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Cystathionine 𝛽-synthase (CBS) regulates homocysteine metabolism and contributes to hydrogen sulfide (H
2
S) biosynthesis

through which it plays multifunctional roles in the regulation of cellular energetics, redox status, DNA methylation, and protein
modification. Inactivating mutations in CBS contribute to the pathogenesis of the autosomal recessive disease CBS-deficient
homocystinuria. Recent studies demonstrating that CBS promotes colon and ovarian cancer growth in preclinical models highlight
a newly identified oncogenic role for CBS. On the contrary, tumor-suppressive effects of CBS have been reported in other cancer
types, suggesting context-dependent roles of CBS in tumor growth and progression. Here, we review the physiological functions
of CBS, summarize the complexities regarding CBS research in oncology, and discuss the potential of CBS and its key metabolites,
including homocysteine and H

2
S, as potential biomarkers for cancer diagnosis or therapeutic targets for cancer treatment.

1. Introduction

Cystathionine 𝛽-synthase (CBS) catalyzes the condensation
of homocysteine (Hcy) with serine to form cystathionine,
which is the initial and rate-limiting step in the transsulfu-
ration pathway. Cystathionine is subsequently cleaved by the
enzyme cystathionine gamma-lyase (CTH) to form cysteine,
a precursor of glutathione. Besides this canonical pathway,
CBS also participates in the desulfuration reactions that
contribute to endogenous hydrogen sulfide (H

2
S) production

(Figure 1). Thus, CBS acting mainly through control of
Hcy and H

2
S metabolism exerts diverse biological functions

including mitochondrial bioenergetics, redox homeostasis,
DNAmethylation and protein modification. Deregulation of
CBS and the associated alterations in Hcy and/or H

2
S levels

leads to a wide range of pathological disturbances in the
cardiovascular, immune, and central nervous systems and
contributes to disease development, such as CBS-deficient
homocystinuria (CBSDH). It is now becoming clear that CBS
activity also plays an important but complex role in cancer

biology. This review focuses on the current understanding of
the functional role of CBS and the derived metabolites Hcy
and H

2
S in cancer pathogenesis and provides insight into

the development of novel prognosticmarkers and therapeutic
approaches for cancer patients.

2. CBS Protein Structure and
Biological Functions

The human CBS gene encodes a protein of 551 amino acids.
The crystal structure of the active form of human CBS,
formed by four of 63-kDa subunits, has been fully character-
ized [1, 2]. Each subunit consists of three structural domains.
The N-terminal domain binds to the cofactor heme, which
is required for successful protein folding and assembly but
not necessary for catalytic activity [3]. The catalytic domain
encompasses a binding site for another cofactor, pyridoxal-
phosphate (PLP) [4]. The C-terminal regulatory domain
contains two CBS motifs (CBS1 and CBS2) that dimerize to
form a Bateman domain. This domain is responsible for CBS
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Figure 1: Metabolic reactions catalyzed by CBS. CBS catalyzes the condensation of homocysteine (Hcy) with serine to form cystathionine
which is subsequently cleaved by cystathionine gamma-lyase (CTH) to form cysteine, a precursor of glutathione. CBS also catalyzes the
production of H

2
S. In addition to CBS, CTH and 3-mercaptopyruvate sulfurtransferase (3-MST) are also involved in the conversion

of cysteine to H
2
S. Homocysteine is another key CBS-derived metabolite and is linked to the metabolism of methionine. Methionine

is converted to homocysteine via S-adenosyl methionine (SAM) and S-adenosyl homocysteine (SAH), releasing a methyl group that is
used in numerous methylation reactions. SAM is an allosteric activator of CBS. 3-MST, 3-mercaptopyruvate sulfurtransferase; AHCY,
adenosylhomocysteinase; BHMT, betaine-homocysteinemethyltransferase; CAT, cysteine aminotransferase; CBS, cystathionine 𝛽-synthase;
CTH, cystathionine gamma-lyase; GCLC, gamma-glutamylcysteine synthetase; GSS, glutathione synthetase; MAT1A/2A, methionine
adenosyltransferase 1A/2A;MTHFR,methylenetetrahydrofolate reductase;MTR, 5-methyltetrahydrofolate-homocysteinemethyltransferase;
SAM, S-adenosyl methionine; SAH, S-adenosyl homocysteine; SHMT, serine hydroxymethyltransferase.

subunit tetramerization and contains the binding sites for the
allosteric activator S-adenosylmethionine (SAM) [1, 5, 6]. In
the native quaternary structure, the access of substrates to
the catalytic core is occluded by the C-terminal regulatory
motifs and the binding of SAM induces a conformational
change that improves the access of the substrates to the
catalytic site [2]. The autoinhibitory function of the C-
terminal regulatory domain is relieved by the C-terminal
truncation that generates a 45 kDa isoform with higher basal
catalytic activity than the full-length form [1].

CBS is predominantly expressed in the brain, liver,
kidney, and pancreas. It is mainly a cytosolic enzyme, but
localization in the nucleus [7] and mitochondria [8] had
been detected in specific cell types. CBS can be translo-
cated to the mitochondria in response to hypoxia [9] or
nucleolar stress [10]. CBS expression is regulated at mul-
tiple levels upon different stimuli. For example, hormonal
regulation by glucocorticoids increases CBS expression at
the transcriptional level in liver cells, a process that may be
perturbed by insulin administration through binding to an
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insulin-sensitive sequence localized on the CBS promoter
[11]. In addition, testosterone can regulate CBS expression
and activity in renal tissue [12]. Growth/differentiation
factors such as EGF, TGF-𝛼, cAMP, and dexamethasone
induced CBS protein expression in mouse astrocytes [13].
Hypoxia upregulated CBS expression either via hypoxia-
inducible factor- (HIF-) 1 at the transcriptional level [14]
or decreased degradation of CBS protein by Lon proteases
in the mitochondria [9]. Besides HIF-1, the zinc finger
transcription factor SP1 binds to the CBS gene promoter,
establishing its role as a key regulator of CBS expression
[15, 16]. Furthermore, CBS activity may be enhanced via
posttranslational regulation through S-glutathionylation [17]
or inhibited via epigenetic downregulation of CBS expression
through promoter methylation [18, 19].

CBS plays a critical role in Hcy elimination. Patients with
CBS deficiency exhibit elevated Hcy plasma levels at excess
of 200 𝜇M compared to 5-15 𝜇M in healthy adults [20]. CBS-
deficient homocystinuria (CBSDH) is an autosomal recessive
metabolic disease, resulting from inactivating mutations in
the CBS gene. CBSDH patients present multiple pathologic
changes in the eye, skeleton, central nervous, and vascular
systems. Common symptoms in CBSDH patients include
thrombosis, osteoporosis, and impaired mental cognitive
development (reviewed in [21–23]). Administration of high
doses of the PLP precursor, pyridoxine, or vitamin B

6
is

common treatment that ameliorates approximately 50% of
clinical symptoms. To date, 164 pathogenic genetic variants
have been identified (http://cbs.lf1.cuni.cz/mutations.php) of
which the predominant mutations are missense mutations.
c.833 T>C (p.I278T) is the most frequent mutation detected
in many European populations [24]. The I278T missense
mutation and many of the less prevalent mutations likely
affect the folding or stability of the CBS protein [25] whereas
somemutations such as mutant D444N, amissense mutation
in the C-terminal regulatory domain, showed an approxi-
mately twofold increase in basal CBS activity but impaired
response to SAM stimulation [2]. The pathophysiology of
CBS deficiency is still not fully understood. As well as the
accumulation of Hcy, CBS defects lead to increased con-
centrations of methionine and S-adenosyl-L-homocysteine
(SAH) and depletion of cystathionine and cysteine. These
perturbations may act in concert with high Hcy to promote
the development and progression of CBSDH (reviewed in
[26]).

Accordingly, extensive studies in the mouse models of
CBS deficiency showed mice with homozygotic CBS deletion
(CBS-/-) died within 4 weeks after birth due to severe hepatic
dysfunction and exhibited extremely high levels of circulating
Hcy (reviewed in [26, 27]). Wang et al. showed that the
neonatal lethality could be rescued by decreasing circulating
Hcy levels in a transgenic mouse model with inducible CBS
expression [28]. They further found that there may be a
threshold effect with Hcy, meaning that moderately lowering
homocysteinemia can improve mouse viability during the
neonatal period [29]. In support of the Hcy threshold effect,
CBS+/- heterozygote mice were fully viable with a 3-fold
increase of Hcy levels compared to the 8-fold increase in
homozygous mice [30].

3. Homocysteine and H2S, the Major CBS-
Derived Metabolites

3.1. Homocysteine. Hcy is a sulfur-containing nonproteino-
genic amino acid linked to the metabolism of methionine
and cysteine. Methionine is converted to Hcy via S-adenosyl
methionine (SAM) and SAH, releasing a methyl group that
is used in numerous methylation reactions. Hcy can reform
Met by the remethylation pathway either via 5-methyltetra-
hydrofolate-homocysteine methyltransferase (MTR, 5-meth-
yltetrahydrofolate as the methyl group donor) or betaine-
homocysteine methyltransferase (BHMT, betaine as the
methyl group donor) (Figure 1).Hcy is also irreversiblymetab-
olized by CBS to cystathionine that subsequently converts to
cysteine via CTH in the transsulfuration pathway (Figure 1).
Hcy metabolism mainly occurs in the liver and conversion to
cystathionine by CBS is amajor elimination route of Hcy [31].

Hyperhomocysteinemia (HHcy) is recognized as an inde-
pendent risk factor for atherosclerotic vascular disease [32].
HHcymay result frommutations in genes encoding enzymes
of Hcy biosynthesis and metabolism or deficiencies of vita-
min cofactors including vitamin B

12
and B

6
[33]. The molec-

ular mechanisms underlying HHcy-induced atherosclerosis
are complex and multifactorial (Figure 2). Elevated Hcy
concentration reduces nitric oxide (NO) bioavailability and
causes oxidative stress. HHcy also leads to formation of
Hcy thiolactone as a result of error-prone editing by the
methionyl-tRNA synthase [34]. This Hcy derivative can
cause protein N-homocysteinylation in which the thioester
group of thiolactone binds to the lysine residues in pro-
teins, consequently impairing protein function, resulting in
unfolded protein response and endoplasmic reticulum stress
(reviewed in [35, 36]). Moreover, an elevated Hcy level
could lead to accumulation of SAH, a competitive inhibitor
of most methyltransferases, consequently inducing DNA
hypomethylation [37]. Through this epigenetic mechanism,
Hcy has been reported to inhibit endothelial cell growth by
decreasing the expression of cyclin A [38], fibroblast growth
factor 2 [39], and hTERT expression [40] and by upregulation
of platelet-derived growth factors and P66shC [41].

HHcy has also been implicated in the pathogenesis of
cancer. Increased release of Hcy by tumor cells is related
to their rapid proliferation rate [42]. Hcy accumulation
results from defects in methionine synthesis, leading to a
methionine-dependent malignant phenotype [43]. A meta-
analysis revealed the association of elevated circulating Hcy
levels with increased overall risk of cancer [44]. A higher
Hcy plasma level has been detected in the patients with
hepatocellular carcinoma (HCC) [44] and head and neck
squamous cell carcinoma [45]. Although the mechanisms
underlying this association between elevated Hcy levels
and malignant transformation are unclear, a recent study
proposed a mechanism linking Hcy to lipid metabolism
and HCC [46]. It demonstrated that Hcy transcriptionally
upregulated CYP2J2, a cytochrome P450 (CYP) epoxygenase
by stimulating DNA demethylation and increasing SP1/AP1
activity on the promoter of CYP2J2, which promotes epoxye-
icosatrienoic acid synthesis and hepatocellular tumorigene-
sis.
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Figure 2: Potential mechanisms underlying CBS deregulation with alterations of homocysteine and H
2
S levels in cancer pathogenesis. CBS

deficiency causes hyperhomocysteinemia. Elevated Hcy concentration can increase reactive oxygen species (ROS) production and induce
oxidative stress. Hyperhomocysteinemia also leads to formation of homocysteine thiolactone as a result of error-prone editing by the
methionyl-tRNA synthase. This homocysteine derivative can cause protein N-homocysteinylation that impairs protein function, resulting
in an unfolded protein response and endoplasmic reticulum (ER) stress. The elevated Hcy level can lead to accumulation of S-adenosyl
homocysteine (SAH), a competitive inhibitor of most methyltransferases, consequently inducing DNA hypomethylation and affecting
gene transcription. CBS-driven endogenous H

2
S production maintains mitochondrial respiration and ATP synthesis, promotes antioxidant

production by enhancing Nrf2 activation and increasing glutathione production, and modulates protein activity via protein sulfhydration.
Secreted H

2
S can cause vasodilation via activation of ATP-sensitive K+ channels.

3.2. H
2
S. Like nitric oxide and carbon monoxide, H

2
S is

a diffusible gaseous transmitter in the human body and is
mainly synthesized during cysteine metabolism and excreted
as urinary sulfates by the kidney (reviewed in [47]). CBS
catalyzes the production of H

2
S via at least three path-

ways including (i) converting cysteine to serine and H
2
S,

(ii) condensing cysteine and Hcy to yield cystathionine
and H

2
S, and (iii) condensing two cysteine molecules to

lanthionine and H
2
S (Figure 1). In addition to CBS, CTH

and 3-mercaptopyruvate sulfurtransferase (3-MST) are also
involved in the conversion of cysteine to H

2
S (Figure 1).

While H
2
S has diverse biological functions in the ner-

vous, cardiovascular, and immune systems, the pathological
role of H

2
S in cancer biology has attracted substantial

attention in recent years. CBS-driven endogenous H
2
S pro-

duction has been reported to support tumor growth by (i)
maintaining mitochondrial respiration and ATP synthesis,
(ii) stimulating cell proliferation and survival, (iii) redox
balance, and (iv) vasodilation (Figure 2). H

2
S modulates

mitochondrial functions and cellular bioenergetics in a

concentration-dependent manner. At low concentrations,
H

2
S acts as a mitochondrial electron donor to mitochondrial

complex II, resulting in bioenergetic stimulation [48, 49]. At
higher concentrations, H

2
S acts as a mitochondrial poison

via the inhibition of cytochrome c oxidase in mitochondrial
complex IV [50]. H

2
S stimulates cell proliferation through

activation of specific kinase pathways (e.g., MAPK and
PI3K/Akt) and inhibition of selective phosphatases such as
PTEN and PTP1B [51–53]. Modulation of protein activity
by H

2
S either occurs via protein sulfhydration (reviewed

in [54]) or intracellular formation of polysulfides by H
2
S

followed by oxidative inactivation of proteins [55, 56]. The
sulfhydration of nuclear factor kappa B (NF-𝜅B) by H

2
S has

also been shown to inhibit apoptosis andmay be of particular
relevance to cancer cell survival [57]. The protective effect
of H

2
S from oxidative stress has been extensively studied

in endothelial cells and neurons [58–62]. Studies showed
H

2
S inhibited H

2
O

2
-mediated mitochondrial dysfunction

by preserving the protein expression levels and activity of
key antioxidant enzymes, inhibiting reactive oxygen species



BioMed Research International 5

(ROS) production and lipid peroxidation [60]. Additionally,
these effects may be associated with sulfhydration of Keap1
and activation of Nrf2 [61] or increasing the production of
the antioxidant glutathione. Vasorelaxation is one of the first
recognized biological effects of H

2
S.Themechanisms ofH

2
S-

mediated vasodilation include the activation of ATP-sensitive
K+ channels, inhibition of phosphodiesterases, and a synergy
with NO (reviewed in [63]).

H
2
S-donating compounds deliver H

2
S exogenously,

including fast H
2
S donors such as sulfate salts (e.g., NaHS

and Na
2
S) and naturally occurring compounds (e.g., the

garlic constituent diallyl trisulfide, sulforaphane, erucin,
and iberin) and slow H

2
S-releasing synthetic moieties such

as GYY4137 (reviewed in [64]). The cellular response to
exogenous H

2
S released by the donors has been considered

as a biphasic response, in which low H
2
S concentrations

(or low H
2
S production rates) showed enhancement of cell

proliferation rates and cell viability whereas high H
2
S caused

deleterious/adverse effects in cells [50, 65]. This biphasic
cellular response is consistent with the special action model
of H

2
S on mitochondrial respiration described above, that

is, stimulation of mitochondrial respiration at low levels and
inhibition at high levels. This bell-shape pharmacology of
H

2
S may, at least in part, explain the inconsistent results of

the effect of exogenous H
2
S in colon cancer cell line HCT116

reported by different groups including a growth inhibitory
effect (using NaHS at 400 𝜇M and 800 𝜇M) by the Deng lab
[66] and a growth stimulatory effect (using NaHS at 30-300
𝜇M) by the Szabo lab [49, 65, 67].

4. CBS and Cancer

4.1. Promoting Tumor Growth by Activation of CBS. Elevated
expression of CBS in tumor tissues or cell lines has been
reported in colon [49, 68], ovarian [8], prostate [69], and
breast cancer [70], compared to adjacent normal tissue or
nontransformed cells. A series of studies from the Hellmich
group characterized the oncogenic role of CBS in colon
cancer [49, 68, 71]. Through modification of CBS expres-
sion (overexpression or RNAi knockdown) or CBS activity
(allosteric activator SAM or the inhibitor aminooxyacetate)
in the HCT116 colon cancer cell line, they demonstrated that
CBS promoted cancer cell proliferation. The antiproliferative
effect observed by silencing or inhibiting CBS was recapit-
ulated in the xenograft mouse models and patient-derived
tumor xenografts [49]. CBS not only promotes tumor growth
and progression but also initiates tumor formation [68].
Overexpression of CBS in adenoma-like colonic epithelial
cell line NCM356 enhanced cell proliferative, anchorage-
independent growth and invasive capability in vitro and
tumorigenicity in vivo. Mice heterozygous for CBS showed
fewer numbers of mutagen-induced aberrant crypt foci
than wild-type controls. Through a similar approach, Bhat-
tacharyya et al. [8] reported that CBS knockdown inhib-
ited cell proliferation and suppressed tumor growth in an
orthotopicmousemodel of cisplatin-resistant ovarian cancer.
Interestingly, in breast cancer silencing CBS did not affect
cell proliferation in culture but significantly attenuated tumor
growth in a xenograft mouse model [70].

The protumorigenic effect of CBS occurs through an
autocrine mechanism by regulation of bioenergetics, antioxi-
dant capacity, and apoptosis-related pathways. Targeting CBS
genetically or pharmacologically impairs cellular bioener-
getics through inhibiting mitochondrial electron transport,
oxidative phosphorylation, and glycolysis. H

2
S was identi-

fied to be responsible for such metabolic and bioenergetic
rewiring in colon cancer cells, as CBS expression and activity
correlated with H

2
S production and exogenous H

2
S stim-

ulated cell proliferation and bioenergetics [49]. Systematic
metabolomic analysis of CBS-overexpressing NCM356 cells
uncovered an anabolic metabolic phenotype with signifi-
cantly enhanced glycolysis, nucleotide synthesis, and lipo-
genesis, which is thought to promote malignant transfor-
mation [68]. CBS may also promote tumor cell survival by
increasing cell intrinsic antioxidant capacity. Ovarian cancer
cells depleted of CBS showed enhanced ROS production.
Antioxidant glutathione, but not H

2
S, fully rescued viability

of CBS-depleted cells, suggesting that the effect of CBS in
ovarian cancer cells is mediated through regulation of ROS
production by glutathione [8]. Similarly, reduced glutathione
abundance was observed in breast cancer cells upon CBS
silencing and was accompanied by decreased Nrf2 expression
[72]. CBS downregulation reduced antioxidant capacity and
enhanced the sensitivity of cancer cells to chemotherapeutic
drugs.The cytoprotective effect of CBS is also associated with
regulation of NF-𝜅B and p53 apoptosis-related signaling [8].
A recent study further suggested CBS is involved in nucleolar
stress-induced apoptosis [10].The authors demonstrated that
treatment of p53-/- colon cancer cells with 5-fluorouracil
caused nucleolar stress, which led to accumulation of the
ribosome-free form of ribosomal protein L3 (rpL3). rpL3
decreased CBS protein abundance through suppression of
SP1-mediated CBS gene transcription and increase of CBS
protein degradation by translocation of CBS into mitochon-
dria. Decreased CBS abundance and, in turn, reduction
of H

2
S production have been suggested to contribute to

mitochondrial cytochrome C release and induction of the
intrinsic cell death pathway [10].

In addition to autocrine regulation, CBS acts via a
paracrine mechanism to modulate the tumor microenviron-
ment including stimulating angiogenesis and vasodilation
via H

2
S production and release as reported in colon and

ovarian cancer xenografts [8, 49] and regulating macrophage
activation in breast cancer xenograft mouse models [70].

4.2. CBS Associated Oncogenesis Is Tumor Type-Specific.
Unlike in colon, ovarian, and breast cancer, CBS does not
appear to have a functional role in melanoma [73]. CBS
expression is absent in dysplastic nevi, detected in only
25% of primary melanoma samples, and unregulated in four
of five melanoma cell lines examined. More importantly,
modulation of CBS expression had a minimal effect on
melanoma cell proliferation [73].

Downregulation of CBS through promoter methylation
has been observed in multiple gastric cancer cell lines and
four colon cancer cell lines (including HCT116) [74]. How-
ever, the biological consequence of CBS epigenetic silencing
in gastric cancer has not been determined. Evidence from
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Figure 3: CBS associated oncogenesis is tumor type-specific. Activation of CBS promotes tumor growth in colon, ovarian, and breast cancer
but suppresses tumor growth in glioma.The role of CBS in liver cancer, gastric cancer, and melanoma is still conflicting and inconclusive.

glioma supports a tumor-suppressive role for CBS [75]. CBS
deficiency in U87-MG glioma cells did not affect cell prolif-
eration in 2D culture but increased colony formation in soft
agar, indicative of enhanced anchorage-independent growth.
Consistently, CBS knockdown decreased tumor latency in
U87-MGxenografts and increased tumor volume in an ortho-
topic model. Enhanced glioma tumorigenicity upon CBS loss
was associated with upregulation of HIF-2𝛼 protein level and
HIF-2𝛼-dependent transcriptional activation of angiopoietin
like 4 (ANGPTL4) and vascular endothelial growth factor
A (VEGFA). The lack of function or suppression of tumor
growth by CBS in certain tumor types indicates that CBS
associated oncogenesis is tumor-specific (Figure 3).

4.3. Conflicting Role of CBS in Hepatocellular Carcinoma.
Clinical evidence from patient samples strongly supports a
negative regulatory role for CBS in hepatocellular carcinoma
(HCC). Downregulation of CBS expression and activity
contributes to the pathogenesis of multiple liver diseases
(Reviewed in [76]). Analysis of 120 HCC specimens found
that CBS mRNA was markedly lower in tumor tissues
than surrounding noncancerous liver [77]. Reduced CBS
expression was significantly correlated with the poor clinic
pathological parameters including tumor stage, Edmondson
grade, alpha-fetoprotein (AFP) level, and overall survival.
Further data analysis suggested that the expression level
of CBS mRNA could be used as a prognostic marker for
overall survival especially in patients with low AFP levels
[77]. Diminished CBS levels were also detected in the tumor
tissues from the mouse model of HCC [78–80]. Further
supporting the tumor-suppressive role for CBS, exogenous
H

2
S induced autophagy and apoptosis in HCC cells through

the PI3K/Akt/mTOR pathway [81].

Intriguingly, distinct from this clinical data, a recent
study showed that several HCC cell lines exhibited higher
CBS expression than normal liver cells HL-7702 and QSG-
7701 [82]. Both genetic (by siRNA) and pharmacological (by
AOAA) inhibition of CBS in the SMMC-7721 HCC cell line
with reduced H

2
S production decreased cell viability and

enhanced ROS production in vitro. Another study showing
that the PI3K/AKT pathway regulated the CTH/H

2
S to

promote HCC proliferation also supports the oncogenic role
of H

2
S in HCC [53]. Clearly, the biological function of CBS

in liver cancer is complex and requires further investigation.

5. CBS in Cancer Therapy

Consistent with the complex roles of CBS in cancer biology
described above, it is also becoming evident that both the
activators and inhibitors of CBS have antitumor activity in
different cancer models. This genetic context dependence
determines different types of cancer will display distinct effi-
cacy and toxicity profiles in response to CBS-based targeted
therapies.

5.1. CBS Inhibitors. Aminooxyacetate (AOAA) is currently
considered as the most potent CBS inhibitor compared with
the other drugs such as trifluoroalanine and hydroxylamine
[65]. It has shown antitumor actions in the mouse xenograft
models of colon [49] and breast cancer [83] and patient-
derived colon cancer xenografts [49]. Decreased H

2
S level

in plasma was detected in a colon xenograft mouse model
treated with AOAA while the drug effect on circulating Hcy
level was not investigated. While these antitumor responses
are encouraging, the therapeutic effect of CBS inhibition
requires further investigation as AOAA is actually not
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selective for CBS [65, 84]. The pharmacological action of
AOAA is not limited to suppression of the CBS/ H

2
S axis.

It binds irreversibly to the cofactor PLP, and therefore, in
addition to CBS, it inhibits other PLP-dependent enzymes
such as CTH, 3-MST, and glutamate oxaloacetate transam-
inase 1 (GOT1). AOAA has been reported to target CTH
preferentially overCBS (IC50 8.52𝜇MforCBS versus 1.09𝜇M
for CTH) [85]. Furthermore, inhibition of GOT1 by AOAA
disrupted the malate/aspartate shuttle, decreased glucose-
derived carbon flux into mitochondrial tricarboxylic acid
cycle, and ATP synthesis [83].

To identify new CBS inhibitors, two groups performed
small-molecule screening [86, 87]. The Barrios group [87]
and the Wu group [86] used recombinant CBS enzymes and
employed fluorescent H

2
S readouts to screen a composite

library of 1900 compounds and a chemical library consist-
ing of 20,000 compounds, respectively. Several compounds
showed some selectivity for CBS compared with CTH with
IC50 20-50 𝜇M.However, as the studies did not use AOAA as
a reference in the screen, whether these drugs are superior to
AOAA in terms of potency and selectivity remains unknown.

5.2. CBS Activator S-Adenosyl-L-Methionine (SAM). SAM is
a vital molecule for transmethylation and transsulfuration
reactions. It is the principle methyl-donor for DNA, amino
acid, protein, and lipid methyltransferase and a key precursor
for glutathione and polyamine synthesis (reviewed by [88]).
It is synthesized from methionine and ATP by methionine
adenosyltransferase (MAT, Figure 1). SAM, as an allosteric
activator, modulates CBS activity by inducing a conforma-
tional change in the C-terminus of CBS that facilitates the
entrance of substrates into the catalytic site of the enzyme [1].
Although SAM has been used for treatment of osteoarthritis
[89], depression [90], and liver diseases [88], the clinical
evidence for its efficacy in these diseases is still inconclusive.
Recent data support the concept of using SAMas a chemopre-
ventive agent in HCC and colon cancer, consistent with the
proposed tumor-suppressive role of CBS in HCC.TheMat1a
knockout mice spontaneously develop HCC supporting the
fact that hepatic SAM deficiency predisposes to HCC [91].
In several rodent models of HCC, administration of SAM
is effective in preventing liver carcinogenesis [92, 93]. One
phase II clinical trial is evaluating SAM as a potential
chemoprevention agent in patients with hepatitis C cirrhosis
[94]. SAM also showed a similar chemoprevention effect in
an inflammation induced colon cancer mouse model [95]. In
addition to chemoprevention, SAM exerted a proapoptotic
effect in liver (at 0.2mMover 5 days) [96], gastric (10𝜇Mover
7 days) [97], and colon cancer cells (ranging from 0.25 to 5
mMfor 24 hours) [98]. Interestingly, similar to the conflicting
data regarding CBS function and effects of H

2
S donors

in colon cancer, the Szabo group [71] reported a biphasic
response to SAM in colon cancer cells. At low concentrations
for the short-time period (0.1-1 mM for 12 hours or 0.1 mM
for 24 hours), SAM induced a stimulatory effect on CBS acti-
vation, H

2
S production, and cell proliferation, while at higher

concentrations or chronic exposure (0.1-5mMafter 24 hours)
the inhibitory effects became more prominent and were not
attenuated by CBS silencing, suggesting nonspecificity or

toxicity [71]. Therefore, more work in multiple experiment
models is required to better define the role of SAM/CBS axis
in cancer pathogenesis.

6. CBS in Cancer Prognosis

With the identification of the pathogenic role of CBS in can-
cer, the use of CBS as a prognostic and predictive biomarker
is becoming attractive. As described above, the negative
correlation of CBS expression with the pathologic parameters
in HCC indicates its potential as a prognostic marker in HCC
[77]. Modulation of CBS activity can be indicated by the
changes of Hcy and/or H

2
S levels. The potential prognostic

values of Hcy in cancer have been extensively studied [99–
101]. However, the biological sources of Hcy were not defined
in these studies and, thus, the link between the levels of
Hcy and CBS function remains unknown. Nevertheless,
significant progress in the detection and quantitation of Hcy
frompatient samples has been made in recent years. Methods
of measuring plasma Hcy have evolved from ion-exchange
chromatography to high-performance liquid chromatogra-
phy (HPLC), gas-chromatography mass spectrometry, liq-
uid chromatography-electrospray tandemmass spectrometry
(LC-MS/MS), and fluorescence polarization immunoassay
(FPIA) [102]. In terms of H

2
S, elevated H

2
S in exhaled

breath or its degraded form in urine in cancer patients
provides support for the clinical utility of H

2
S as a marker of

cancer [101]. However, in order to determine the prognostic
and predictive values of H

2
S in cancer, development of

the methods that can accurately measure H
2
S levels in the

circulation or in the targeted organs is imperative.

7. Summary and Future Directions

A functional role for CBS in tumor biology is supported by
(i) clinical evidence of altered CBS expression level and CBS-
derived Hcy and H

2
S levels in cancer patients; (ii) preclinical

studies showing dysregulation of CBS function and activity
in cancer cell culture and animal models; (iii) mechanistic
investigations linking CBS to cancer-related cellular and
molecular changes and signaling pathways. The distinct
biological effects of CBS alterations in different cancermodels
reveal the complexity of CBS signaling in cancer pathogene-
sis.The contradictory role of CBS in cancer biology (Figure 3)
is possibly due to the existence of alternative Hcy and H

2
S

metabolic pathways, and multiple modes of regulation of
CBS expression and activity by hormones, growth factors,
and other metabolites. Therefore, the functional role of
CBS is determined by the distinct metabolic and genetic
profiles in different types of cancer and is context-dependent.
Furthermore, the current conflicting data adds an additional
layer of complexity, indicating that multiple experimental
and analytical approaches as well as in-depth mechanistic
investigations are required to clarify the role of CBS in cancer
biology.

Increased understanding of the role of theCBS-controlled
network in cancer biology will greatly promote the devel-
opment of pharmacological reagents targeting CBS and the
identification of appropriate patient populations. CBS acts
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through two main metabolites Hcy and H
2
S, which have

important physiological roles in specific tissues such as the
liver, brain, and blood vessels. Given its central metabolic
role, it is possible that CBS-based targeted therapy may cause
side effects due to accumulation of unfavorable metabolites.
For example, CBS inhibitors may elevate Hcy levels with
potential risk for developing HHcy.Therefore, further studies
will be required to define the therapeutic windows of the
novel CBS targeting agents. Additional investigations are
clearly required to better elucidate the complex role of CBS
in malignant transformation including (i) characterizing the
role of CBS-related metabolic signaling in cancer pathogene-
sis including but not limited toCBS,Hcy, H

2
S, and the related

enzymes; (ii) determining the interaction of tumor cell-
derived CBS and its metabolites with the microenvironment;
(iii) identifying biomarkers of CBS-based therapies in clinical
samples and cancer models. Certainly, a greater appreciation
for the complexity of CBS in cancer biology will give rise to
new prospective biomarkers or targets for cancer.
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