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Abstract 

Background: Pancreatic cancer is one of the most common malignant tumors of the digestive tract, and it has a 
poor prognosis. Traditional methods are not effective to accurately assess the prognosis of patients with pancreatic 
cancer. Immunotherapy is a new promising approach for the treatment of pancreatic cancer; however, some patients 
do not respond well to immunotherapy, which may be related to tumor microenvironment regulation. In this study, 
we use gene expression database to mine important immune genes and establish a prognostic prediction model for 
pancreatic cancer patients. We hope to provide a feasible method to evaluate the prognosis of pancreatic cancer and 
provide valuable targets for pancreatic cancer immunotherapy.

Results: We used univariate COX proportional hazard regression analysis, the least absolute shrinkage and selection 
operator, and multivariate COX regression analysis to screen 8 genes related to prognosis from the 314 immune-
related genes, and used them to construct a new clinical prediction model in the TCGA pancreatic cancer cohort. 
Subsequently, we evaluated the prognostic value of the model. The Kaplan–Meier cumulative curve showed that 
patients with low risk scores survived significantly longer than patients with high risk scores. The area under the ROC 
curve (AUC value) of the risk score was 0.755. The univariate COX analysis showed that the risk score was significantly 
related to overall survival (HR 1.406, 95% CI 1.237–1.598, P < 0.001), and multivariate analysis showed that the risk 
score was an independent prognostic factor (HR 1.400, 95% CI 1.287–1.522, P < 0.001). Correlation analysis found that 
immune genes are closely related to tumor immune microenvironment.

Conclusions: Based on the TCGA-PAAD cohort, we identified immune-related markers with independent prognos-
tic significance, validated, and analyzed their biological functions, to provide a feasible method for the prognosis of 
pancreatic cancer and provide potentially valuable targets for pancreatic cancer immunotherapy.
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Background
Pancreatic cancer is a common malignant tumor of the 
digestive tract, which has the characteristics of difficult 
early diagnosis, rapid metastasis, and poor therapeu-
tic effect. It is one of the most invasive and fatal malig-
nant tumors in the world, and the prognosis is very poor. 
The five-year survival rate is less than 8% [1]. Surgery is 
the most important and comprehensive treatment for 

pancreatic cancer, and most patients have recurrence 
and metastasis earlier after operation. It is difficult to 
determine the overall postoperative annual survival rate. 
Postoperative adjuvant radiotherapy and chemotherapy 
aim to kill residual tumor cells to improve the curative 
effect; however, due to the difficulties of early diagnosis 
and the lack of effective adjuvant treatment, the effect is 
very little [2, 3]. Up to now, the prediction and prognosis 
of pancreatic cancer mainly depend on histopathologi-
cal diagnosis and tumor staging system. However, tradi-
tional methods are not enough to accurately evaluate the 
prognosis of patients with pancreatic cancer and cannot 
meet the needs of clinicians to assist in diagnosis and 
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treatment [4]. Therefore, it is imperative to develop relia-
ble and accurate prognostic biomarkers to help clinicians 
optimize treatment strategies.

With the increased understanding on the key role of 
immune system in the development of pancreatic can-
cer, immunotherapy such as chimeric antigen receptor 
T cell therapy and immune checkpoint inhibitor (ICBs) 
is very promising for the treatment of pancreatic can-
cer patients. Exciting results have been achieved in pre-
clinical and clinical trials of pancreatic cancer [5, 6]. 
However, according to the latest research, the efficacy 
of immunotherapy is affected by many factors, such as 
tumor microenvironment, microsatellite instability, and 
tumor mutation load. In addition, some patients develop 
drug resistance after a period of remission, and even the 
vast majority of patients are not sensitive to ICB [7]. To 
develop better strategies to enhance immunity, research-
ers have conducted several in-depth studies on the matrix 
response of pancreatic cancer and its interaction with 
the immune microenvironment of pancreatic cancer. 
Riquelme et al. found that the development of pancreatic 
cancer in the mouse model is related to the enrichment 
of specific strains of bacteria in the intestinal tract and 
tumor. These strains induce tolerance and immunosup-
pressive microenvironment, which is conducive to the 
progression of cancer and resistance to immunotherapy. 
Eliminating microorganisms with antibiotics can reshape 
the tumor microenvironment, induce T cell activation, 
improve immune monitoring, and improve the sensitiv-
ity of immunotherapy to established tumors [8]. Loss 
or inhibition of CXCR2 can improve T cell entry, and 
combined inhibition of CXCR2 and PD1 in mice with 
confirmed disease can significantly prolong survival and 
inhibit pancreatic tumorigenesis and pancreatic cancer 
metastasis [9]. Winograd et  al. found that in pancreatic 
cancer (a non-immunogenic tumor), the baseline refrac-
tory of checkpoint inhibitors can be saved by inducing 
T cell response with α-CD40/ chemotherapy [10]. These 
studies have shown that the efficacy of immunotherapy 
for pancreatic cancer can be significantly improved by 
changing the tumor immune microenvironment, such as 
increasing the density of intratumoral effector T cells or 
inhibiting immunosuppressive cells and receptors. How-
ever, the immune microenvironment of pancreatic can-
cer and its role in the immune escape of cancer cells still 
need to be understood. It is also urgent to find more new 
targets to regulate the immune microenvironment to 
improve the efficacy of immune checkpoint therapy [11].

In recent years, gene expression database has been 
used to mine valuable therapeutic genes, identify prom-
ising prognostic factors, and analyze the molecular 
mechanisms of various cancers. We used univariate 
Cox proportional hazard regression analysis, the least 

absolute shrinkage and selection operator (LASSO), and 
multivariate COX regression analysis to screen 8 genes 
related to prognosis from the 314 immune-related genes 
in the TCGA pancreatic cancer cohort. These can be 
used as the potential prognostic indicators of pancreatic 
cancer. The genes were used to establish the optimal risk 
model; survival analysis, univariate Cox proportional 
hazard regression analysis, and multivariate Cox propor-
tional hazard regression analysis were used to evaluate 
the prognostic value of risk score. ROC curve and prin-
cipal component analysis (PCA) were used to evaluate 
the accuracy of the model. Patients were divided into 
high-risk and low-risk groups according to the median 
risk score. Gene ontology (GO), Kyoto gene and genome 
encyclopedia (KEGG), and gene set enrichment analysis 
(GSEA) were used to explore the differences of key signal 
pathways between high-risk and low-risk groups. Single 
sample gene set enrichment analysis (ssGSEA) method 
was used to quantify immune cell infiltration, and the 
relationship between immune risk genes and tumor 
immune microenvironment was analyzed. The objectives 
of this study are to provide a feasible method to evaluate 
the prognosis of pancreatic cancer, to provide a powerful 
means of tumor prevention and treatment for regulating 
the body’s immunity against tumor, and to add new con-
tent in the development of new adjuvant drugs targeted 
at tumor immunotherapy.

Methods
Data collection
IMMUNE_RESPONSE and IMMUNE_SYSTEM_PRO-
CESS2 immune gene sets were obtained from Molecu-
lar Signatures Database (MSigDB), and a total of 314 
immune-related genes were obtained. mRNA expression 
data and clinical data of 183 pancreatic cancer samples 
were obtained from the Cancer Genome Atlas (TCGA) 
database(https ://porta l.gdc.cance r.gov/).

Construction of prognostic signature for TCGA pancreatic 
cancer cohorts
Univariate Cox regression analysis of 314 immune-
related genes was carried out to analyze the genes 
significantly related to the overall survival (OS) of pan-
creatic cancer. Then LASSO regression analysis was 
performed on these immune genes. LASSO regression 
analysis reduced the dimensionality of high-dimen-
sional data by the sum of the absolute values of the lim-
iting coefficients less than the predetermined value, and 
the variables with relatively small contributions will be 
given zero coefficients. Only the genes with non-zero 
coefficient in LASSO regression analysis were selected 
for further multivariate Cox regression analysis, and 
the resulting genes were used to build a predictive 
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model. The risk score of each patient was calculated 
according to the mRNA expression level and risk coef-
ficient of each risk gene, which was calculated by the 
following equation:

Taking the median risk score as the cut-off value, 
the patients were divided into high-risk and low-risk 
groups for follow-up analysis.

Pathway analysis
The R language “EdgeR” package calculation was used 
to analyze the difference of mRNA between low-risk 
and high-risk groups. mRNA with FDR value less than 
0.05 was annotated by Gene Ontology (GO, http://
geneo ntolo gy.org/), and the biological functions of 
different genes, including biological processes, cellu-
lar components, and molecular functions, were ana-
lyzed. The Kyoto Encyclopedia of genes and Genomes 
(KEGG, https ://www.genom e.jp/kegg/) analyzes a vari-
ety of biological information, including metabolic path-
ways, predicts the function of genes, and analyzes the 
roles of proteins and other macromolecules. The meta-
bolic pathways and signal transduction pathways of sig-
nificant enrichment in pancreatic cancer were revealed 
by pathway enrichment analysis (FDR < 0.05). Then, 
we performed Gene Set Enrichment Analysis (GSEA, 
http://softw are.Broad stitu te.org/GSEA/) to reveal the 
signal pathways and biological processes in which dif-
ferentially expressed genes were enriched between 
high-risk and low-risk subpopulations. The "Cluster-
Profiler" R package was used for visualization [12].

Calculate the composition of tumor immune 
microenvironment
To explore the role of immune genes and tumor immune 
microenvironment, we quantified the level of immune cell 
infiltration in TCGA pancreatic cancer cohort(TCGA-
PAAD) samples. According to the immune cell marker 
genes, provided by Bindea et al. [13], we used R language 
"GSVA" package according to the expression of immune 
cell marker genes in TCGA-PAAD. Single-sample gene 
set enrichment analysis (ssGSEA) was used to quantify 
the infiltration level of 24 types of immune cells in the 
sample, such as T lymphocytes, dendritic cells, and natu-
ral killer cells [14]. Pearson’s method was used to calcu-
late the correlation between risk genes and immune cells. 
The TIMER database was used for verification [15].

risk score = ExpressionmRNA1 × CoefficientmRNA1 + ExpressionmRNA2

× CoefficientmRNA2 + · · ·ExpressionmRNAn × CoefficientmRNAn

Statistical analysis
All statistical analyses were carried out by R program-
ming language (https ://www.r-proje ct.org/). R language 
"Survival" package and "survminer" package were used to 

draw Kaplan–Meier curve. Univariate and multivariate 
Cox proportional hazard regression analyses were also 
used to evaluate the relationship between risk scores and 
OS. ROC analysis was used to examine the sensitivity 
and specificity of survival prediction using the gene sig-
nature risk score. An area under the ROC curve (AUC) 
served as an indicator of prognostic accuracy. A P-value 
of less than 0.05 was set as statistically significant for all 
the analyses.

Results
Acquisition of immune risk genes
A total of 314 immune-related genes were collected 
from MSigDB. The expression level and prognosis data 
of PAAD-related genes were obtained from the TCGA 
database. Univariate Cox regression analysis was car-
ried out. A total of 109 immune genes with P < 0.05 were 
selected for lasso regression analysis. When 16 immune 
gene models were obtained according to the lambda.min 
value, the performance of 16 immune gene model was the 
best (Fig.  1b).The 16 genes were analyzed by multivari-
ate COX regression analysis. A total of 8 immune genes 
(ITGA7, RBM14, DENND4B, LQK1, ZNF709, COL7A1, 
SP1, NCBP2) were identified as independent prognostic 
factors of pancreatic cancer, which were used to con-
struct a clinical predictive model (as shown in Table 1). 
The expression profiles of these genes in high- and low-
risk groups are shown by heat map (Fig.  2c), and the 
Kaplan–Meier curves of these genes are drawn by R lan-
guage "Survival" package and "survminer" package. The 
survival time of patients with high expression of ITGA7, 
RBM14, DENND4B, LQK1, and ZNF709 was signifi-
cantly longer than that of the patients with low expres-
sion, and the prognosis of patients with high expression 
of COL7A1, SP1, and NCBP2 was worse (Fig. 3).

Construction and verification of prognostic signature 
for TCGA‑PAAD cohorts
The risk score of each patient was calculated according 
to the mRNA expression level of each risk gene and the 
risk coefficient. With the median risk score as the cut-
off value, patients were divided into high- and low-risk 
groups. Kaplan–Meier accumulation curve showed that 

http://geneontology.org/
http://geneontology.org/
https://www.genome.jp/kegg/
http://software.Broadstitute.org/GSEA/
https://www.r-project.org/
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patients with low-risk score survived significantly longer 
than those with high-risk score (Fig.  1c). In the TCGA-
PAAD cohort, the area under the curve (AUC value) of 
the risk score was 0.755 (Fig. 1d). Subsequently, we evalu-
ated the prognostic value of the risk score, and univariate 
COX analysis showed that the TCGA-PAAD risk score 
was significantly correlated with the overall survival (OS) 
(HR 1.406, 95%CI 1.237–1.598, P < 0.001) (Fig. 4a). Multi-
factorial analysis showed that the risk score was an inde-
pendent predictive factor (HR 1.400, 95%CI 1.287–1.522, 

P < 0.001) (Fig.  4b). Finally, based on the whole genome 
expression set, total immunity gene set, and immune risk 
gene set, we used principal component analysis (PCA) 
to study the different distribution patterns between low- 
and high-risk population. When PCA was performed 
based on the whole genome expression profile, there 
was no significant segregation in immune status in each 
group (Fig. 4c). According to the immune risk gene set, 
low-risk group and high-risk group tended to be divided 
into two groups (Fig.  4d). The risk score distribution of 

a b

c d

Fig. 1 The establishment and verification of the model a LASSO coefficient profiles of the 109 immune-genes in TCGA-PAAD. b A coefficient profile 
plot was generated against the log (lambda) sequence. c Kaplan–Meier analysis of TCGA-PAAD patients stratified by the median risk score. d The 
sensitivity and specificity of the ROC curve were used to evaluate the model
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Table 1 Univariate Cox regression analysis and multivariate COX regression analysis results of 8 immune genes

Gene_symbol Ensembl_ID Univariate Cox regression Multivariate Cox regression

HR 95% CI lower 95% CI upper P value HR 95% CI lower 95% CI upper P value

ITGA7 ENSG00000135424.15 0.706 0.578 0.863 0.001 0.844 0.681 1.047 0.124

COL7A1 ENSG00000114270.15 1.202 1.079 1.340 0.001 1.172 1.030 1.334 0.016

SP1 ENSG00000185591.9 2.965 1.800 4.884  < 0.001 1.6761 0.951 2.955 0.074

NCBP2 ENSG00000114503.10 3.309 1.810 6.049  < 0.001 2.185 1.079 4.424 0.030

RBM14 ENSG00000239306.4 0.238 0.117 0.483  < 0.001 0.392 0.171 0.899 0.027

DENND4B ENSG00000198837.9 0.367 0.212 0.636  < 0.001 0.520 0.280 0.967 0.039

LQK1 ENST00000356684.8 0.757 0.653 0.877  < 0.001 0.844 0.722 0.985 0.032

ZNF709 ENSG00000242852.6 0.592 0.436 0.802 0.001 0.732 0.482 1.113 0.144

a

b

c

Fig. 2 a The black dotted line is the best dividing line for dividing patients into low-risk and high-risk groups. b The distribution of survival status 
and survival time of patients with TCGA-PAAD. c Heatmap of immune gene expression profile in prognostic markers
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PAAD patients and the relationship between risk score 
and survival time are shown in Fig. 2. With the increase 
of risk value, the number of deaths increases significantly, 
and the survival time of low-risk group is significantly 
higher than that of the high-risk group.

Signaling pathway analysis
To explore the potential signal pathways related to the 
immune risk genes, we used edgeR package calculation 
to analyze the difference of mRNA between low-risk 
group and high-risk group and also to analyze the sig-
nal pathway of mRNA whose FDR value was less than 
0.05. GO analysis showed that these genes could be clas-
sified into several basic biological processes, including 
biological development, hormone secretion, synthesis 
of transmembrane transporter complex, and important 
transmembrane transporter activity (Fig.  5a). KEGG 
analysis showed that these genes mainly interact with 
chemical carcinogenic, neuroactive ligand receptor inter-
action and cAMP signaling pathways (Fig. 5b, Table 2). By 
calculating the multiplication of mRNA expression lev-
els of all protein-coding genes between high-risk group 
and low-risk group, and using GSEA analysis, it was 
found that the altered genes were significantly enriched 
in several common pathways. The high-risk group was 
positively correlated with epithelial-mesenchymal trans-
formation, glycolysis, MTORC1 signal pathway, p53 
channel, hypoxia, apoptosis, E2F targets, MYC targets v1, 
MYC targets v2, TNFA Signaling via NFKB, and inflam-
matory response, while the low-risk group was positively 
correlated with pancreas beta cells, allograft rejection 
and bile acid metabolism (Fig. 5c, Table 3).

Correlation with tumor immune microenvironment
After quantifying 24 types of immune cells, Pearson test 
was used to calculate the correlation between risk genes 
and immune cells. DENND4B, ITGA7, and T cell lines 
such as T helper cells, Tcm, Tem, T cells, CD8 T cells, 
and TReg were highly positively correlated, whereas it 
was s negatively correlated with Th2 cells. RBM14 was 
negatively correlated with macrophages infiltration level, 
ZNF709 was significantly and positively correlated with 
TFH, and NCBP2 was positively correlated with Th2 cells 
(Fig.  6a).We observed that the infiltration levels of DC, 
iDC, pDC, B cells, T cells, Tcm, Tem, TFH, Th17 cells, 
and cytotoxic cells in the low-risk group were signifi-
cantly higher than those in the high-risk group.Th1 cells 
and NK CD56dim cells in the high-risk group increased 
significantly compared with the low-risk group (Figs. 6b, 
7b). Correlation analysis showed that DENND4B and 
ITGA7 were highly positively correlated with T helper 
cells, Tcm, Tem, T cells, CD8 T cells, and TReg. ZNF709 
and SP1 were highly positively correlated with CD8 T 
cells, macrophage, and DC (Fig. 6a). TIMER database was 
used to further verify our results. DENND4B, ITGA7 and 
ZNF709, SP1 and CD4 T cells, Neutrophil, DC and other 
cells are highly positively correlated. ZNF709 and SP1 are 
positively correlated with CD8 T cells, Macrophage, DC 
and other cells (Fig. 7A).

Discussion
Pancreatic cancer is one of the most malignant tumors 
of the digestive tract. The 5-year survival rate of patients 
with pancreatic cancer is less than 8%, and the average 
survival rate is less than 6 months. Considering that the 
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mortality rate has been high in the recent decades, there 
is an urgent need to find effective biomarkers to promote 
and evaluate the diagnosis, treatment, and prognosis of 
pancreatic cancer [16–18]. The immune response in the 
microenvironment plays a decisive role in the progres-
sion, metastasis, and recurrence of tumors. Studies have 
confirmed that the low-immunogenic and immunosup-
pressive tumor microenvironment of pancreatic cancer is 
an important cause of poor prognosis. Following surgery, 
chemotherapy, and radiotherapy, immunotherapy has 
been considered as the fourth mode of cancer treatment. 
More and more clinical data show that cancer immu-
notherapy is a key step in clinical cancer treatment [19, 
20]. Cancer management methods, especially non-small 
cell lung cancer, melanoma, urothelial cancer, and kidney 

cancer, and some preclinical and clinical trials have con-
firmed that immunotherapy has achieved encouraging 
results in many malignancies, including pancreatic can-
cer [21–23]. However, based on available data, it is clear 
that ICB has limited success in pancreatic cancer, which 
is also related to the low immunogenicity and immu-
nosuppressive tumor microenvironment of pancreatic 
cancer [24, 25]. Based on the important role of immune 
response in pancreatic cancer, it is urgent to find new 
targets to provide powerful tumor prevention and con-
trol methods for regulating the body’s immunity against 
tumors, and to add new content in the development of 
new adjuvant drugs targeted at tumor immunotherapy.

Gene markers, also known as classifiers, are often used 
to predict prognosis, sometimes even better than TNM 

Fig. 4 Univariate Cox proportional hazard regression analysis (a) and multivariate Cox proportional hazard regression analysis (b) explored the 
correlation between risk score, age, sex, grade, T, N, M, smoking and OS. c The expression patterns of grouped samples were analyzed by PCA using 
all mRNAs. d The expression patterns of grouped samples were analyzed by PCA using Prognostic signature
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staging methods, and have been reported in a variety 
of cancers [26–29]. Given the importance of immunity 
in pancreatic cancer, it is reasonable to speculate that 
immune-related genes have great promise in predict-
ing prognosis. Multigene signals obtained from reliable 
algorithms will be superior to single molecules in pre-
dicting OS in pancreatic cancer. We constructed and 
validated a new immune-related gene signature that may 

be a potential target for cancer treatment, and they can 
improve the individualized prognosis of patients with 
pancreatic cancer.

We obtained 8 immune genes identified as independ-
ent prognostic factors for pancreatic cancer (ITGA7, 
COL7A1, SP1, NCBP2, RBM14, DENND4B, LQK1, 
ZNF709) through single factor COX regression, Lasso 
regression, and multifactor COX regression, which 
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Table 2 KEGG analysis of the main enriched signal pathways of differential genes between low-risk group and high-risk 
group

ID Description Gene ratio Bg ratio P value P adjust q value

hsa00830 Retinol metabolism 15/303 67/6589 2.43E−07 3.65E−05 3.02E−05

hsa04080 Neuroactive ligand-receptor interaction 36/303 340/6589 1.79E−06 0.000134 0.000111

hsa04512 ECM-receptor interaction 15/303 88/6589 9.28E−06 0.000464 0.000384

hsa00982 Drug metabolism—cytochrome P450 12/303 72/6589 9.22E−05 0.003457 0.002862

hsa04024 cAMP signaling pathway 22/303 216/6589 0.000351 0.010534 0.008723

hsa04610 Complement and coagulation cascades 12/303 85/6589 0.000462 0.011548 0.009563

hsa04640 Hematopoietic cell lineage 13/303 99/6589 0.000554 0.011874 0.009832

hsa00040 Pentose and glucuronate interconversions 7/303 34/6589 0.000746 0.012988 0.010755

hsa00360 Phenylalanine metabolism 5/303 17/6589 0.000779 0.012988 0.010755

hsa00350 Tyrosine metabolism 7/303 36/6589 0.00107 0.016002 0.013251

hsa00053 Ascorbate and aldarate metabolism 6/303 27/6589 0.001173 0.016002 0.013251

hsa04260 Cardiac muscle contraction 11/303 86/6589 0.001815 0.022681 0.018782

hsa00590 Arachidonic acid metabolism 9/303 63/6589 0.00216 0.024919 0.020635

hsa00980 Metabolism of xenobiotics by cytochrome P450 10/303 76/6589 0.002343 0.025099 0.020784

hsa00860 Porphyrin and chlorophyll metabolism 7/303 42/6589 0.002731 0.027309 0.022614

hsa00983 Drug metabolism—other enzymes 10/303 79/6589 0.003131 0.029357 0.024309

hsa00500 Starch and sucrose metabolism 6/303 36/6589 0.005453 0.048118 0.039845

Table 3 GSEA analysis of main enrichment pathways of differential genes between low-risk group and high-risk group

Description Set size Enrichment score NES P value P adjust q values

HALLMARK_ESTROGEN_RESPONSE_LATE 196 0.480174 1.796374 0.001675 0.007284 0.003834

HALLMARK_MITOTIC_SPINDLE 196 0.54578 2.04181 0.001675 0.007284 0.003834

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 194 0.595047 2.218997 0.001678 0.007284 0.003834

HALLMARK_GLYCOLYSIS 197 0.54494 2.038302 0.001678 0.007284 0.003834

HALLMARK_MTORC1_SIGNALING 194 0.473788 1.766808 0.001678 0.007284 0.003834

HALLMARK_P53_PATHWAY 194 0.479256 1.787198 0.001678 0.007284 0.003834

HALLMARK_TNFA_SIGNALING_VIA_NFKB 197 0.528313 1.97611 0.001678 0.007284 0.003834

HALLMARK_ESTROGEN_RESPONSE_EARLY 192 0.488153 1.820779 0.001681 0.007284 0.003834

HALLMARK_HYPOXIA 190 0.528445 1.971652 0.001681 0.007284 0.003834

HALLMARK_E2F_TARGETS 189 0.637705 2.370316 0.001706 0.007284 0.003834

HALLMARK_G2M_CHECKPOINT 188 0.680848 2.528334 0.001706 0.007284 0.003834

HALLMARK_INTERFERON_ALPHA_RESPONSE 93 0.562764 1.918891 0.001748 0.007284 0.003834

HALLMARK_PANCREAS_BETA_CELLS 40 − 0.84889 − 2.53883 0.002132 0.008201 0.004316

HALLMARK_ALLOGRAFT_REJECTION 199 − 0.3919 − 1.50621 0.002469 0.008818 0.004641

HALLMARK_APICAL_JUNCTION 194 0.425713 1.58753 0.003356 0.010411 0.00548

HALLMARK_MYC_TARGETS_V1 192 0.43265 1.613757 0.003361 0.010411 0.00548

HALLMARK_APOPTOSIS 159 0.41949 1.510011 0.00354 0.010411 0.00548

HALLMARK_TGF_BETA_SIGNALING 54 0.51843 1.605989 0.005495 0.015263 0.008033

HALLMARK_MYC_TARGETS_V2 58 0.521398 1.636302 0.007449 0.019602 0.010317

HALLMARK_INFLAMMATORY_RESPONSE 197 0.37996 1.421208 0.008389 0.020849 0.010973

HALLMARK_UV_RESPONSE_DN 137 0.397836 1.40847 0.008757 0.020849 0.010973

HALLMARK_BILE_ACID_METABOLISM 112 − 0.40053 − 1.43725 0.011261 0.025594 0.01347

HALLMARK_ANDROGEN_RESPONSE 97 0.429447 1.468431 0.015762 0.034265 0.018034
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TCGA PAAD samples (n = 183)
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Fig. 6 Correlation between prognostic markers and tumor immune microenvironment. a Correlations of 8 immune gene mRNAs and infiltration 
levels of 24 immune cells. b The heatmap shows the difference in infiltration levels of 24 immune cells in the high- and low-risk groups
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b

a

Fig. 7 a The correlation between immune genes and immune cells was verified by using the TIMER database. Each point represents a sample, and 
the blue line represents the relationship between the expression level of each gene and the immune cell content. b Comparison of the difference 
in immune cell infiltration levels between high-risk group and low-risk group, ****P ≦ 1e−04, ***P ≦ 0.001, **P ≦ 0.01, *P ≦ 0.05, ns P ≧ 1
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significantly affects the prognosis of patients with pan-
creatic cancer (Fig.  3). Some of them have been closely 
related to pancreatic cancer. The classic transcription fac-
tor SP1 has been confirmed to be closely related to the 
expression of multiple genes and the development of 
multiple cancers including PDAC. Target gene transcrip-
tion can promote cell proliferation of pancreatic cancer 
cells [30, 31].

Previous literatures have also reported similar findings. 
For example, Wei-Dong Shi identified 12 human pancre-
atic cancer highly metastatic cell lines, SW19 × 90HM 
cells, including ITGA7 through microarray analysis [32]. 
Medicherla et al. showed that SD-208, a small molecule 
inhibitor of TGF-β receptor I kinase, downregulates the 
expression of the TGF-β regulatory gene COL7A1 and 
improves intervention in the development of pancre-
atic cancer [33]. However, NCBP2, RBM14, LQK1, and 
ZNF709 have not been reported to be related to pan-
creatic cancer. These may be the potential targets for the 
treatment of pancreatic cancer. We then used these genes 
to construct a clinical prediction model and calculate 
the risk score for each patient. Univariate COX regres-
sion analysis and multivariate COX regression analysis 
showed that the risk score was an independent predic-
tor of prognosis. The Kaplan–Meier cumulative curve 
showed low risk. Patients with low risk scores survived 
significantly longer than patients with high risk scores 
(Fig. 1c). The highest area under the curve (AUC) values 
for this model were 0.755 (Fig. 1d). These results confirm 
the reliability of the model.

Pathway analysis found that high-risk groups were 
significantly positively associated with well-known 
cancer signaling pathways such as hypoxia, glycolysis, 
epithelial-mesenchymal transition, MTORC1 signal-
ing pathway, P53 channel, apoptosis, E2F Targets, MYC 
Targets V1, and MYC Targets V2. Hypoxia is a com-
mon feature of malignant tumors, which is the result of 
increased oxygen demand due to cancer cell prolifera-
tion, tumor vascular dysfunction, and insufficient blood 
supply. Hypoxic tumor cells mainly rely on glycolysis to 
obtain energy and participate in the process of tumo-
rigenesis, metastatic invasion, and treatment tolerance. 
This existing research confirms that hypoxia can regu-
late tumor immune microenvironment by regulating a 
variety of immune cells. Low oxygen levels significantly 
reduce the proliferation and activation of T lympho-
cytes, reduce the NKG2D receptors on NK cells and 
thereby inhibit the killing function of NK cells, increase 
tumor-associated macrophages to induce angiogenesis, 
and reduce inflammation to promote tumor progres-
sion [34–36]. On the other hand, it can affect tumor 
immune microenvironment through glycolysis path-
way to affect immune cell infiltration and functional 

activation, and it is closely related to the efficacy of 
immunotherapy [37]. Growth factor signal transduc-
tion pathway mediated by mTOR complex 1 (mTORC1) 
promotes cancer metabolism through key enzymes that 
regulate metabolic pathways. Inhibition of mTOR C1 
reduces glycolysis of cancer cells [38, 39].EMT can pro-
mote tumor cell infiltration and tumor metastasis and 
may also make tumor cells escape apoptosis induced by 
some factors [40, 41]. This process also plays a key role 
in regulating cellular plasticity in normal human tis-
sues and tumor tissues. Many different cell subsets can 
be formed by EMT, that is, the heterogeneity of tumor 
cells is formed [42, 43]. P53 channel, E2F, and MYC 
are also common important signal pathways that affect 
tumor progression. This finding suggests that these 
immune risk genes are involved in the regulation of 
multiple signal pathways in pancreatic cancer and may 
have important biological and clinical significance.

New evidence confirms that disturbances in the 
immune response in the tumor microenvironment play 
a decisive role in tumor development [44].As a tumor 
killer, immune cells can interfere with molecular sig-
nals and play an important role in tumor biology such as 
tumor proliferation, metastasis, and invasion [45]. In our 
study, this signal was related to the immune response, 
immune microenvironment, and tumor purity of pan-
creatic cancer. By quantifying 24 types of immune cells, 
we observed that the low-risk group DC, iDC, pDC, B 
cells, T cells, Tcm, Tem, TFH, Th17 cells, and cytotoxic 
cells had a higher level of infiltration. Th1 cells and NK 
CD56dim cells in the high-risk group increased sig-
nificantly (Fig.  7b). Correlation analysis showed that 
DENND4B and ITGA7 were highly positively correlated 
with T cell lines such as T helper cells, Tcm, Tem, T cells, 
CD8 T cells, and TReg. ZNF709 and SP1 are highly posi-
tively correlated with CD8 T cells, Macrophage, and DC. 
The accuracy of our results was verified using the TIMER 
database (Fig. 7a). The higher the level of these cells, the 
greater the benefit to the patient, and the better the effi-
cacy of ICT. This further illustrates the importance of 
immune genes as prognostic markers in immune regula-
tory responses. The above indicates that our results may 
provide targets for immunotherapy.

Conclusions
In conclusion, based on the TCGA-PAAD cohort, we 
identified immune-related markers with independent 
prognostic significance, verified, and analyzed their bio-
logical functions, to provide a feasible method to evaluate 
the prognosis of pancreatic cancer and provide valuable 
targets for immunotherapy of pancreatic cancer.
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