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Summary

Adipose tissue expansion has been associated with system-wide

metabolic dysfunction and increased vulnerability to diabetes,

cancer, and cardiovascular disease. A reduction in adiposity is a

hallmark of caloric restriction (CR), an intervention that extends

longevity and delays the onset of these same age-related

conditions. Despite these parallels, the role of adipose tissue in

coordinating the metabolism of aging is poorly defined. Here, we

show that adipose tissue metabolism and secretory profiles

change with age and are responsive to CR. We conducted a cross-

sectional study of CR in adult, late-middle-aged, and advanced-

aged mice. Adiposity and the relationship between adiposity and

circulating levels of the adipose-derived peptide hormone

adiponectin were age-sensitive. CR impacted adiposity but only

levels of the high molecular weight isoform of adiponectin

responded to CR. Activators of metabolism including PGC-1a,

SIRT1, and NAMPT were differentially expressed with CR in

adipose tissues. Although age had a significant impact on NAD

metabolism, as detected by biochemical assay and multiphoton

imaging, the impact of CR was subtle and related to differences in

reliance on oxidative metabolism. The impact of age on circulat-

ing lipids was limited to composition of circulating phospho-

lipids. In contrast, the impact of CR was detected in all lipid

classes regardless of age, suggesting a profound difference in

lipid metabolism. These data demonstrate that aspects of adipose

tissue metabolism are life phase specific and that CR is associated

with a distinct metabolic state, suggesting that adipose tissue

signaling presents a suitable target for interventions to delay

aging.
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Introduction

It has been long established that aging is the greatest risk factor for a

range of diseases including diabetes, cancer, cardiovascular disease, and

neurodegenerative disease (Lopez-Otin et al., 2013; Kennedy et al.,

2014). Caloric restriction (CR) is a dietary intervention that delays aging

and extends the period of health in diverse species (Anderson &

Weindruch, 2010). One of the hallmarks of caloric restriction is the

marked reduction in adiposity, a consequence that may be important in

the mechanisms of CR given the endocrine function of adipose tissue.

Adipokines and lipokines secreted from white adipose tissue impact

peripheral tissue fuel utilization and the balance of energy generation

from lipid or carbohydrate sources (Lago et al., 2007; Sethi & Vidal-Puig,

2007; Ouchi et al., 2011). However, it is unclear what effect aging has

on adipose tissue metabolic integrity and how that relates to secretion of

systemic regulatory factors. Prior studies of gene expression in adipose

tissues from old rats and adult mice show that CR induces expression of

genes involved in multiple aspects of metabolism. A further difference

includes the increased circulating levels of the adipose tissue-derived

peptide hormone adiponectin with long-term stringent (40%) CR

(Combs et al., 2003; Zhu et al., 2004). Adiponectin circulates as a

multimer, activates lipid metabolism in target tissues, and is associated

with increased insulin sensitivity (Turer & Scherer, 2012). Assembly into a

high molecular weight form (HMW) is essential to adiponectin function

(Waki et al., 2003), and although total adiponectin levels are not

changed with aging (Combs et al., 2003), the impact of age and modest

CR on HMW adiponectin has not been established. In addition to

peptide factors, adipose tissues also secrete free fatty acids, some of

which may act as signaling molecules in metabolic homeostasis (Cao

et al., 2008). The impact of age and modest CR on the adipose tissue-

derived serum lipid profile has not been reported.

In order to understand whether age-related changes in adiposity are

associated with a change in adipose tissue function, we undertook a

cross-sectional mouse study focusing on adipose tissue metabolism and

circulating levels of adipose tissue-derived signaling molecules. To

capture the trajectory of aging, the study involved adult, late-middle-

aged, and advanced-aged C3B6F1 hybrid mice. Parallel groups of mice

on modest (16%) CR taken at each age served to uncover aspects of

adipose tissue aging that were responsive to delayed aging. We

investigated the relationship between adiposity, adipocyte size, and

adiponectin levels at three age groups of mice on control or CR diets. We

determined whether differences with age and diet were associated with

changes in factors downstream of adiponectin and factors that connect

with adiponectin signaling including NAD metabolism. To investigate

differences in adipose tissue lipid metabolism, we profiled serum lipids

including free fatty acids that are derived from adipose tissue. The goal

of these studies was to determine how age and CR impacted adipose

tissue function beyond simple differences in adiposity and whether

relationships between adipocyte size and secretory profiles were

sustained with age or altered with CR.
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Results

Age and CR impact adiposity and adiponectin production

Cohorts of male mice (C3B6F1 hybrid) were established for a cross-

sectional study that included animals at 10, 20, and 30 months of age

(n = 10–11 per group, per diet), representing adult, late-middle age, and

advanced age for this strain of mice. Younger animals were not included

to avoid the contributions of growth and development to differences

among age groups. For the aging study, mice were fed a control diet of

87 kcal week�1. This level of calorie intake is ~95% of ad libitum for this

strain, where all the mice eat all the food so that precise food intake is

known. This strategy of controlled feeding has the further advantage of

avoiding obesity. A second cohort of mice were placed on a CR diet of

73 kcal week�1 (16% restriction from control) from 2 months of age

and harvested at the same time points indicated above. Survival of the

controls was ~45% at 30 months (5/11 mice remaining), consistent with

the expected lifespan for this strain, and ~73% for the mice on CR (8/11

mice remaining). Two-way ANOVA reveals significant effects of age and

diet for body composition (Fig. 1A). Body weight, percent lean, and

percent fat mass estimates measured by dual-energy X-ray absorptiom-

etry were highest in 20-month-old mice, with significant main effects of

age and diet detected in all parameters (Fig. 1B–E). As expected, body

weight, lean mass, and fat mass were all lower in CR animals compared

to controls; however, percent lean mass was significantly higher and

adiposity by both metrics significantly lower with CR at each time point.

Loss of insulin sensitivity is widely considered to be a contributing

factor in the development of pathologies associated with aging (Facchini

et al., 2001; Russell & Kahn, 2007). An impact of age on fasting serum

insulin was not detected in this study in control animals (Fig. 1F), aligning

with similar reports in rats and mice (Barnard et al., 1995; McCarter

et al., 2007). Furthermore, fasting serum insulin was not significantly
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Fig. 1 Impact of age and diet on mouse

body composition, fasting insulin, and

adiponectin. (A–D) Body weight and DEXA

estimates of lean mass, percent lean mass,

fat mass, and percent fat mass as a function

of age and diet (n = 5–10 per group). (E)

ELISA detection of serum insulin levels

(n = 3–6 per group). (F) ELISA detection of

serum adiponectin levels (n = 4–9 per

group). (G) Linear regression of HMW

adiponectin and fat mass at each age

(n = 11–18 per group). Data are shown as

means � 95% CI. HMW: high molecular

weight. Significance determined by two-

way ANOVA.

Metabolic adaptation to age and CR, K. N. Miller et al.498

ª 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



different between CR and control animals at any time point, perhaps due

to the modest level of CR implemented in this study and the fact that the

controls were not ad libitum fed. Neither age nor diet had a significant

effect on total circulating adiponectin levels (Fig. 1G); however, an

interaction between age and diet was detected for levels of the high

molecular weight (HMW) isoform, and both age and diet effects were

detected for the ratio of HMW to total adiponectin that was significantly

higher in CR animals.

Previous reports have documented the negative correlation

between adiposity and circulating levels of adiponectin (Arita et al.,

1999; Turer et al., 2011). To understand whether this relationship

holds in the absence of obesity and whether there is an impact of

age, regression analysis was conducted using data from all control

and CR mice of 10, 20, and 30 months of age. Levels of total

adiponectin were not correlated with adiposity as measured by mass

in grams or percent body weight for any age group in the study

(Fig. S1, Supporting information). A significant inverse relationship

between HMW adiponectin and fat mass was identified in mice of 10

or 20 months of age, but not at 30 months of age (Fig. 1H). These

data indicate that in lean animals, the levels of HMW, but not total

adiponectin, are related to adiposity and that this relationship is

sensitive to age.

Age and CR impact the association between adipocyte size

and adiponectin production

Morphometric analysis was conducted on fixed paraffin-embedded

sections from epididymal white adipose tissue. Analysis of log-

transformed data revealed significant main effects of both age and diet

on adipocyte size (Fig. 2A). The adipocyte median size and size

distribution were largest in the 20-month-old animals and were

significantly smaller in CR mice compared to controls, regardless of

age (Fig. 2B). Circulating levels of total adiponectin were not correlated

with either body weight, fat mass, or median adipocyte size (Fig. S2,

Supporting information). In contrast, circulating levels of HMW

adiponectin correlated with body weight and fat mass, but not median

adipocyte size (Fig. S2, Supporting information). Regression analysis

conducted on data separated by age category (Fig. 2C) revealed a robust
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and significant inverse correlation between circulating levels of HMW

and median adipocyte size in 10-month-old mice, but not in 20- or 30-

month-old mice. These data indicate that the relationship between

adiponectin and adiposity, including adipocyte size, is age labile and that

in aged animals, the mechanisms linking adiponectin production and

processing to adiposity are likely compromised.

CR impacts levels and modification status of metabolic

regulators

We investigated the impact of CR on metabolic regulators down-

stream of the adiponectin receptor (Iwabu et al., 2010) in adipose

tissue. These include AMPK, the primary effector of adiponectin

signaling (Yamauchi et al., 2002), PGC-1a (peroxisome proliferator-

activated receptor gamma coactivator 1 alpha), a master regulator of

both nuclear and mitochondrial encoded genes involved in oxidative

phosphorylation (Huss et al., 2002; Mootha et al., 2003), SIRT1, an

NAD-dependent deacetylase shown to activate PGC-1a (Nemoto

et al., 2005; Rodgers et al., 2005; Gerhart-Hines et al., 2007), and

NAMPT (nicotinamide phosphoribosyltransferase), an enzyme of the

NAD salvage pathway that activates SIRT1 and is activated by AMPK

(Fulco et al., 2008). A consistent increase in PGC-1a levels was

detected in CR tissues compared to controls, but was not significant

for any individual age group (Fig. 3A). Analysis of mean adjusted

values across age groups revealed a significant ~1.4-fold increase in

PGC-1a in the CR tissues (Fig. 3B). SIRT1 protein levels were

significantly higher in CR adipose tissues at 10 and 20 months of

age (Fig. 3A), and a significant increase in levels of SIRT1 was

identified across age groups (Fig. 3B). Protein levels of NAMPT in

adipose tissues were significantly higher in CR mice compared to

controls at 20 months of age, and there was an overall significant

increase in NAMPT with CR across age groups. A significant impact of

CR to increase levels of AMPK was detected across age groups

although the differences were not significant for any one age group.

Levels of activating phosphorylation [Thr172] of AMPK although

numerically higher in CR tissues compared to controls were not

significantly different for any age group. These data are consistent

with a model where CR activates PGC-1a in adipose tissues,

potentially through regulatory factors downstream of adiponectin.

The lower adiposity and smaller adipocyte size of CR mice pointed

to potential differences in growth signaling. TBP (TATA binding protein)

is a general transcription factor required by all three RNA polymerases,

and it is required for the response to growth stimuli (Johnson et al.,

2003). Levels of TBP were significantly lower in adipose tissues from CR

age groups, suggesting some degree of attenuated growth. The

nutrient-sensitive kinase mTOR (mechanistic target of rapamycin) is a

major growth coordinating kinase and has been implicated in the

mechanisms of CR in nonmammalian models (Kapahi et al., 2010).

mTOR levels were not significantly different in CR adipose tissues at

any age, but overall levels of activating phosphorylation [Ser2448] were

significantly lower with CR (Fig. S3, Supporting information). GSK3b

(glycogen synthase kinase 3 beta) is a key regulator downstream of

growth-promoting pathways including insulin signaling, mTOR signal-

ing, and WNT signaling (Beurel et al., 2015). Overall GSK3b levels were

not significantly different in CR adipose tissues, but inhibitory

phosphorylation [Ser9] was significantly lower. The impact of age

and diet on mTOR (lower predicted activity) and GSK3b (higher

predicated activity) was not equivalent (Fig. S3, Supporting informa-

tion), suggesting that the growth signaling response to CR may be

pathway specific.

Cellular redox environment is differentially impacted by age

and CR

To investigate the impact of age and CR on NAD metabolism, we

employed a quantitative fluorescence imaging-based approach that

takes advantage of the innate autofluorescence of the nicotinamide

ring. This high-resolution microscopy technique detects levels and

chemical properties of the reduced forms of NAD and NADP that can

be quantified directly and nondestructively. Multiphoton laser scanning

microscopy (MPLSM) quantifies NAD(P)H autofluorescence intensity,

informing about total free and bound levels of the cofactors (Denk

et al., 1990), and fluorescence lifetime imaging microscopy (FLIM)

quantifies the kinetics of photon release from the fluorophores,

informing about the metabolic environment (Lakowicz et al., 1992).

To ensure signals captured were derived primarily from adipocytes,

heavily vascularized regions of the tissue sections were avoided in

image capture and quantification. MPLSM detects NAD(P)H throughout

adipocyte cytosolic regions with small areas of intense brightness

identified at junctions of three or more adipocytes. An apparent decline

in NAD(P)H autofluorescence intensity in control animals did not result

in a main effect of age (P = 0.08), but a significant impact of CR and

an age by diet interaction were detected (Fig. 4A,B). Autofluorescence

intensity was significantly higher in adipose tissue from 30-month-old

CR mice than from controls (P < 0.05). Next we used biochemical

approach to detect free NAD+ and NADH in adipose tissue. In general,

levels of total NAD were low in adipose tissues (250 pmol mg�1

tissue), and levels of NADH were below the threshold of detection. A

significant effect of age was detected where levels of total free NAD

were higher in adipose tissues from 20-month-old mice than in 10-

month-old mice and intermediate at 30 months of age (Fig. 4C). An

impact of diet on levels of free NAD in adipose tissue was not

detected, although this may be due to the modest levels of CR

employed in this study.

In order to determine the impact of age and CR on the adipose tissue

microenvironment, we measured fluorescence lifetime using FLIM. Mean

fluorescence lifetime (sm) is the duration that the NAD(P)H fluorophores

stay in the excited state. The kinetics of photon release are characterized

by a first-order decay curve involving a fast component (s1) and a slow

component (s2) that correspond to free and protein-bound pools of NAD

(P)H, respectively. Decay values (s1 and s2) are influenced by the

immediate local environment including hypoxia, pH, redox, and, in the

case of s2, the proteome to which the fluorophores are bound. Decay

curves were generated over multiple pulses, repeated for each pixel in

the image capture field, and were quantified on a by-pixel basis and

color-coded according to picoseconds of decay (Figs 4D and S4,

Supporting information). Similar to the intensity data, clear differences

in sm were detected in cytosolic regions where three or more adipocytes

contact revealing previously unreported metabolic heterogeneity in

adipose tissue. Main effects of age and of diet were significant where

age shifted sm to progressively longer values and CR induced a shift

longer at each age (Fig. 4E). With age, there was a significant increase in

s1 (free) and s2 (bound) that were equivalent in both control and CR

tissues (Fig. 4F, G). A main effect of age was detected for the a1
coefficient, an indicator of the proportion of free NAD(P)H in the total

pool, shifting to greater values. This is consistent with a shift away from

oxidative metabolism (Bird et al., 2005). A main effect of diet was

detected for a1 where values were lower with CR, indicative of a more

oxidative metabolic state (Fig. 4H). Together these data suggest that

aging alters the microenvironment in adipose tissue, changing the

intrinsic chemical properties of NAD(P)H (s1, s2). CR does not impact
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these age-related changes in the microenvironment, but shifts metabo-

lism toward a more oxidative profile.

Age and CR impact the fatty acid composition of circulating

lipids

Apart from free fatty acids that are adipose tissue derived, serum lipids

are generally found complexed as lipoproteins that are liver derived but

peripheral tissue depleted. To investigate the fatty acid composition of

circulating lipids, we determined chain length and degree of saturation

of fatty acids from triglycerides (TG), cholesterol esters (CE),

phospholipids (PL), and nonesterified free fatty acids (FFA) by gas

chromatography (Tables S1–S4, Supporting information). Differences in

relative fatty acid levels between control and CR were calculated for

each lipid class at all ages (Fig. 5). The impact of CR on fatty acid species

was lipid class specific, but was consistent across age groups and within

lipid class. For CE, several monounsaturated fatty acids (MUFA),

polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA) were

significantly different with CR (shaded bars, Fig. 5), in contrast to the

limited number of differences within FFA, PL, and TG classes, although

PUFA were the predominant fatty acid species responding to CR (Fig. 5).

Two-way ANOVA was performed to determine main effects of diet or
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age or diet by age interactions. PL featured prominently among those

species showing a main effect of age (blue boxes, Fig. 5). With the

exception of one MUFA, age exclusively affected relative levels of PUFAs.

There was a significant main effect of diet on fatty acid composition in all

lipid classes analyzed (pink boxes, Fig. 5). Significant age by diet

interactions were identified for several fatty acid species in CE with fewer

in TG, PL, and FFA classes (green boxes, Fig. 5). Although fatty acid

composition was identical for the control and CR diets (Table S5,

Supporting information), difference in ratios of circulating essential fatty

acids was not equivalent among classes (Fig. S5, Supporting informa-

tion), suggesting that CR is associated with a change in the underlying

lipid metabolism. This concept is supported by the identification of main

effects of diet on elongation and saturation indices for FFA, PL, and TG

lipid classes (Fig. S6, Supporting information). These data suggest that

diet has a greater impact than age on circulating fatty acid composition,

that SFA are largely refractory to age and diet, and that PUFA are

responsive to both age and diet.

Adipose tissue-derived fatty acids are responsive to CR

Serum lipid composition provides a window into differences in lipid

metabolism. Apart from linoleic acid (LA; 18:2n-6) and alpha-linolenic

acid (18:3n-3) that are essential fatty acids, all other species are derived

from dietary lipids by elongation and desaturation reactions (Fig. 6A).
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(B) quantitation (n = 4–5 per group). (C) Quantitation of free NAD by biochemical assay (n = 4–6 per group). (D) Representative images of NAD(P)H mean fluorescence

lifetime (sm) (kex = 780 nm), (E) sm distributions, (F) quantitation of s1, (G) s2, (H) a1, n = 4–5 per group. Data are shown as means � 95% CI. Significance determined by

two-way ANOVA (B and C) or using a mixed-effects model (E–H).
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Focusing on age-sensitive PUFA, in the PL some species showed a

biphasic pattern with age. For example, linolenic acid derivative

docosahexaenoic acid (DHA; 22:6n-3) levels were highest at late-middle

age and this pattern was mirrored in eicosapentaenoic acid (EPA; 20:5n-

3), the fatty acid from which it is derived (Fig. 6B). Other species showed

linear effects of age. Arachidonic acid (AA; 20:4n-6) levels increase with

age in PL, while levels of the species from which it is derived (20:3n-6)

declined. The impact of CR was species specific; a main effect of diet was

detected for AA and EPA with levels higher and lower in serum from CR

mice, respectively. For all but the TG, CR induced favorable changes in

the ratios of AA to LA, suggesting that there may be underlying

differences in the synthesis of lipid-derived inflammatory mediators in

mice on CR (Fig. 6C).

We have shown a significant impact of CR on adipose tissue

morphology, adipokine production, and levels of metabolic regulators.

These data suggested that CR might also induce differences in adipose-

derived serum lipid signatures. A main effect of diet was detected in FFA

MUFA (Fig. 6D) and PUFA (Fig. 6A) species, indicative of pervasive

changes in lipid metabolism in adipose tissue (Fig. 6E). Consistent with

this, main effects of diet were detected for indices of desaturation

(16:1n-10/16:0), elongation (18:1n-7/16:1n-7), and omega 3 (22:6n-3/

18:3n-3) metabolism that were all lower with CR. The ratio of omega 3

to omega 6 FFA (20:5n-3/20:4n-6), which has been used as a positive

index of metabolic health, was higher in serum from CR mice (Fig. 6F).

This ratio was also higher in serum CE and PL (Fig. S6, Supporting

information), but not TG, reminiscent of the inflammatory index shown

above. Together, these data suggest that CR impinges on adipose tissue

lipid handling resulting in a distinct systemic lipid profile.

Discussion

Systemic factors that have previously been implicated in aging and CR

include insulin and adiponectin. While is clear that lower circulating

insulin is associated with enhanced longevity, and that elevated

circulating insulin is associated with reduced longevity, the role of

insulin in aging per se is less well established. Prior reports of data from

rats and mice have indicated that insulin is not different with age

(Barnard et al., 1995; McCarter et al., 2007), consistent with data
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fatty acid composition. Serum fatty acid

profiles represented as difference in percent

abundance (restricted – control) n = 5 per

diet per age group. Statistical significance

determined by Student’s t-test (grayscale)

or two-way ANOVA (color-coded).
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reported here. Unexpectedly, CR at the level employed in this study had

no impact on fasted circulating insulin, although measures of insulin

were not conducted in the fed state and insulin sensitivity was not

determined. Adiponectin is an adipose tissue-derived signaling peptide

that has been linked to insulin sensitivity in human studies, where the

HMW isoform is thought to be most effective in promoting insulin

sensitivity (Turer & Scherer, 2012). Similar to insulin, total adiponectin

was not responsive to age or to CR; however, the HMW isoform was

responsive to age and to CR. These data demonstrate that differences in

survival are not associated with differences in fasting serum insulin, but

may be linked to differences in adiponectin isoform distribution. In

human studies, an inverse relationship between systemic levels of

adiponectin and adiposity has been identified, especially in the context

of obesity (Arita et al., 1999; Turer et al., 2011). In cell culture models,

production of adiponectin is inversely linked to adipocyte size (Skurk

et al., 2007). It is unclear how much this association is driven by obesity;

in young nonobese mice, a relationship between circulating levels of

total adiponectin and adipocyte size was not identified (Varady et al.,

2007). Mice with deficiencies in the somatotropic axis display enhanced

longevity that is associated with increased adiponectin (Bartke et al.,

2016). The increase in adiponectin in these models is not necessarily

reflected in adiposity, in particular in the GHRKO mice that have

relatively high levels of visceral fat. In this study, the impact of aging on

adipocyte size was similar for both control and CR tissues albeit starting

from different set points: an initial shift to larger adipocytes from adult to

late-middle age and then to smaller adipocytes at advanced age. These

changes were not associated with differences in total adiponectin. A

relationship between HMW adiponectin and adiposity and adipocyte size

was detected, but was not equivalent across the age groups. For

example, even though the size distribution profiles of adipocyte size at

10 and 30 months of age were quite similar, the relationship to HMW

adiponectin was completely distinct. It would be of considerable interest

to investigate the relationships of adiponectin with other adipose tissues

including subcutaneous and bone marrow depots where the impact of

aging and CR on adiponectin production and processing may be distinct

from that in the reproductive adipose depot investigated in this study.

Factors downstream of adiponectin signaling have been implicated in

longevity, including AMPK, SIRT1, and PGC-1a (Anderson & Weindruch,

2010). The inverse correlation between caloric intake and lifespan

implicates nutrient-sensitive regulators in the mechanisms of CR. The

energy-sensing kinase AMPK is a major effector in the acute response to

adiponectin signaling (Okada-Iwabu et al., 2013). AMPK enhances

expression of NAD salvage pathway enzyme NAMPT, activating SIRT1,

and positively regulates PGC-1a (Jager et al., 2007; Fulco et al., 2008).

Independent studies have shown that SIRT1 also activates PGC-1a

(Nemoto et al., 2005; Rodgers et al., 2005; Gerhart-Hines et al., 2007).

In adipose tissue, CR enhanced levels of all four of these metabolic

regulators in a manner that suggests activation of PGC-1a. These

findings are consistent with recent work identifying mitochondrial

oxidative phosphorylation and redox metabolism as part of the core

response to CR in mice (Barger et al. 2015). In this study, we report a

significant effect of age on NAD(P)H metabolism, with lower levels of

NAD(P)H and changes in the chemical properties of fluorescence lifetime

(sm) including free (s1) and bound (s2) decay components. In addition,

age induced an increase in a1, indicative of a shift away from oxidative

metabolism (Bird et al., 2005). The impact of CR was more nuanced. The

change in sm observed with CR appears not to be due to an effect on the

intrinsic fluorescent properties of NAD(P)H; neither s1 nor s2 were

altered; rather, CR induced a decrease in the ratio of free to bound NAD

(P)H (a1), indicative of a shift toward oxidative metabolism. Differences in

biochemical detection of NAD and multiphoton detection of NAD(P)H

together with the age-related changes in fluorescence decay parameters

indicate a series of shifts in redox state and chemical microenvironment

from adult to late-middle age to advanced age. These data suggest that

in terms of adipose tissue cellular metabolism, aging impacts NAD,

redox, and the cellular microenvironment, and that the adipose tissues of

CR mice are intrinsically different from those of controls.

Adipose tissues play an important role in metabolic adaptation: They

are the primary energy store in the body and during fasting, provision of

fatty acids as an alternate fuel source is the principal means of sparing

glucose (Frayn, 2002). Apart from FFA that are adipose tissue derived,

serum lipids are generally found complexed as lipoproteins that are liver

derived, but peripheral tissue depleted. Thus, serum fatty acid compo-

sition is influenced by hepatic and adipose tissue lipid metabolism.

Changes in the composition of circulating lipids occur as very early

events in the development of spontaneous insulin resistance, and lipid

signatures can accurately identify metabolic dysfunction even in the

absence of differences in adiposity (Polewski et al., 2015). Our data

show that age and CR influence the composition of circulating lipids. PL

were the primary lipid class showing an impact of age. Among the 16

separate fatty acids detected, half showed a main effect of age or an age

by diet interaction. It is possible that these differences influence

lipoprotein function including release and uptake of lipids from

lipoprotein receptors. The age-related decrease in percent composition

of 18:2n-6 and 18:3n-3 reported here is mirrored in studies of

membrane PL composition from a range of tissues from aged rats, as

is the increase in 20:4n-6 (Merry, 2002). The impact of CR was not

simply to reverse the effects of age, but extended to all lipid classes. The

fatty acid composition within lipid classes appeared to have a different

set point in CR mice as well as a different aging trajectory. For adipose

tissue-derived FFA, both delta 6 desaturation (16:1n-10/16:0 and 22:6n-

3/18:3n-3) and elongation (18:1n-7/16:1n-7) ratios were lower with CR.

An inverse association between long-chain FFA and longevity has been

previously reported in comparative studies of mammalian longevity (Jove

et al., 2014). These changes may be indicative of differences in FFA or

TG processing in adipose tissues. Possible explanations would include

reduced activities of fatty acid synthetic enzymes, or a perhaps a change

in fatty acid species retention preference, or a change in selectivity of

secretion processes. An emerging paradigm describes a role for lipid

mediators in the association between inflammation and metabolic

dysfunction (Iyer et al., 2010). AA is a precursor for several important

proinflammatory molecules including leukotrienes, prostaglandins, and

thromboxanes. Age and CR both impacted the ratio of AA to LA (20:4n-

6/18:2n-6), suggestive of an underlying difference in inflammatory tone.

Lipidomic studies in humans point to lower saturation index and lower

inflammatory precursors as markers of enhanced longevity (Gonzalez-

Covarrubias et al., 2013). Taken together, these data point to age- and

CR-related differences in adipose tissue function in terms of lipid flux,

and circulating factors that may contribute to systemic homeostatic

mechanisms.

Our study demonstrates that aging is associated with changes in

cellular metabolism in adipose tissue and in systemic metabolic param-

eters linked to adipose tissue function. CR had a significant impact on

some but not all of these age-related changes but also induced changes

independent of age. These findings demonstrate that CR animals are

metabolically distinct and are consistent with the concept that

metabolism plays a role in the mechanisms of CR. Given that the

benefits of CR are conserved in nonhuman primates, factors responsive

to CR identified in this study may also be important in human aging and

disease vulnerability (Colman et al., 2014). An unexpected finding from
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this study was the high degree of age group specificity in adipose tissue

metabolism and in how adiposity relates to adipose tissue function.

Materials and methods

Animals

This study was approved by the Institutional Animal Care and Use

Committee at the University of Wisconsin, Madison. Male B6C3F1 hybrid

mice were housed under controlled pathogen-free conditions. Mice

were randomized into control or restricted groups at 2 months of age

and fed 87 kcal week�1 (Bio-Serv diet #F05312), which is ~95% of

ad libitum intake, or 73 kcal week�1, which is a 23% reduction in

calorie intake from ad libitum levels and 16% reduction from controls

(Bio-Serv diet #F05314). Total daily intake for CR mice was proportion-

ately lower in carbohydrates than controls (20% lower) with the

difference made up in equivalent proportional increases in fat and

protein contents (Table S6, Supporting information). Fatty acid compo-

sition was identical for both diets. Mice were individually housed to

ensure consumption of all food and so that precise caloric intake could

be known. Body composition was determined on anesthetized mice

using dual-energy X-ray absorptiometry (GE Lunar Piximus) 2 weeks

prior tissue harvest. A list of all measured parameters for each mouse is

provided in Table S7 (Supporting information).

Multiphoton imaging

Autofluorescence detection and lifetime imaging was conducted using

the multiphoton workstation at the University of Wisconsin Laboratory

for Optical and Computational Instrumentation (LOCI, www.loci.wisc.ed

u). The system design, setup, and data acquisition have been previously

described (Martin et al., 2015).

Serum fatty acid composition analysis

Lipids were extracted from 100 lL of serum following a modified Folch

method (Folch et al., 1957). Pentadecanoic acid was added as an

internal control of transmethylation efficiency. Neutral lipid species were

separated on silica gel-60 TLC plates (EMD Millipore) using a heptane/

isopropyl ether/acetic acid (60/40/3) solvent system. TG, CE, FFA, and PL

bands were scraped from plates; lipids were extracted and transmethy-

lated for 30 min at 100 °C with boron trifluoride in 14% methanol

(Sigma). Fatty acid methyl esters were suspended in hexane and

analyzed by gas liquid chromatography (GLC). Chromatograms were

analyzed using HP ChemStation software. Results were calculated to

express fatty acid composition as a percent of total.

Statistical analysis

For biometric data, serum parameters including endocrine data, and

lipidomics univariate measurements, two-way ANOVA was used to

estimate the effect of age and diet. Measurements were transformed to

the log scale to obtain approximately normally distributed residuals.

Where appropriate, P-values were adjusted using the Benjamini–

Hochberg method. For densitometry of Western blots, data were

analyzed by Student’s t-test. Age effects were analyzed by one-way

ANOVA with Tukey post hoc analysis. Adipocyte medians and IQR were

analyzed by two-way ANOVA using the Holm adjustment. Adipocyte size

distribution and fluorescence lifetime distribution data were binned, and

the frequency in each bin was treated as a repeated measure within

animal. A mixed-effects model was fit with terms for diet, age, and bin,

with a random effect for animal. Student’s t-test analysis of fatty acid

data was adjusted using the method of Holm. Linear regression analysis

was conducted to determine association between variables.

All other methods are described in the Appendix S1 (Supporting

information).
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