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Abstract: A non-isothermal moving-boundary model for food dehydration, accounting for shrinkage
and thermal effects, is proposed and applied to the analysis of intermittent dehydration in which
air temperature, relative humidity, and velocity vary cyclically in time. The convection-diffusion
heat transport equation, accounting for heat transfer, water evaporation, and shrinkage at the sample
surface, is coupled to the convection-diffusion water transport equation. Volume shrinkage is
not superimposed but predicted by the model through the introduction of a point-wise shrinkage
velocity. Experimental dehydration curves, in continuous and intermittent conditions, are accurately
predicted by the model with an effective water diffusivity Deff(T) that depends exclusively on the
local temperature. The non-isothermal model is successfully applied to the large set of experimental
data of continuous and intermittent drying of Rocha pears.
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1. Introduction

Food process engineering represents one of the research fields that could benefit most from
theoretical/computational support, that is the accurate modeling of all the complex heat and mass
transport phenomena involved in many processes of interest to the food industry.

Natural and convective drying, for food production and preservation, is undoubtedly one of the
most investigated processes [1]. It involves heat and mass transport in a shrinking food sample [2].
Shrinkage is a major phenomenon connected to drying [3] since it influences consumer quality
perception, costs for transportation and storage. Mathematical modeling of drying is a useful tool for
optimizing the process and designing the dryer.

Most modeling approaches for the description of convective dehydration neglect thermal
phenomena and assume that the temperature is uniform within the sample and equal to the
temperature of the air in the climatic chamber. For a detailed review and classification of theoretical
models for the convective drying of fruits see the recent review by Castro et al. [4].

Thermal effects cannot be overlooked in the analysis and modeling of intermittent
dehydration [5–11] in which the air properties change during the process. Intermittent dehydration
has the technical advantage of increasing the dehydration capacity per unit energy consumption,
improving product quality and reducing color degradation due to non-enzymatic browning. For this
reason, intermittent drying is widely applied for dehydration of heat-sensitive bioproducts (see [8]
and references therein).

A very interesting paper by Silva et al. [11] recently analyzed an intermittent drying process of
whole Rocha pears in which air temperature, relative humidity, and velocity vary cyclically in a climatic
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chamber specifically designed to reproduce the traditional sun-drying of the Portuguese Sao Bartolomeu
pears. Pears are characterized by a high initial moisture content and exhibit a large ideal shrinkage [12],
meaning that volume reduction is equal to the volume of water removed during drying.

This article stems from the idea of verifying the predictive capabilities of the moving-boundary
dehydration model, recently proposed by Adrover et al. [13,14], by analyzing the large set of
experimental data of intermittent drying of Rocha pears reported by Silva et al. [11].

This isothermal moving-boundary model has been already successfully applied to describe
the continuous dehydration kinetics and shrinkage of different food materials and sample shapes,
e.g., eggplant cylindrical [13] and discoidal samples [15], chayote slices [16], potatoes sticks [14] and
square slices [13], ellipsoidal cocoa beans [17].

The aim of this work is to improve the moving-boundary model to account for thermal effects.
To this end, a convection-diffusion heat transport equation, accounting for sample shrinkage, heat
transfer and water evaporation at the sample surface, is added to the convection-diffusion water
transport equation. Like in the isothermal moving-boundary model, volume shrinkage is not
superimposed but predicted by the model via the introduction of the pointwise shrinkage velocity that
depends on the local volumetric water flux. The predictive capabilities of the model have been checked
onto the experimental intermittent deydration curves of Rocha pears, performed in a programmable
climatic chamber, and simulating the cyclic repetition of the three different stages characterizing the
traditional solar drying. Numerical results clearly show that, if the spatio-temporal evolution of the
temperature field is properly accounted for, the experimental dehydration curves, in continuous and
intermittent conditions, can be accurately predicted by the moving-boundary model with an effective
water diffusivity Deff(T) that depends exclusively on the local temperature.

The article is organized as follows. Section 2 reviews the morphological and geometrical
parameters of spherical pears subjected to dehydration and briefly describe the operating conditions
for continuous and intermittent drying, as reported by [11]. Section 3 reviews the basic equations
and boundary conditions of the isothermal moving-boundary model and presents its corresponding
non-isothermal formulation. Section 4 focuses on continuous dehydration experiments and shows
that the isothermal model does not provide satisfactory results. This is because the temperature
of the whole pear T(r, t) cannot be approximated with the air temperature T∞, even in the simpler
continuous dehydration process. However, the isothermal approach allows estimating the effective
water diffusivity Deff(T) from the asymptotic exponential behaviour of the two continuous dehydration
curves at T∞ = 40 ◦C and 50 ◦C, as discussed in Section 4.2 and in Appendix B. The water
diffusivity Deff(T) is the only unknown parameter that enters the non-isothermal model. All the
other parameters have been estimated from independent measurements (e.g., desorption isotherms)
or from reliable correlations (e.g., heat and mass transfer coefficients hT and hm), as discussed in
Appendix A. The non-isothermal model is successfully applied, in a fully predictive way, to describe
the continuous dehydration experiments in Section 4.3, and the intermittent dehydration tests in
Section 5. The influence of air velocity on the dehydration time and the effectiveness of the pause
stages on the reduction of moisture internal gradients are also addressed in Section 5.

2. Continuous and Intermittent Drying of Rocha Pears

We analyze experimental data of continuous and intermittent drying of pears of Rocha variety
reported in [11] and summarized in Table 1.

Continuous and intermittent drying experiments are performed in a programmable climatic
chamber simulating the cyclic repetition of the three different stages (see Figure 1) characterizing the
traditional solar drying, namely

1. A first stage (10 h) of convective drying (C) with air velocity Umax
∞ = 1.28 or 2.66 m/s,

high temperature Tmax
∞ = 40 ◦C or 50 ◦C and low Relative Humidity RH = 15%.

2. A second pause stage (P1, 7 h), simulating the barreling stage, characterized by a high temperature
T∞ = 40 ◦C, 50 ◦C, high Relative Humidity RH = 80% and very low air velocity U∞ < 0.2 m/s.
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3. A third pause stage (P2, 7 h), simulating the night period, characterized by a low temperature
T∞ = 17 ◦C, high Relative Humidity RH = 80% and very low air velocity U∞ < 0.2 m/s.

Table 1. Initial total moisture content X0 [kg water/kg dry solid] and sample dimension d0 [cm] for
different continuous (C) and intermittent (I) drying experiments. * Dehydration curves shown in
Figure 2. ** Dehydration curve shown in Figure 12A.

Experiment Type Cycles T∞ U∞ X0 d0
[◦C] [m/s] [cm]

C-40 ◦C * C - 40 1.28 5.64 5.30
I-40 ◦C-2 Cycles * I 2 40 1.28 6.48 5.36
I-40 ◦C-5 Cycles * I 5 40 1.28 5.37 5.30

C-50 ◦C * C - 50 1.28 5.55 5.24
I-50 ◦C-2 Cycles * I 2 50 1.28 6.21 5.32

I-50 ◦C-3 Cycles I * I 3 50 1.28 6.25 5.69
I-50 ◦C-3 Cycles II ** I 3 50 2.66 7.24 5.43

For details regarding the experimental setup see the original paper by Silva et al. [11].
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Figure 1. Temporal evolution of air temperature T∞, Relative Humidity RH∞ and velocity U∞

during the three distinct stages of a single cycle for intermittent dehydration, namely a convective
high-temperature drying period (C), a high-temperature humid pause (P1) and a low-temperature
humid pause (P2). Umax

∞ = 1.28 or 2.66 m/s. Tmax
∞ = 40 ◦C or 50 ◦C.

The collection of experimental data for the temporal evolution of the rescaled total moisture
content X(t)/X0 for continuous and intermittent drying of spherical pears at T = 40 ◦C, 50 ◦C and
U∞ = 1.28 m/s are reported in Figure 2 where vertical lines highlight the different stages of the first
two cycles for intermittent drying experiments.

Details regarding the initial total moisture content X0 and the initial sample diameter d0 for each
experiment are reported in Table 1.
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Figure 2. Collection of experimental data for continuous and intermittent drying of spherical pears at
T∞ = 40 ◦C, 50 ◦C, U∞ = 1.28 m/s. Vertical lines highlight the different stages of the first two cycles
for intermittent drying experiments. Continuous thick (red and blue) lines represent the best-fit curves,
Equation (22), for the two continuous drying experiments C-40 ◦C and C-50 ◦C.

3. Isothermal and Non-Isothermal Moving-Boundary Models

This section preliminary reviews the basic idea and the resulting equations of the moving-
boundary model for food isothermal dehydration, developed in [13,14]. It subsequently extends
the moving-boundary model to the non-isothermal case in which the sample temperature cannot be
assumed constant (in time and/or space) and equal to the air temperature T∞ of the climatic chamber.

3.1. Isothermal Moving-Boundary Model

During the dehydration process, the sample volume V(t) and surface S(t) evolve in time due to
sample shrinkage. The sample temperature is assumed constant in space and time and equal to the air
temperature T∞.

The transport equation describing the space-time evolution of the pointwise water concentration
cw(x, t) [g water/m3 product] inside the sample volume V(t) is an advection-diffusion equation
accounting for the local shrinkage through the pointwise shrinkage velocity vs(x)

∂cw(x, t)
∂t

−∇ ·
(

Jd + vs(x) cw

)
= = ∇ ·

(
Deff∇cw − vs(x) cw

)
, x ∈ V(t) (1)

where Jd = −Deff∇cw is the diffusive mass flux, controlled by the effective water diffusivity Deff,
and (vscw) is a convective term arising from local shrinkage.

By enforcing the analogy between food dehydration and swelling of rubbery polymers
(both processes are characterized by moving boundaries whose movement is controlled by water
release or absorption [18–21].), the pointwise shrinkage velocity vs(x) is assumed proportional (and
opposite in sign) to the diffusive volumetric flux Jd(x)/ρw [m3 water/(s m2)]

vs(x) = −α(cw) Jd(x)/ρw = α(cw) Deff∇cw/ρw , (2)

where α(cw) is a shrinkage proportionality factor, depending on the pointwise water concentration.
The shrinkage factor α(cw) is the fingerprint of the specific food material under investigation.

The simplest case is that of a constant shrinkage factor, i.e., α(cw) = α0. α0 = 0 represents the case of a
rigid solid (no shrinkage). α0 = 1 represents the case of ideal shrinkage, in which volume reduction
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corresponds exactly to the volume of water flowing outside the sample. Values of α0 less or greater
than unity imply volume reduction less or greater than the corresponding water volume flow [14,15].

The effective water diffusivity Deff can be assumed constant in space or, in a more refined
approach, it can be expressed as an increasing exponential function of the water volume fraction
φ [18,19]

Deff(φ, T) = Dφ0(T) exp
(
−β

φ0 − φ

φ0 − φ∞

)
, β ≥ 0 , φ = cw/ρw (3)

In Equation (3) φ0 is the initial water volume fraction, Dφ0 and D∞ = Dφ0 exp(−β) are the effective
diffusivities at the beginning and at the end of the drying process, respectively.

The shrinkage velocity vs(xb), at every point xb on the sample boundary S(t), controls the
temporal evolution of the sample boundary S(t) according to the following equation

dxb
dt

= vs
∣∣
xb

=
α(cw)

ρw
Deff∇cw|xb , xb ∈ S(t) . (4)

The two transport equations Equations (1) and (4) are linked together and must be solved
simultaneously by further enforcing the following mixed boundary condition, also referred to as
Robin or “evaporative” or third order boundary condition [10]

− Deff∇cw · n
∣∣
xb

= hm Mw
(
C|xb − C∞

)
= = hm Mw

pv(T∞)

RgT∞
(RHb − RH∞) (5)

where n is the outward-pointing normal unit vector, Mw = 18 [g/mol] the water molecular weight,
hm [m/s] the mass transfer coefficient, pv(T∞) the saturated vapor pressure at the air temperature
T∞. C [mol/m3] is the water (vapor) concentration in air and can be further expressed in terms
of the Relative Humidity RH, at the air/sample interface RH

∣∣
xb

and in the climatic chamber RH∞,
by adopting the ideal gas law

C =
p

RgT
=

pv(T)
RgT

p
pv(T)

=
pv(T)
RgT

RH (6)

The Relative Humidity RHb = RH
∣∣
xb

at the air/sample interface, depends on the local water
concentration cw(xb, t) and on the temperature T∞ and must be evaluated from the Desorption Isotherm
(DI) at T = T∞

RHb = RH
∣∣
xb

= DI(cw(xb, t), T∞) (7)

The mass transfer coefficient hm can be evaluated from well-known correlation functions for the
Sherwood number Sh, specific for the sample geometry under investigation (sphere, cylinder, ellipsoid,
slab) with all the physical parameters of the humid air evaluated at T∞ (see Appendix A).

3.2. Non-Isothermal Moving-Boundary Model

In the non-isothermal approach a partial differential equation describing the spatio-temporal
evolution of the temperature T(x, t) in the shrinking sample is coupled to the mass transport equations
Equations (1), (4) and (5). Equations (1), (4) and (5) need to be slightly modified to take into account
that the internal temperature T(x, t) and the boundary temperature Tb = T(xb, t) are different from
the air temperature T∞ in the climatic chamber.
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The non-isothermal approach requires the simultaneous solution of the two advection-diffusion
partial differential equations for cw(x, t) and T(x, t)

∂cw(x, t)
∂t

= ∇ ·
(

Deff(T)∇cw − vs(x) cw

)
, (8)

∂
(
ρpCp

p T(x, t)
)

∂t
= ∇ ·

(
kp∇T − vs(x) ρpCp

p T
)

, (9)

vs(x) = α(cw)Deff(T)∇cw/ρw (10)

coupled with the equation for the temporal evolution of sample boundary S(t)

dxb
dt

= vs
∣∣
xb

=
α(cw)

ρw
Deff(Tb)∇cw|xb , xb ∈ S(t) . (11)

and with the boundary conditions

− Deff(Tb)∇cw · n
∣∣
xb

= hm(Tav) Mw

(
pv(Tb)

RgTb
RHb −

pv(T∞)

RgT∞
RH∞

)
(12)

− kp∇T · n
∣∣
xb

= hT(Tav)
(
Tb − T∞

)
− λv(Tb)Deff(Tb)∇cw · n

∣∣
xb

(13)

The boundary condition Equation (13) takes into account both the heat transfer resistance and the
heat subtracted for water evaporation at the air/sample interface [22–26], λv being the heat of water
evaporation, evaluated at Tb.

In this non-isothermal case, the Relative Humidity RHb at the air/sample interface depends on
the local water concentration cw(xb, t) and on the boundary temperature Tb 6= T∞.

The heat and mass transfer coefficients hT and hm can be evaluated from well-known correlation
functions for the Sherwood Sh and Nusselt Nu numbers, specific for the sample geometry under
investigation, with all the physical parameters of the humid air evaluated at the average film
temperature Tav = (Tb + T∞)/2 (see Appendix A).

All the physical parameters of the food product, namely the product density ρp, the specific
heat capacity Cp

p and the thermal conductivity kp, are functions of the local water concentration cw

(see Appendix A).
In the present formulation it has been assumed that the effective water diffusivity is solely a

function of the temperature and independent of the local water concentration, i.e., β = 0 in Equation (3).
The heat transport equation Equation (9) is coupled to the mass transport equation Equation (8)

not only through the boundary condition Equation (13) but also through the shrinkage-convective
term (vs(x) ρpCp

p T) that contributes to flatten the temperature profile inside the sample.
If the thermal diffusivity Dp

T = kp/(ρpCp
p) of the food material is significantly larger than water

diffusivity Deff, we can assume that the temperature is uniform inside the sample and equal to the
boundary temperature, i.e., T(x, t) = Tb(t). Consequently, the partial differential equation Equation (9)
for T(x, t) can be replaced with the ordinary differential equation describing the temporal evolution of
the boundary temperature Tb(t)

d
dt

(
Tb

∫
V(t)

(ρpCp
p) dx

)
=
∫

S(t)

(
− hT(Tav)

(
Tb − T∞

)
+ λv(Tb)Deff(Tb)∇cw · n

∣∣
xb

)
dS (14)

while the water transport equations Equations (8) and (10) remain unchanged except for the fact that
Deff(T) must be replaced with Deff(Tb).
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3.3. Numerical Issues

PDE equations and boundary conditions describing the one-dimensional shrinkage dynamics
and sample dehydration have been numerically solved using finite elements method (FEM) in Comsol
Multiphysics 3.5. The convection–diffusion package coupled with ALE (Arbitrary Lagrangian Eulerian)
moving mesh has been adopted with Free Displacement induced by boundary velocity conditions.
Lagrangian quadratic elements have been chosen. The linear solver adopted is UMFPACK, with relative
tolerance 10−4 and absolute tolerance 10−7. The Time Stepping Method adopted is BDF with a Strict
policy for time steps taken by the solver in order to have a good resolution (in time) of step changes in
boundary conditions (air temperature, relative humidity and velocity). The number of finite elements
set to 104 with a non-uniform mesh. Smaller elements have been located close to the moving boundary
r = R(t) in order to accurately compute concentration and temperature gradients, controlling the
velocity of the moving front.

4. Modeling of Continuous Drying Experiments

4.1. The Isothermal Approach

We preliminary adopt the isothermal approach to model the two continuous drying experiments
on spherical pears at T = 40 ◦C, 50 ◦C (experimental data shown in Figure 2).

It is assumed that the spherical shape of the sample is not altered by the dehydration process.
The sample geometry is uniquely characterized by its radius R(t) evolving in time from its initial value
R0 towards its asymptotic value R∞.

According to experimental shrinkage data reported by Silva et al. [11] (subsequently shown in
Figure 7B), it is assumed ideal shrinkage, i.e., that volume reduction equals, at each time instant, the
volume of water released by the sample(

1− V(t)
V0

)
= φ0

(
1− X(t)

X0

)
(15)

where φ0 is the initial uniform water volume fraction. This macroscopic observation finds its
microscopic counterpart in the assumption of a constant and unitary shrinkage coefficient α(cw) =

α0 = 1. It must be pointed out that the assumption α(cw) = α0 does not imply that the shrinkage
velocity vs(x) is constant, nor in time or space, but rather that, according to Equation (2), the shrinkage
velocity is directly proportional to the local concentration gradient. Therefore, the shrinkage velocity
asymptotically tends to zero, at each point in the sample, when the water concentration gradient goes
to zero everywhere in the system, i.e., equilibrium conditions are reached.

The water transport equation and boundary conditions, Equations (1), (2) and (4), rewritten in
spherical coordinates and in terms of the water volume fraction φ(r, t) = cw(r, t)/ρw, read as

∂φ(r, t)
∂t

=
1
r2

∂

∂r

(
r2
(

Deff
∂φ

∂r
− vs(r) φ

))
, r ∈ (0, R(t)) (16)

vs(r) = Deff
∂φ

∂r
,

dR(t)
dt

= vs(R(t)) = Deff
∂φ

∂r

∣∣∣
R(t)

(17)

∂φ

∂r

∣∣∣
r=0

= 0 , −Deff
∂φ

∂r

∣∣∣
R(t)

= hm
Mw

ρw

pv(T∞)

RgT∞
(RHb − RH∞) (18)

The Relative Humidity at the air/sample interface RHb = RH
∣∣
R(t) = RH(φb, T∞) is evaluated from

desorption isotherms for Rocha pears reported by [27] and best fitted with the Henderson model, as
discussed in detail in Appendix A. The correlation function adopted for the estimate of the mass
transfer coefficient hm, evaluated at the air temperature T∞, is also reported in Appendix A.
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Figure 3 shows the comparison between experimental data for X(t)/X0 vs. time at T∞ = 40 ◦C
and isothermal model predictions with Deff = 5× 10−11, 1× 10−10, 2× 10−10 m2/s. It can be readily
observed that an isothermal model with a constant water diffusivity Deff is not able to capture the
salient features of the experimental dehydration curve. The lower value of Deff can well approximate
only the initial behaviour of the dehydration curve, while higher values of Deff better describe the
asymptotic behaviour. Even worse results would be obtained by using a diffusivity dependent on the
volumetric water fraction Equation (3).
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Figure 3. Continuous dehydration data X(t)/X0 vs. time at T∞ = 40 ◦C. Comparison between
experimental data (points) and isothermal model predictions (continuous lines) with Deff =

5 × 10−11, 1× 10−10, 2× 10−10 m2/s. Arrow indicates increasing values of Deff.

In order to understand this result, some observations must be done

1. By direct comparison between experimental continuous dehydration curves at T∞ = 40 ◦C and
T∞ = 50 ◦C (see Figure 2) it can be observed that Deff is highly sensitive to air temperature T∞

2. The initial temperature of the sample in all the experiments is T(r, 0) ' 15 ◦C, well below the
operating temperature T∞ = 40 ◦C, 50 ◦C

3. The initial moisture content X0 of Rocha pears is high, order of 5–6 kg water/kg dry solid,
that implies an initial water weight fraction xw(0) ' 0.84. To make a rough calculation, at the
beginning of the drying process, the product density ρp, the specific heat capacity Cp

p and the
thermal conductivity kp can be reasonably approximated with that of water.

A sphere of non evaporating water with diameter d0 ' 5.3 cm requires about five hours to rise its
temperature from 15 ◦C to 40 ◦C for a heat transfer coefficient hT ' 20 W/(m2 K).

4. Given the high dehydration rates, especially at the beginning of the drying process, most part
of the heat flux supplied by forced convection hT(T∞ − Tb) is used for water evaporation at the
air/sample interface. Therefore, the time required to rise the sample temperature from 15 ◦C to
40 ◦C could reasonably increase from 5 to more than 30 h.

For all these reasons, it has to be expected that the water diffusivity Deff, at least in the first
30–40 h of the drying process, is changing in time due to its sensitivity to the time-dependent
sample temperature. Deff progressively increases from lower values, corresponding to lower sample
temperatures, towards the asymptotic value Deff(T∞) that settles when the sample temperature reaches
the air temperature T∞. The adoption of a non-isothermal model is strictly necessary. The necessity to
account for a temperature dependent diffusion coefficient, even in a continuous drying experiment,
has been already pointed put by Srikiatden and Roberts [28,29] in dealing with convective hot air and
isothermal drying of potatoes and carrots.



Foods 2020, 9, 1577 9 of 22

4.2. The Estimate of Deff(T) from the Asymptotic Behavior of Dehydration-Rate Curves

Despite the fact that an isothermal model cannot be applied for an accurate description of the
whole continuous dehydration curve, a simplified isothermal model can be used to estimate the
effective diffusivity Deff(T) from the asymptotic behaviour of the continuous dehydration curves.

On longer time scales, corresponding to lower values of the total moisture content X(t)/X0 ≤ 0.2,
we can reasonably assume that (1) the sample temperature is uniform and equal to T∞ and (2)
the sample volume V(t) has reached its asymptotic value V∞ after almost complete shrinkage
(see Figure 7B)

V∞

V0
= 1− φ0

(
1− X∞

X0

)
' 0.1. (19)

On longer time scales, the convective-shrinkage contribution to water transport becomes negligible
and the dimensionless dehydration rate J(t)

J(t) = −dXr

dt
= − d

dt

( X− X∞

X0 − X∞

)
(20)

becomes a linear function of the moisture ratio Xr(t)

J(t) = Deff(T∞)
π2

R2
0

(V∞

V0

)−2/3
Xr(t) (21)

The derivation of Equation (21) is reported in Appendix B.
Figure 4A shows the dehydration-rate curves J vs. Xr for the two continuous dehydration

experiments at T∞ = 40 ◦C and 50 ◦C. These curves are obtained from the best-fit of the corresponding
dehydration curves X(t)/X0 with the following function

X(t)/X0 = a0 + a1e−b1t + a2e−b2t + (1− a0 − a1 − a2)e−b3t (22)

that satisfies the two constrains X(0)/X0 = 1, X∞/X0 = a0. The best-fit curves are shown in Figure 2
(red and blue thick lines). The dehydration rate J(t) can be subsequently evaluated as

J(t) =
1

1− a0

(
a1b1e−b1t + a2b2e−b2t + (1− a0 − a1 − a2) b3e−b3t

)
, (23)

and plotted as a function of Xr =
(X(t)/X0)−a0

1−a0
.

The experimental dehydration-rate curves, shown in Figure 4A, exhibit the expected asymptotic
linear behaviour, Equation (21), valid for large t or equivalently for small Xr. From these
dehydration-rate curves and Equation (21) the following values of water diffusivity Deff(40 ◦C) =

1.703× 10−10 m2/s and Deff(50 ◦C) = 2.497× 10−10 m2/s have been estimated and then plotted, in
Figure 4B, with the corresponding best-fit Arrhenius function

Deff(T) = D0e
− E

RgT , D0 = 4.00012× 10−5m2/s , E/Rg = −3872.63K. (24)

The water diffusivity Deff(T), thus estimated in the whole range of temperatures [10 ◦C–50 ◦C],
will be used to verify the predictive capabilities of the non-isothermal model in which there are no
other fitting parameters. All the other parameters have been preliminarily estimated from well-known
correlations or from independent experimental measurements, like in the case of the desorption
isotherms (see Appendix A).
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Figure 4. (A) Dehydration-rate curves J vs. Xr for continuous dehydration tests at T∞ = 40 ◦C, 50 ◦C,
U∞ = 1.28 m/s. Continuous lines represent the best-fit curves Equation (23). Black dashed lines
highlight the asymptotic (large t, small Xr) linear behaviour, Equation (21). (B) Estimated effective
water diffusivity Deff at T = 40 ◦C, 50 ◦C (filled points). The dashed line represents the Arrhenius
behaviour, Equation (24).

4.3. The Non-Isothermal Approach

The non-isothermal model, Equations (8)–(13), rewritten for a spherical sample in terms of the
water volume fraction φ(r, t), reads as

∂φ(r, t)
∂t

=
1
r2

∂

∂r

(
r2
(

Deff(T)
∂φ

∂r
− vs(r) φ

))
, r ∈ (0, R(t)) (25)

∂
(
ρpCp

p T(r, t)
)

∂t
=

1
r2

∂

∂r

(
r2
(

kp ∂φ

∂r
− vs(r)ρpCp

p T
))

, r ∈ (0, R(t)) (26)

vs(r) = Deff(T)
∂φ

∂r
,

dR(t)
dt

= vs(R(t)) = Deff(Tb)
∂φ

∂r

∣∣∣
R(t)

(27)

∂φ

∂r

∣∣∣
r=0

= 0 ,

− Deff(Tb)
∂φ

∂r

∣∣∣
R(t)

= hm(Tav)
Mw

ρw

(
pv(Tb)

RgTb
RHb −

pv(T∞)

RgT∞
RH∞

) (28)

∂T
∂r

∣∣∣
r=0

= 0 ,

− kp ∂T
∂r

∣∣∣
R(t)

= hT(Tav)(Tb − T∞)− λv(Tb)ρwDeff(Tb)
∂φ

∂r

∣∣∣
R(t)

(29)

where the Relative Humidity at the air/sample interface RHb = RH
∣∣
R(t) = RH(φb, Tb) is evaluated

from desorption isotherms for Rocha pears reported by [27] and best fitted with the Henderson model,
see Appendix A. Equations (25)–(29) must be numerically integrated starting from the uniform initial
conditions φ(r, 0) = φ0 ' 0.9 and T(r, 0) = T0 = 15 ◦C. The value of φ0 can slightly change for
different experiments because of changes in the initial total moisture content X0 (see Table 1).

Figure 5 shows the excellent agreement between experimental data, at both temperatures T∞ = 40 ◦C,
50 ◦C, and model predictions (continuous red and blue curves, coefficient of determination R2 > 0.99)
with no adjustable parameters. Indeed, there is no need to introduce a concentration-dependent diffusion
coefficient, Equation (3), that would require the estimate of the β parameter. For this reason, we set β = 0
also for all the subsequent simulations of intermittent dehydration.
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Figure 5. Comparison between experimental continuous dehydration curves X(t)/X0 vs. t at T∞ =

40 ◦C, 50 ◦C and U∞ = 1.28 m/s (filled points) and model predictions (continuous and dashed lines)
with D(T) given by Equation (24). Continuous red and blue curves represent the non-isothermal
model Equations (25)–(29). Black dashed lines represent the non-isothermal simplified model with
T(r, t) = Tb(t), Equation (31).

The reliability of the non-isothermal model allows us to verify some hypotheses made in
paragraph Section 4.1 when discussing the intrinsic limitations of the isothermal approach.

Figure 6A shows the temporal evolution of the temperature at the center T0(t) = T(0, t) and at
the sample boundary Tb(t) = T(R(t), t) for the continuous dehydration at T∞ = 50 ◦C. Due to the
high value of the product thermal diffusivity Dp

T = kp/(ρpCp
p) ' 9× 10−8 m2/s � Deff, the two

temperatures T0 and Tb almost coincide for t > 3 h. This is the only numerical result that differs
from experimental observations by Silva et al. [11]. These authors observed an appreciable difference
between T0 and Tb in the convective stage, and this is quite difficult to explain if one considers the high
value of the thermal diffusivity of the pears.

As expected, both temperatures T0(t) and Tb(t) require more than 40 h to get close to the
asymptotic value T∞. This is due to the large amount of energy required for water evaporation
at the air/sample interface. This effect is particularly evident in the very first hours of the dehydration
process, in which both temperatures T0 and Tb, highlighted in the inset of Figure 6, exhibit a slight
decrease below the initial temperature.

Correspondingly, also the average effective water diffusivity < Deff >, shown in Figure 6B,

< Deff(t) >=
1

(4/3)πR(t)3

∫ R(t)

0
Deff(T(r, t)) 4πr2dr (30)

attains a very low value, order of 5× 10−11 m2/s at the beginning of the drying process and requires
more than 40 h to get close to the five times larger asymptotic value ' 2.5× 10−10 m2/s.

Figure 6B also shows the temporal evolution of the heat and mass transfer coefficients hT and
hm, evaluated according to well-known correlations Equations (A10)–(A13) reported in Appendix A.
Both hT and hm exhibit a d−1/2 dependence on the sample diameter d(t) and therefore are increasing
functions of time, mainly because of sample shrinkage.
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Figure 6. Continuous dehydration at T∞ = 50 ◦C and U∞ = 1.28 m/s. (A) Model predictions for
the temporal evolution of the temperature at the center T0(t) = T(0, t) and at the sample boundary
Tb(t) = T(R(t), t). (B) Model predictions for the temporal evolution of the heat and mass transfer
coefficients hT and hm, evaluated according to Equations (A10)–(A13), and of the average water effective
diffusivity < Deff >, Equations (24) and (30).

The rescaled sample volume V(t)/V0 and radius R(t)/R0 are shown in Figure 7B as a function
of the rescaled total moisture content X(t)/X0, in agreement with experimental data (open circles,
from Silva et al. [11]). Indeed, starting from these experimental shrinkage data, the hypothesis of ideal
shrinkage for Rocha pears has been formulated and implemented in the moving-boundary model by
setting α(φ) = α0 = 1.

The temporal evolution of the water concentration profile φ(r, t) is represented in Figure 7A,
together with the boundary concentration φb(t) that rapidly (12 h) decreases towards the very low
asymptotic value. Figure 7A clearly shows that a mixed third kind boundary condition, Equation (28),
has to be applied for a correct description of all the different phases of the drying process.
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A last observation regarding the temperature profiles. Figure 6A clearly shows that it is reasonable
to assume that the temperature is uniform inside the sample and equal to the boundary temperature,
i.e., T(r, t) = Tb. This observation allows replacing the partial differential equation Equation (26) for
T(r, t) with the ordinary differential equation for the boundary temperature Tb(t)

d
dt

(
Tb

∫ R(t)

0
(ρpCp

p)4πr2dr
)
=(

− hT(Tav)
(
Tb − T∞

)
+ λv(Tb)ρwDeff(Tb)

∂φ

∂r
∣∣
R(t)

)
4πR2(t)

(31)

while the water transport equations Equations (25) and (27) remain unchanged except for the fact
that Deff(T) must be replaced with Deff(Tb). The thermal inertial term ρpCp

p appears in the volume
integral, right hand side of Equation (31), because it depends on φ(r, t) and therefore on r and t
(see Appendix A).

Numerical results of the integration of this simplified model are shown in Figure 5 (black
dashed lines) and are almost indistinguishable from numerical results of the more accurate
non-isothermal model.

5. Modeling of Intermittent Drying Experiments

The non-isothermal model Equations (25)–(29) is applied to describe the intermittent drying
experiments. In these experiments the air temperature T∞, Relative Humidity RH∞ and velocity U∞

change in time according to the cyclic repetition of three different stages, as described in Section 2 and
exemplified in Figure 1. The switch between different air operating conditions is not instantaneous but
it requires about 30 min [11]. This effect has been accounted for by adopting a smooth step function
θδ(t) for the switch

θδ(t[h]) =
1
2

(
1− tanh

(
t
δ

))
, δ = 0.1 h (32)

shown in Figure 1. The introduction of the smooth step function also simplifies the numerical
integration of the system of time-dependent partial differential equations.

Figure 8A shows the excellent agreement between experimental data for X(t)/X0 vs. t and model
predictions (coefficient of determination R2 > 0.99) for two intermittent dehydration experiments at
Tmax

∞ = 40 ◦C and Umax
∞ = 1.28 m/s. The two experiments differ in the number of cycles, 2 for the

first and 5 for the second experiment, and in the initial moisture content X0 of samples analyzed
(see Table 1).
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Figure 8. Intermittent dehydration (2 Cycles and 5 Cycles) for Tmax
∞ = 40 ◦C and Umax

∞ = 1.28 m/s
(A) Comparison between experimental dehydration curves X(t)/X0 vs. t (filled points) and model
predictions (continuous lines) with D(T) given by Equation (24). (B) Model prediction of the temporal
evolution for the rescaled sample volume V(t)/V0.
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Figure 8A clearly shows that the model is capable to perfectly describe the evolution of the total
moisture content in the convective stages (C) and in the pause stages (P1 and P2). The model shows
that, in agreement with experimental data, also in the pause stage P1 (“hot-humid” pause) of the first
two cycles, the sample is slightly dehydrating. Therefore, even if the air velocity is extremely low
(we set U∞ = 0.1 m/s]), the sample cannot be considered “isolated” neither for the mass transfer nor
for the heat transfer. The temporal evolution of the heat and mass transfer coefficients hT and hm is
shown in Figure 9B.

The corresponding evolution of the rescaled sample volume V(t)/V0 is shown in Figure 8B.
It highlights how, in the last three cycles of the 5 cycles experiment when the total moisture content
X(t) is low, the sample is slightly re-hydrating in the “cold-humid” pause P2.

The temporal evolution of the boundary temperature Tb(t) is shown in Figure 9A. In qualitative
agreement with data reported by [11] in Figure 4, Tb(t) exhibits a rapid increase at the beginning of
the hot-humid pause P1 due to the sudden increase of the air Relative Humidity that temporarily
annihilates the heat consumption for water evaporation.
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Figure 9. Intermittent dehydration (2 Cycles and 5 Cycles) for Tmax
∞ = 40 ◦C and Umax

∞ = 1.28 m/s.
Model predictions for the temporal evolution of the boundary temperature Tb(t) (A) and of the heat
and mass transfer coefficients hT and hm (B).

Figure 10A shows the comparison between experimental data for X(t)/X0 vs. t and model
predictions for two intermittent dehydration experiments at the higher air temperature Tmax

∞ = 50 ◦C
and the same air velocity Umax

∞ = 1.28 m/s. The two experiments differ in the number of cycles, 2 for
the first and 3 for the second experiment.
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(A) Comparison between experimental dehydration curves X(t)/X0 vs. t (filled points) and model
predictions (continuous lines) with D(T) given by Equation (24). (B) Model prediction of the temporal
evolution for the rescaled sample volume V(t)/V0.
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The higher temperature implies a significantly faster dehydration which can be considered
complete after about 100 h for both experiments and in perfect agreement with experimental
dehydration curves. Model predictions for the temporal evolution of the rescaled sample volume
V(t)/V0, the boundary temperature Tb(t) and the heat and mass transfer coefficients hT and hm are
shown in Figures 10B and 11A,B, respectively. A qualitative behavior, similar to that obtained for
intermittent experiments at the lower temperature Tmax

∞ = 40 ◦C, can be observed.
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Figure 11. Intermittent dehydration (2 Cycles and 3 Cycles) for Tmax
∞ = 50 ◦C and Umax

∞ = 1.28 m/s.
Model predictions for the temporal evolution of the boundary temperature Tb(t) (A) and of the heat
and mass transfer coefficients hT and hm (B).

The effect of the air velocity U∞ on the dehydration process is also investigated, as a further
check of the validity of the correlation functions adopted for the estimate of the heat and mass
transfer coefficients hT and hm. Figure 12A compares experimental results and model predictions for
the 3 Cycles intermittent experiments at Tmax

∞ = 50 ◦C characterized by two different air velocities
Umax

∞ = 1.28 m/s and 2.66 m/s.
Experimental results for X(t)/X0, shown in Figure 12A, highlight a slight effect of Umax

∞ on
the dehydration curves, mainly in the first two cycles of the dehydration process, while the final
dehydration time is substantially unaffected by Umax

∞ . Model predictions, in excellent agreement with
experimental data, show that, more than doubling the air speed Umax

∞ , the heat and mass transfer
coefficients increase by a factor of about 1.5 (see Figure 12B), and this affects the dehydration rate
mainly when the sample moisture content is still high.

Model predictions confirm the experimental findings by [11]. A significant reduction of the final
dehydration time can be achieved by increasing the operating temperature from 40 ◦C to 50 ◦C while
an increase in air speed has proven ineffective.

A final remark must be made on the influence of the pause stages on moisture gradients inside
the sample. Quite often, intermittent drying has to be preferred to continuous drying because,
during each tempering period, a redistribution of internal moisture within the drying material
occurs. A reduction in moisture gradients [8] decreases the probability of concentration-induced
stress and fissure. This occurs, for example, for rice grains [30] and other seeds, i.e. for food with
very small dimensions, order of millimeters. In the present case of whole pears, the effect of moisture
homogenization in the pause stages is extremely small as shown in Figure 13. Red and blue curves in
Figure 13 represent the temporal evolution of the water volume fraction profiles φ(r, t) in the two pause
stages P1 and P2 in the intermittent experiment with two cycles at Tmax

∞ = 50 ◦C and Umax
∞ = 1.28 m/s.

No significant gradient reduction is observed in the pause stages.. This effect is intrinsically due to the
larger sample dimension, about 5 cm, and to the low effective diffusivity Deff.
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6. Conclusions

This article presents the non-isothermal formulation of the moving-boundary model for food
dehydration, recently proposed by [13,14], in which sample shrinkage is accounted for via the
introduction of the pointwise shrinkage velocity that depends on the local volumetric water flux.
A convection-diffusion heat transport equation, affected by sample shrinkage, heat transfer and
water evaporation at the sample surface, is added to the convection-diffusion transport equation for
water concentration.

The non-isothermal model is successfully applied to experimental data of continuous and
intermittent drying of Rocha pears reported by Silva and coworkers.

No particular analytical/computational efforts were required to estimate the shrinkage
proportionality factor α(φ) because pears exhibit a net ideal shrinkage and a constant value α(φ) =

α0 = 1 can be assumed a priori.
The excellent predictive capability of the non-isothermal model makes it a useful tool for

optimizing intermittent dehydration procedures at a laboratory and industrial level.
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From the strictly theoretical point of view, the model showed that it is not necessary, if not wrong,
to introduce a time-dependent water diffusivity. On the contrary, it is necessary (1) to take into account
the dependence of diffusivity on temperature and therefore (2) to follow the temporal evolution of the
temperature, at least the surface temperature.
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Nomenclature

Symbols
aw [-] Water activity
Bi∞ [-] Asymptotic Biot number, Equation (A16)
cw [g water/m3 product] Water mass concentration
Cp

p ,Cs
p,Cw

p [J/(g K)] Product, solid and water specific heat capacity
kp,ks,kw [W/(m K)] Product, solid and water thermal conductivity
d [m] Sample diameter
Deff [m2/s] Effective water diffusivity
Dair

v [m2/s] Vapor in air diffusivity
Dair

T [m2/s] Air thermal diffusivity
Dp

T [m2/s] Product thermal diffusivity
hm [m/s] Mass transfer coefficient
hT [W/(m2 K)] Heat transfer coefficient
J [h−1] Dehydration rate
Jd [g water/(s m2)] Water diffusive mass flux
kair [W/(m K)] Air thermal conductivity
Keq [-] Equilibrium constant, Equation (A3)
Nu [-] Nusselt number
p [Pa] Vapor partial pressure
pv [Pa] Saturated vapor pressure
Pr [-] Prandl number
r [m] Radial coordinate
R [m] Sample radius
Rg [J/(mol K)] Gas constant
Re [-] Reynolds number
RH [-] Relative humidity
Sc [-] Schmidt number
Sh [-] Sherwood
t [s] Time
T [K] Temperature
Tav [K] Average film temperature
V [m3] Sample volume
vs [m/s] Shrinkage velocity
xw [-] Water weight fraction
X [kg water/kg dry solid] Total moisture content
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Greek Symbols
α [-] Shrinkage factor
γ0 [-] smallest positive root of Equation (A18)
λv [J/g] Heat of water vaporization
νair [m/s] Air kinematic viscosity
ρp [g product/cm3 product] Product density
ρs [g solid/cm3 solid] Solid (pulp) density
ρw [g water/cm3 water] Water density
φ [-] water volume fraction
Subscripts
0 Initial
b Sample surface (boundary)
eq Equilibrium
∞ Asymptotic or at infinite distance

Appendix A

The Relative Humidity at the air/sample interface is evaluated from desorption isotherms for
Rocha pears reported by [27] and best fitted with the Henderson model

RHeq(Xeq, T) = 1− exp
(
− a(T) TXb(T)

eq
)

, T[K] , Xeq[kg w/kg dry solid] (A1)

The Henderson model exhibits an explicit dependence on the desorption temperature T and is capable
to accurately describe the influence of the temperature on desorption curves in the range [20 ◦C–40 ◦C].
The values of the two parameters a(T) and b(T), entering the desorption isotherm model Equation (A1)
are a = 0.0049, 0.0062, 0.0092 and b = 0.5739, 0.5754, 0.6449 for T = 20, 30, 40 ◦C, respectively [27].
In order to estimate the desorption isotherm in the whole range of temperature [10 ◦C–50 ◦C] the
two parameters a(T) and b(T) have been estimated, from the values listed above, by piecewise cubic
interpolation. The resulting isotherms, in the whole range [10 ◦C–50 ◦C], are plotted in Figure A1A,B
as Xeq vs. aw (Figure A1A) and as φeq vs. aw (Figure A1B). The following equation

φeq =
ρsXeq

Xeqρs + ρw (A2)

relating the water volume fraction φeq to the moisture content Xeq has been adopted.
From Figure A1B, it can be observed that the desorption isotherm, for high temperatures

T ∈ [40 ◦C–50 ◦C] and small values of aw < 0.2 can be readily approximated with a linear function
(dashed line)

φeq = aw/Keq , Keq ' 8 (A3)

The density of the solid (pulp) ρs = 1.73 [g solid/cm3 solid] is estimated from the initial product
(pear) density ρ

p
0 ' 1.07 [g product/cm3 product] and from the initial moisture content X0 ' 5.25

[kg water/kg dry solid], reported by [31] for Rocha pears, as follows

ρs =
ρ

p
0 ρw

ρw(1 + X0)− ρ
p
0 X0

(A4)

The pear density ρp is evaluated as the average of the water and solid (pulp) densities, averaged
with respect to their volume fractions

ρp = ρwφ + ρs(1− φ) (A5)
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Figure A1. Desorption isotherms for different temperatures T∞ in the range [10 ◦C–50 ◦C].
Arrows indicate increasing values of the temperature T∞. (A) Xeq vs. water activity aw. (B) φeq vs. aw.
The dashed line indicates the approximated linear behaviour Equation (A3).

The pear specific heat capacity Cp
p [J/(g K)] is evaluated as the average of the water and solid

specific heat capacities, averaged with respect to their weight fractions

Cp
p = Cw

p xw + Cs
p(1− xw) , xw = φ (ρw/ρp) (A6)

The pear thermal conductivity kp [W/(m K)] is evaluated from a parallel model

1
kp =

φ

kw +
1− φ

ks (A7)

where kw and ks are the water and solid thermal conductivities, respectively.
Since pears contain mainly water and carbohydrate [32], the thermal conductivity ks and the

specific heat capacity Cs
p of the solid phase are estimated from that of carbohydrate [33]

ks[W/(m K)] = 2.01× 10−1 + 1.39× 10−3 − 4.33× 10−6T2 , T[◦C] (A8)

Cs
p[J/(g K)] = 1.5488 + 1.9625× 10−3T − 5.9399× 10−6T2 , T[◦C] (A9)

The heat and mass transfer coefficients hT [W/(m K)] and hm [m/s]

hT(Tav, d) =
Nu(Tav, d)kair(Tav)

d
,

hm(Tav, d) =
Sh(Tav, d)Dair

v (Tav)

d

(A10)

are evaluated from the well known correlation functions for the Nusselt Nu and Sherwood Sh numbers
around a sphere [34]

Nu(Tav, d) = 2 + 0.6Re1/2Pr1/3 = (A11)

2 +
( U∞d

νair(Tav)

)1/2( νair(Tav)

Dair
T (Tav)

)1/3

Sh(Tav, d) = 2 + 0.6Re1/2Sc1/3 = (A12)

2 +
( U∞d

νair(Tav)

)1/2( νair(Tav)

Dair
v (Tav)

)1/3
.
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Both hT and hm change in time because all the physical properties of the humid air are evaluated at the
film mean temperature Tav(t) = (Tb(t) + T∞)/2 which changes in time. Moreover, also the sample
diameter d(t) and the Reynolds number are changing during the course of the dehydration process.

The thermo-physical parameters of moist air (density, viscosity, thermal conductivity and thermal
diffusivity) are evaluated as that for dry air since, for T ≤ 50 ◦C, Relative Humidity has a small
influence on thermo-physical properties of moist air [35–37].

Appendix B

Let us focus on a continuous dehydration process in which the air properties T∞, RH∞ and U∞

are set to fixed and constant values. On long time scales, when the water volume fraction φ is low
everywhere inside the sample, it can be reasonably assumed that

1. the sample temperature has already reached its asymptotic value T(r, t) = T∞

2. the sample radius can be approximated with its asymptotic value R∞

R∞

R0
=

(
V∞

V0

)1/3
(A13)

3. the convective-shrinkage contribution Deff
∂φ
∂r φ is negligible compared to the diffusive term

−Deff
∂φ
∂r , and a purely diffusive transport equation can be adopted

∂φ(r, t)
∂t

= Deff(T∞)
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
, r ∈ (0, R∞) (A14)

4. the nonlinear desorption isotherm at T = T∞ can be approximated with a linear behaviour valid
for small RH, Equation (A3), shown in Figure A1B (black dashed line). Therefore, Equation (A14)
can be solved with the simplified boundary conditions

∂φ

∂r

∣∣∣∣∣
r=0

= 0 , −R∞
∂φ

∂r

∣∣∣∣∣
R∞

= Bi∞ (φb − φ∞) (A15)

where φb = RHb/Keq, φ∞ = RH∞/Keq and Bi∞ represents the asymptotic mass Biot number

Bi∞ =
hm(T∞)R∞

Deff(T∞)

Mw

ρw

pv(T∞)

RgT∞
Keq(T∞) (A16)

The asymptotic solution of Equations (A14) and (A15), written in terms of the moisture ratio Xr(t),
reads as [22,38]

Xr(t) =
X(t)− Xeq

X0 − Xeq
∼ exp

[
− γ2

0
tDeff(T∞)

R2
∞

]
valid for large t (A17)

where γ0 is the smallest positive root of the equation

γ cot (γ) + Bi∞ − 1 = 0. (A18)

It is straightforward to verify that the asymptotic exponential behaviour Equations (A17) implies
a linear behaviour for the dehydration rate J vs. Xr for small values of Xr

J = −dXr

dt
= Deff(T∞)

γ2
0

R2
∞

Xr valid for small Xr (A19)
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Equation (A19) can be used to estimate the effective water diffusivity Deff at T = T∞ from the initial
linear scaling of the experimental dehydration-rate curve J = θ(T∞)Xr. The dehydration-rate curves
are shown in Figure 4A for the two continuous dehydration experiments at T∞ = 40 ◦C and 50 ◦C.

The estimate of Deff(T∞) from Equation (A19) is not so straightforward as it requires the solution
of a nonlinear equation for Deff(T∞) because γ0 is a nonlinear function of Bi∞ and Bi∞ depends on
Deff(T∞), Equation (A16).

This estimate strongly simplifies in the case of high values of the Biot number Bi∞ because γ0

is an increasing function of Bi∞, saturating towards π for Bi∞ → ∞. For Bi∞ > 102, γ0 can be well
approximated as γ0 ' π. In the present case, for an effective diffusivity Deff ' 10−10 m2/s, the Biot
number is Bi∞ > 103 >> 102 for both temperatures T∞ = 40 ◦C and 50 ◦C. Consequently, no iterative
procedure is required and the effective diffusivity Deff(T∞) can be directly estimated from the initial
slope θ(T∞) of the corresponding experimental dehydration-rate curves as follows

J = θ(T∞)Xr = Deff(T∞)
π2

R2
∞

Xr = Deff(T∞)
π2

R2
0

(
V∞

V0

)− 2
3

Xr. (A20)

where the only unknown quantity is Deff(T∞).
If we are assuming a concentration dependent water diffusivity, in agreement with Equation (3),

Equation (A20) permits us to estimate solely the asymptotic value D∞. No information on the β

value can be obtained from the asymptotic analysis. If we assume a concentration independent water
diffusivity, then Deff and D∞ coincide.
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