CM patients to train and 
validation groups based on median cutoff values and 
evaluated risk score as an independent risk factor for 

this prognostic model using univariate and multivariate 
data analysis of patients in high- and low-risk groups. In 
univariate and multivariate analyses, we observed that 
the risk score was more accurate than clinicopathologi-
cal factors (such as age and gender) in predicting OS in 
CM patients. The AUC curves demonstrated our model’s 
excellent predictive performance in training and valida-
tion groups. The predictive model created in this work 
comprises five inflammatory response-related genes: 

Fig. 6  Independent prognostic factors for cutaneous melanoma overall survival (OS). Univariate Cox regression analysis in (A, C, E) for training sets, 
validation sets, and all samples. Multivariate Cox regression analysis in (B, D, F) for training sets, validation sets, and all samples
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C3AR1, CXCL10, EIF2AK2, EMP3, and ICAM1, all of 
which are all overexpressed in melanoma tissue and 
are associated with a poor prognosis. C3AR1 (comple-
ment component 3a receptor 1) is a protein-coding gene 
encodes a component of the complement system’s g pro-
tein-coupled transmembrane that spans the C3a recep-
tor [34]. C3AR1 was discovered to promote voluntary 
exercise behavior in melanoma mice by altering inflam-
matory and immunological responses in a study con-
ducted by Zhi et  al. [35]. Although the effect of C3AR1 
expression on melanoma is unknown, a study by Nabiza-
deh discovered that in the absence of complement C3aR 
(receptor for complement C3a), the development and 

growth of B16-F0 melanoma were inhibited in mice. In 
contrast, C3aR antagonists inhibited the growth of estab-
lished melanoma [36]. CXCL10 (chemokine ligand 10) is 
also known as interferon-γ-inducible protein 10 (IP 10). 
It is a member of the CXC chemokine superfamily and 
plays a role in immune response regulation, angiogen-
esis, apoptosis, the cell cycle, and cell proliferation [37, 
38]. CXCL10 has been demonstrated to induce apoptosis 
in HeLa cells by suppressing the production of the HPV 
oncogenic proteins E6 and E7, consequently promoting 
the sustained expression of P53 in tumor cells [39]. Addi-
tionally, CXCL10 has been shown to decrease estrogen-
induced pro-tumor development by inhibiting VEGF 

Fig. 7  AUC time-dependent receiver operating characteristic curve (ROC) curves. A and B The ROC analysis of risk scores based on 1-, 2-, and 3-year 
OS in training and validation groups. C and D The ROC analysis of risk scores and other clinical characteristics based on OS in training and validation 
groups
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production [40]. CXCL10 was discovered to repress 
tumors and stimulate their development via a variety 
of mechanisms. Wennerberg et  al. discovered that NK 
cells have a greater capacity to metastasis to melanomas 
that exhibit positive CXCL10 expression than melano-
mas that express negative CXCL10 expression, result-
ing in decreased tumor load and increased survival time 
[41]. CXCL10 is a powerful angiogenesis inhibitor that 
binds to CXCR3 receptors and suppresses melanoma’s 
angiogenesis by decreasing intra-tumor vascular density 
and boosting apoptosis and necrosis of malignant tissue 
[42]. EIF2AK2 (eukaryotic translation initiation factors 
2 AK2), commonly known as PKR (dsRNA-dependent 
protein kinase), was initially discovered as a pathogen 

recognition molecule, with the N-terminal of this pro-
tein binding to double-stranded RNA to induce activa-
tion of the C-terminal catalytic region [43, 44]. Paola’s 
study demonstrated that when cancer cells are stimu-
lated with pro-ICD (immunogenic cell death) drugs, 
PKR, a key mediator of eIF2 phosphorylation, can pro-
mote CTR translocation to the surface of melanoma cells 
by promoting cancer cell death and the release of dam-
age-associated molecular patterns (DAMP) from dead 
cells [45]. The EMP3 (epithelial membrane protein 3) 
gene is a member of the TMP22 (peripheral myelin pro-
tein) gene family [46]. The EMP3 protein’s primary roles 
are assumed to be related to cell proliferation, differen-
tiation, activation of the caspase apoptotic pathway, and 

Fig. 8  Heat map for immune cell infiltration in training group

(See figure on next page.)
Fig. 9  Immune status between different risk groups and the association between risk score and tumor microenvironment. A and B The scores 
of 16 immune cells in training set and test set and C and D 13 immune-related functions in training set and test set were shown in boxplots. E 
Comparison of the risk score in different immune infiltration subtypes. F The relationship between risk score and DNAss, RNAss, immuneScore, 
and stromalScore. Explanation of abbreviated symbols in the figure: aDCs, activated dendritic cells; DCs, dendritic cells; iDCs, immature DCs; pDCs, 
plasmacytoid dendritic cells; Tfh, follicular helper T cell; TIL, tumor-infiltrating lymphocyte; Tregs, regulatory T cells. P-values were shown as follows: 
ns (not significant); *P < 0.05; **P < 0.01; ***P < 0.001
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Fig. 9  (See legend on previous page.)
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intercellular connections [47]. Exogenous expression of 
the EMP3 gene has been found to limit tumor cell pro-
liferation and act as a tumor suppressor gene [48]. It has 
been demonstrated that mRNAs associated with epithe-
lial cell lineage interactions (EMP3 and EMP1) are fre-
quently overexpressed in uveal melanoma (UM) with a 
high risk of metastasis, which is thought to promote plas-
ticity in UM cells, thereby increasing their resistance to 
conventional chemotherapeutic agents [49, 50]. Although 

ICAM1 (intercellular adhesion molecule 1) is ubiquitous 
on the cell surface, its overexpression in several can-
cers promotes tumor cell invasion and metastasis and is 
inversely connected with patient prognosis [51]. It has 
been demonstrated that human primary melanoma cells 
(T1) produce high levels of ICAM1, and that increased 
ICAM1 expression associated with PI3K/AKT path-
way activation can be exploited by metastatic melanoma 
cells to resist CTL-mediated lysis [52]. ICAM1 has been 

Fig. 10  Gene set enrichment analysis (GSEA) of biological functions and pathways. A KEGG, Kyoto Encyclopedia of Genes and Genomes. B The top 
5 significant results of GSEA in high-risk group. C The top 5 significant results of GSEA in low-risk group
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Fig. 11  Scatter plot of relationship between prognostic gene expression and drug sensitivity

Fig. 12  Experiment confirmed the difference of the prognostic gene expression between cutaneous melanoma and adjacent non-tumor tissues. 
A, B, C, D, E The mRNA expression analysis by qRT-PCR of C3AR1, CXCL10, EIF2AK2, EMP3, and ICAM1
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proposed as a novel target for a range of solid tumors 
in recent years, including melanoma and mesenchymal 
thyroid carcinoma (ATC), and has significant research 
potential [53].

We employed the GSEA technique to further investi-
gate the biological pathways in high- and low-risk groups. 
Alzheimer’s disease, aminoacyl tRNA production, 
chemokine signaling, cytokine receptor interaction, and 
Huntington’s disease were all significantly enriched in the 
high-risk group. The aminoacyl-tRNA synthetase (ARS) 
is a critical enzyme that accurately translates the genetic 
information contained in messenger RNA into the amino 
acid sequence of proteins. It has a strong effect on can-
cer through its effects on apoptosis, RNA splicing, and 
angiogenesis [54]. T-3861174, a prolyl-tRNA synthetase 
(PRS) inhibitor, was reported to promote apoptosis in 
melanoma SK-MEL-2 cells by activating the GCN2-
ATF4 pathway, and the apoptosis-inducing activity of 
T-3861174 was eliminated when GCN2 was knocked 
down [55]. This indicates that various ARS linked with 
cancers may be valuable therapeutic targets.

Numerous studies have demonstrated that the 
immune microenvironment plays a critical role in 
carcinogenesis, and that invading immune cells can 
operate as tumor growth promoters and inhibitors. 
To better understand the relationship between immu-
notherapy, the immune microenvironment, and neo-
plastic processes, we used the ssGSEA technique to 
determine the immune cell infiltration status of CM 

patients. We compared immune cell infiltration status 
and tumor microenvironment between high- and low-
risk groups. We used correlation analysis to examine 
the relationship between risk scores and tumor stem 
cells and the immune microenvironment to understand 
better the prediction model’s potential mechanisms 
and predictive performance. CD8+ T cells and T helper 
cells were abundant in the low-risk group of patients. 
By secreting perforin, serine esterase, and lymphotoxin, 
CD8+T (CTL) lymphocytes contribute significantly to 
tumor clearance. CTL cells recognize target cells via 
the membrane receptor Ti-CD3 (TCR), which results 
in guanine and lymphotoxin binding to the CTL mem-
brane. Phospholipase C activation in conjunction with 
nucleotide-binding proteins completes the activation 
of second messengers and information transduction, 
finally resulting in Ca2+ release and protein kinase acti-
vation, driving tumor cell death and breakdown [56]. T 
helper cells are activated when they respond with pep-
tide antigens presented by MHC II (major histocompat-
ibility complex), which regulates or assists the immune 
response by secreting cytokines against tumor cells 
[57]. The decreased amounts of immune cells such as 
CTL and T helper cells in the high-risk group show that 
immune control is disrupted, and antitumor immune 
function is weakened in this group, which may contrib-
ute significantly to their poor prognosis. As a result, 
we believe that CTL and T helper cells may be critical 
therapeutic targets for CM patients.

Fig. 13  IHC results obtained at Human Protein Atlas (HPA) between melanoma and adjacent non-tumor tissues. A, B, C The IHC results of EIF2AK2, 
ICAM1, C3AR1



Page 17 of 20Xing et al. World Journal of Surgical Oncology          (2022) 20:263 	

We explored the function of risk scores in the kind of 
immune infiltration better to understand the relationship 
between risk scores and immunological components. 
We discovered that high-risk scores were strongly linked 
with C3. In contrast, low-risk scores were significantly 
connected with C2, implying that C3 as a risk factor may 
promote carcinogenesis and progression, whilst C2 as 
a protective factor may retard tumorigenesis and pro-
gression. This conclusion is consistent with prior find-
ings that C3 and C4, as immune infiltration types with 
moderate toxicity, are related to infiltration of suppres-
sive immune cell populations, and patients have a poor 
prognosis [58]. Many researchers now assume that the 
tumor microenvironment is formed of a network of stro-
mal cells (fibroblasts, vascular cells, and inflammatory 
immune cells) [13]. Tumor stem cells accelerate the clini-
cal course of malignancies due to their high capacity for 
self-renewal and invasion, resulting in treatment resist-
ance [59]. As a result of our research, the high infiltration 
of tumor immune histiocytes in the high-risk group of 
patients was negatively connected with the immune and 
stromal scores, which was consistent with the risk score 
results.

To make this analysis more practically applicable, 
we examined the connection between important gene 
expression levels and chemotherapeutic drug sensi-
tivity using data from the cellMiner database for the 
NCI-60 cell line. Numerous medications have been 
found in clinical trials to inhibit melanoma growth. 
Denileukin diftitox ontak, for example, is a diphtheria 
toxin-based fusion protein that has been licensed for 
the treatment of persistent skin malignancies such as 
cutaneous T-cell lymphoma and melanoma via CD25 
depletion [60]. Carmustine functions as a chloroethyl-
ating nitrosoureas (CNU) by alkylating DNA bases to 
generate interstrand cross-links (ICL), which inhibit 
DNA replication and transcription by covalently con-
necting DNA strands, resulting in severe cytotoxic 
DNA damage and hence anticancer activity. Because of 
its potent antitumor properties, Carmustine has been 
utilized clinically to treat malignant gliomas and mela-
nomas [61]. As a result of our findings, we hypothesize 
that some prognostic genes could be employed as ther-
apeutic targets to overcome treatment resistance or 
adjuvant drug sensitivity. We also validated the mod-
el’s accuracy by demonstrating the expression levels of 
important genes in CM and normal skin tissues using 
qRT-PCR and IHC.

Since Virchow speculated in 1863 that tumors origi-
nate from chronic inflammation, there is growing 
evidence that inflammation plays an essential role in 
tumorigenesis, development, and evolution. A variety 
of cytokines produced during inflammation regulate 

the activation and migration of endothelial cells and 
their proliferation, survival, and apoptosis, thus play-
ing an essential role in angiogenesis [62]. From our 
pathway enrichment and immunoassay results, it is 
clear that patients in the high-risk group have less 
inflammation-associated cell infiltration, are in an 
overall low immune infiltration state, have less abil-
ity to target tumor clearance, which has more rapid 
tumor progression, and are more likely to metastasize 
to distant sites. Therefore, we hypothesize that in CM, 
as inflammatory infiltration deepens, tumor risk grade 
becomes higher, overall immune infiltration content 
becomes lower, and tumors are more likely to spread, 
metastasize, and recur. We suggest that the inflam-
matory environment and TME together constitute the 
tumor ecosphere. Inflammation in TME can acceler-
ate alterations in epigenetic and TME components, 
jointly promoting tumor development [63]. Hashimoto 
et  al.’s study reported a rare case of undifferentiated 
pleomorphic sarcoma (UPS) in a high C-reactive pro-
tein (CRP) senior patient [64]. Considering that both 
UPS and CM are in a state of hyper-immune infiltra-
tion compared to normal tissue and can be classified 
as “hot tumors,” we speculate that wide margin resec-
tion as soon as possible after exclusion of bacteremia-
like infections may be a new option for the treatment 
of CM in a severe inflammatory state. Schuckmann 
et  al.’s study demonstrated that people who regularly 
used anti-inflammatory drugs and statins had a much 
lower rate of CM than those who did not take such 
drugs [65]. Dipak et  al.’s study showed that ketorolac 
could indirectly stimulate some T cells of the immune 
system by preferentially inhibiting the COX-1 enzyme, 
enhancing the immune checkpoint inhibitor’s effect. 
Ketorolac can eradicate cancer metastasis and pro-
long survival in mouse models by administering the 
drug preoperatively [66]. Therefore, we suggest that 
anti-inflammatory drugs can alter the prognosis of 
skin tumors. If used as a preventive effect, these drugs 
need to be taken regularly in daily life. If one already 
has CM, preoperative administration has been shown 
in animal models to eradicate cancer metastases and 
prolong survival, but further confirmation in clinical 
studies is needed.

This work creates a predictive model for CM patients 
based on inflammatory response genes. This study, 
however, has several drawbacks. First, we employed 
only the UCSC dataset to assess our model’s predic-
tive ability, and we used limited validation approaches 
due to a lack of sufficient clinical samples. Our model 
may encourage others to conduct additional research 
on inflammatory prognostic variables in CM despite 
its shortcomings.
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Conclusion
In summary, we established a new predictive model based 
on five inflammatory response genes associated with prog-
nosis (C3AR1, CXCL10, EIF2AK2, EMP3, ICAM1). This 
prognostic model was demonstrated to be independently 
linked with overall survival (OS) in the UCSC cohort. 
It gives new directions and research value in the tumor 
microenvironment, functional analysis, immune response, 
and treatment sensitivity. Our research on inflammatory 
response-related prognostic genes not only elucidates 
their involvement in cancer but also lays the groundwork 
for the future development of personalized and precision 
medicine.
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