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Abstract: In this research, direct band gap polymer composites with amorphous phase, which are
imperative for optoelectronic devices applications were synthesized. The solution cast technique was
used to produce polyethylene oxide (PEO)/calcium titanate (CaTiO3) nanocomposite (NC) films. The
X-ray diffraction (XRD) confirms the growth of amorphous nature within PEO with CaTiO3 addition.
The optical band gaps of pure PEO and PEO/CaTiO3 NC films were calculated using analysis of
ultraviolet–visible (UV-Vis) spectra. The change in absorption edge toward lower photon energy
is evidence of polymer modification. The dispersion behavior of the refractive index of PEO was
manipulated to a higher wavelength upon doping with CaTiO3. Upon adding CaTiO3 to the pure PEO
polymer, the dielectric constant and refractive index were considerably modified. The band gap shifts
from 4.90 eV to 4.19 eV for the PEO incorporated with an optimum portion of 8 wt. % of CaTiO3. The
types of the electronic transition in composite samples were specified, based on the Taucs model and
the optical dielectric loss. The alteration of UV/Vis absorption spectra of the NC film was considered
a suitable candidate to be applied in nanotechnology-based devices. The spherulites ascribed to the
crystalline phase were distinguished through the optical microscopy (OM) study.

Keywords: PEO; polymer nanocomposites; XRD test; optical properties; refractive index; band
gap study

1. Introduction

Investigation of remarkable mechanical, electrical, and optical properties of polymer
composites in specific applications, such as flexible electronics or photonics, is a highly
active area of research [1]. As a principle, optical technologies, for example, light-emitting
and solar cell devices, strongly rely on the interaction between advanced materials and
light. It is also documented that polymer materials can be utilized in light-emitting diodes
(LEDs), optical devices, and sensors. This is due to their attractive optical properties.
Manipulation of polymer optical characteristics can be achieved simply by optimizing the
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appropriate dopant materials and concentrations. Several optical properties are mentioned
herein, such as extinction coefficient, energy gaps, optical loss, and dielectric constants.
These can be determined based on the significant optical parameters of polymeric film
absorbance, transmittance, and reflectance.

Based on the literature, the calculation of the absorption coefficient, refractive index,
extinction coefficient, and real and imaginary parts of the dielectric constant can easily
be performed [2]. Polymer-based materials have desired optical and electrical properties.
These materials have taken positions as materials of choice for various applications, such
as batteries, solar cells, fuel cells, and capacitors [3–6]. Modifications in polymer materials
involve electrical and optical properties, which, in turn, allows these materials to perform
multifunctions. In principle, alteration in structure causes modification to the optical prop-
erties of polymers by fabricating nano-size materials. The dopant addition that causes the
mechanism of electron transitions to change and reduces the energy band gap, is included
in this structural modification [7]. From the analysis of optical properties, one can gain
insight into the transition of electrons between conduction and valence bands in polymers.
Furthermore, a comprehensive understanding of the charge transport phenomenon in
polymers is gained from the electrical conduction property [8,9]. Based on previous works,
polymers’ optical and electrical properties can be enhanced by incorporating metals and
semiconductor particles [10–13]. The addition of fillers influence host materials are diverse;
therefore, it is crucial to add proper fillers with optimum quantity [14]. The PEO consists of
a linear structure that possesses semicrystalline polymer that contains a crystalline phase
and amorphous phase at ambient temperature; however, it has a crystalline structure in
its pure form [15]. PEO-based materials are promising polymer candidates because of
their relatively high thermal stability [15]. It has several desired characteristics, such as
satisfactory dimensional stability, good conductivity in the amorphous structure, cost-
effectiveness, and sufficient corrosion resistance [3]. Moreover, it has a strong tendency
to form a complex. All these factors make PEO an appropriate polymer electrolyte [16].
Furthermore, the PEO can be used as a host material for solid polymer electrolytes without
solvents [1]. However, the ionic conductivity of PEO is not as high as required because
of the abundance of crystalline phase in the structure, which is a challenging factor to
reach the desired DC conductivity [2,15]. In general, the superiority of polymers comes
from the transparency, cost-effectiveness, light weight, ease of processing, and robust
mechanical property. Nevertheless, the PEO is the most suitable candidate to be applied in
the optics area. One of the drawbacks of utilization this material is a relatively low index of
refractive [7,17].

To improve the property of polymeric materials, the CaTiO3 was used. CaTiO3 is
mostly applied in specific fields of electronic ceramics containing specific electronic ceram-
ics, a positive temperature coefficient, and a ferroelectric ceramic capacitor [18,19]. CaTiO3,
a vital lead-free Perovskite material, has newly attracted more attention by researchers due
its interesting properties and different industrial applications [20]. Muhammed et al. [21]
studied the structure and optical properties of PEO doped with tin titanate (SnTiO3) nano-
filler using XRD and UV-Vis spectroscopy. The authors determined that the crystalline
phase of PEO was decreased using SnTiO3. They also showed that the optical parameters,
such as dielectric constant, refractive index, and absorption coefficient increased, while the
optical energy band gap decreased. Hussen et al. [22] prepared nanocomposite polymer
of polystyrene (PS) doped with SnZrO3 nanoparticle. The author used XRD and UV–Vis
spectroscopy to investigate crystallinity and optical properties of the pure PS and nanocom-
posite films. The author showed that the amorphous phase and optical property were
enhanced.

The aim of this study was directed toward creating new band gap energy using PEO
incorporated with CaTiO3 nanoparticles. Tremendous work was required to achieve the
hypothesis of introducing band gap energy levels. This study used the dielectric loss plot
for determining the optical energy bandgap and Tauc’s model for identifying the types
of electron transition. Several theoretical principles and experimental approaches were
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applied to prove the effectiveness of optical dielectric loss in determining the electron
transition nature from the Tauc’s model. Hence, from the investigation of the band gap,
it was apparent that earlier studies could not answer the questions around this topic.
Additionally, these findings can serve as the basis for developing new approaches for
manipulating optical properties via band gap alteration within the area of polymers and
condensed matters.

2. Experiments
2.1. Polymer Composite Preparation

Polyethylene oxide (PEO) as a raw material in powder form was used in this work.
It has a molecular weight > 5 × 106 g·mol−1 and was bought from Sigma-Aldrich. The
solution-casting technique was implemented in the film formation. The preparation of the
solution of PEO polymer comprised the addition of 1 g of PEO powder into 50 mL distilled
water. The mixture was stirred using a magnetic stirrer for five hrs at ambient temperature.
When the solution of the polymer was gained as a clear viscous solution, two portions
of 4 and 8 wt.% of CaTiO3 were added into two separate containers. Then, the stirring
continued until the formation of the PEO/CaTiO3 polymer composite. The pure PEO and
PEO-4 wt.% and 8 wt.% CaTiO3 were labelled as NCP-0, NCP-1, and NCP-2, respectively.
Ultimately, plastic Petri dishes were used to cast the solutions by allowing them to dry at
ambient temperature. Subsequently, the films were maintained in desiccators, enriched in
silica gel for further drying. The thickness of the films used for characterization were in the
range between 0.025 and 0.03 cm. A pictorial fabrication process and image of composite
membranes for the fabricated composite films are shown in Figure 1.
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2.2. X-ray Diffraction (XRD)

The X-ray diffractometer (Empyrean XRD-Panalytical) operated at40-kV and 45-mA cur-
rent, was used to gain the XRD at ambient temperature. A beam of X-ray with λ = 1.5406 A◦

was passed through each sample with the glancing angle ranged 10◦ ≤ 2θ ≤ 80◦, in step size
of 0.05◦.
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2.3. UV-Vis Measurement

A Jasco V-570 UV-Vis-NIR spectrophotometer (Japan, Jasco SLM-468) mode was
employed to acquire the ultraviolet-visible (UV-vis) absorption spectra of the solid polymer
films based on PEO.

3. Results and Discussion
3.1. XRD Analysis

Figure 2 shows the XRD spectra for the neat PEO and composite systems. In Figure 2a,
the XRD pattern of pure PEO is shown. We noticed that the crystalline phase dominates that
evidenced by the presence of two narrow peaks [23]. Two main domains were seen; firstly,
two essential peaks at 18◦ and 24◦, and low-intensity peaks at the high angle appear. PEO
polymers’ crystalline and semi-crystalline structures can be recognized from these different
diffraction peaks [24–26]. The structure of PEO is identified to be both semi-crystalline and
linear. The stabilization of the PEO crystalline structure, electrochemically and chemically,
was the structural unit’s responsibility. The existence of C-O, C-C, and C-H bonds in PEO
caused the polymer to be stable chemically and mechanically [15]. Rajeh et. al. [26], stated
that the peaks at around 22◦ and 18◦ referred to (112) and (120) planes.
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Figure 2. XRD spectra for (a) Pure PEO, (b) NCP-1, and (c) NCP-2.
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The decrease and broadening of the intensity of the XRD peaks by the addition of the
nano-size CaTiO3 are seen in Figure 2b,c. This confirms the increasing amorphous region at
the expense of the crystalline structure in the PEO. Additionally, the complexation between
the CaTiO3 and PEO can be emphasized. Furthermore, the dominancy of the amorphous
phase facilitated polymer chain segmental motions [27].

The consequence of dopant addition was the decrease in the crystalline phase, i.e.,
lowering the compact nature of the polymer structure [28,29]. It was documented that the
chemical stability of the PEO polymer crystalline structure is related to the building block
units, such as C-H, C-O, and C-C bonds [28,30].

3.2. Absorption Study

The absorption spectra of pure PEO and doped PEO with various quantities of CaTiO3
nanoparticles in the wavelength, ranged between 180 and 900 nm, as shown in Figure 3.
We noticed that the intensity of absorption in the spectrum of each sample decreased with
increased wavelength, while it increased with increased CaTiO3 quantity. It is observed
that, the films are almost transparent at the high wavelengths. In pure PEO, the spectrum
contained an absorption edge at nearly 210 nm, and a noticeable shift in the absorption
edge to a higher wavelength was recorded for each film. The absorption band for each
sample under study in the wavelength, ranged between 200 and 300 nm, which could be
ascribed to the occurrence of π − π∗ electronic transition, which was to be expected for
conjugated (C = O) group [31,32]. Interestingly, the vibronic shoulder appeared clear as
the quantity of CaTiO3 increased. Importantly, the similarity in shape of the PEO:CaTiO3
absorption spectra showed a desirable homogeneity of the films formed.
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Figure 3. Absorption spectra of NCP-0 and composite samples.

Figure 4 also shows the transmittance of neat PEO and doped PEO with various quan-
tities of CaTiO3 particles. The pure PEO showed relatively high transparency beyond the
visible region exceeding 81%. On the other hand, below the visible region, the transparency
dropped due to the high absorption of the films. It is worth noting that the doped PEO
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with 4 and 8 wt.% CaTiO3 showed lower transparency and reached almost 0.51% at the UV
region and the transparency increased to 0.63% at the visible region. This can be explained
based on the scattering and relatively high refractive index of highly doped films at lower
λ (nm).
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From the optical absorption spectrum, one can gain insight into the band gap energy
and structure of non-crystalline and crystalline materials. One of the useful optical parame-
ters was absorption coefficient (α), which can be described as quantifying the light amount
that a medium can absorb. This was obtained from the incident radiation fraction absorbed
per absorbent thickness [33]. The absorption coefficient of a series of prepared films of PEO
and various doped PEO with CaTiO3 are shown in Figure 5. The straightforward way of
calculating the absorption coefficient was carried out using the following equation [34]:

α =
2.303A

t
(1)

where, t stands for the thickness of the sample and A stands for the absorbance. The cause
of increasing (α) with increasing CaTiO3 content could be related to the modification of
molecular configuration. In other words, it supported the process of charge transfer within
metal ion complex systems, including the host polymer [35]. After extrapolating the linear
part of the curves to zero absorption, we were able extract the absorption-edge value as
tabulated in Table 1. In the current calculation, the absorption edge energy of pure PEO was
lowered from 5.2 to 4.4 eV upon adding 8 wt.% of CaTiO3. This absorption edge lowering
can be interpreted as enhancing interchain interaction between the polymer composite
chains, upon increasing the dopant quantity. As a consequence, a denser conjugation
stacking was produced. In other words, the formation of new effective trap levels in the
optical band gap could be formed by changing the absorption edge. Therefore, electrons
passed the top of the valence band to the bottom of the conduction band within these new
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states [36,37]. The current optical measurements were similar to those gained for PEO by
Kumar et al. [38].
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Figure 5. Absorption coefficient against photon energy for NCP-0 and composite films.

Table 1. Absorption edge for NCP-0 and composite films.

Samples Absorption Edge (eV)

NCP-0 5.2
NCP-1 4.65
NCP-2 4.4

3.3. Refractive Index Study

In designing new materials, both a refractive index and optical dielectric constant were
considered decisive parameters. For calculating the refractive index (n), Fresnel formulae
was implemented for parent PEO film and PEO films doped with CaTiO3 using measured
values of extinction coefficient (k = αλ/4π) and reflectance (R) [39]. It was imperative that
the designing of optoelectronic devices relied significantly upon the accuracy of info on the
refractive index parameter. In principle, the refractive index was related to both the mean
polarizability and density of the medium at specific temperature and pressure [40].

Thus, the refractive index was a decisive parameter that determined the optical
performance. The refractive index depended on absorption and reflectance. The complex
refractive index of films was calculated by Equation (2):

n × (λ) = n(λ) + k (λ) (2)

where, the extinction coefficient is symbolized by k and the refractive index is referred by n.
The following relationship shows the correlation between the k and n [41]:

n =

[
(1 + R)
(1 − R)

]
+

√
4 × R

(1 − R)2 − K2 (3)
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The dispersion curves of the refractive index n (λ) of the PEO and PEO loaded with
CaTiO3 are exhibited in Figure 6. In the spectrum of the parent PEO film, the dispersion
region lay at a wavelength of less than 300 nm. In contrast, in the case of doped PEO films
with CaTiO3, the refractive index displayed a shift in dispersion to a higher wavelength
region. This was mainly related to the uniform CaTiO3 distribution throughout the PEO
matrix, resulting in a greater density of the nanocomposite.
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3.4. Band Gap Study

Based on the quantum view, the optical dielectric loss parameter strongly related to the
unoccupied and occupied electronic levels in a material. The optical dielectric loss was also
largely band gap energy dependent [42]. The optical dielectric loss (εi) and photon energy
relationship of parent PEO and PEO/CaTiO3 samples are shown in Figure 7. From the curve
analysis, the optical band gap was obtained from the interception of the extrapolation linear
part of the diagram of εi that was plotted against the photon energy (hυ) with abscissa [43].
It is worth mentioning that Tauc’s formula could estimate the most probable electron-band-
gap electron accurately. Table 2 presents the band gap values obtained from the optical
dielectric loss plot.

Table 2. The Eg values from Tauc’s method and εi plot.

Films γ = 3/2 γ = 2 γ = 1/2 γ = 3 Dielectric Loss

NCP-0 5.1 5 5.38 5.08 4.90
NCP-1 4.58 4.3 5.15 4.3 4.28
NCP-2 4.4 4.18 5.13 4 4.19
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Accurate measurement of the energy band gap provided a clear insight into elec-
tron transitions in the band gap structure. Thereby, the optical band gap energy can be
considered as a revealing of the optical transition in PEO/CaTiO3 nanocomposite film.
The band gap energy was obtained from Tauc’s equation for the parent PEO and related
nanocomposite films from the α spectra:

(αhv) = B
(
hv − Eg

)γ (4)

In Equation (4), the parameter reliant on the interband transition probability is B. The
incident energy is expressed as hυ. Eg symbolizes the energy band gap, and the index γ
defines the kind of electron transition [44]. The value of direct allowed electron transitions
(γ) was 1

2 , the γ for indirect allowed transition was 2, for direct forbidden transitions γ
was 3/2, and for the indirect forbidden transitions γ was 3 [45]. For determination of
Eg value, for the electronic transitions of the direct allowed (Figure 8), direct forbidden
(Figure 9), indirect allowed (Figure 10), and indirect forbidden (Figure 11), the intersect of
the extrapolated linear part of the diagram of (αhυ)1/γ v hυ with abscissa was used [46].
In earlier research, it was suggested that the cause of decreasing the optical energy band
gap could be due to the diverse localized trap states through forbidden band gap. These
localized levels were created from the loaded nanoparticles to the polymer [47,48].

The creation of new energy states within the band gap can be developed by introducing
defects (deep- and tail-localized levels). Thus, the migration of electron transition from
the valence to conduction band, supported lowering band gap energy [48]. From both the
cut-off energy extracted from the dielectric loss and band gap energy, we recognized the
greatest possible electronic transition in each sample [49]. Based on the energy band gap
values extracted from Tauc’s equation (Figures 8–11) and cut-off energy extracted from the
dielectric loss plot, the direct transition (γ = 1/2) was the most probable electron transition
(see Table 2). Summarily, from comparing the value of the optical band gap derived from
Tauc’s plot and that calculated from the dielectric loss diagram, the maximum probable
electron transitions and the optical band gap value could be determined.
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3.5. Optical Dielectric Properties

The basic meaning of dielectric characteristic is a reflection of the material’s optical
property [41]. The dependence of the dielectric constant on energy indicated that definite
electron–photon interaction within the energy range in the film were generated. These



Polymers 2021, 13, 3484 12 of 18

new interactions determined the responses in the imaginary and real parts of the dielectric
spectra, appearing as peaks [50]. It was concluded that the imaginary and real parts were
not only in association with the refractive index, but also dependent on the extinction
coefficient by Equation (5) [51]:

εr = n2 − k2 = ε∞ − e2

4πC2εo

N
m∗ λ2 (5)

where, the dielectric constant at relatively high wavelengths and the free-space dielectric
constant are denoted by ε∞ and εo, respectively. The ratio between localized density state
and effective mass is referred to by N/m*. The electronic charge is symbolized by e. The
relaxation time is represented by τ, and the light velocity is referred to by C. The dielectric
constant (ε’) spectra are displayed in Figure 12. The optical dielectric constant related to
the wavelength for every sample, and it was clearly seen that increasing the CaTiO3 filler
ratio caused an elevation in the ε’ value from 3.7 to 6.29. More profoundly, the main cause
of increasing ε’ value was the introduction of energy states. In other words, there was
a direct connection between ε’ and states density inside the forbidden gap of polymer
samples [31,32].
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Using εi extrapolation at the plateau region to the Y axis was useful in extracting the
εi of the PEO and 4 and 8 wt.% of PEO/CaTiO3 nanocomposite samples. Incorporating
the CaTiO3 nanoparticles into PEO increased the εi value as a consequence of creating new
states. In other words, there was an existence between the εi and density of states through
forbidden gaps in the materials [52,53].

Optical properties can be achieved by studying conduction, dispersion, reflection,
absorption, and polarization phenomena. In optoelectronics and solar cell devices, the
use of direct band gap semiconductor perovskite materials is essential. The direct band
gap semiconductors revealed the extent of absorbing energy (photon) by electrons moving
directly to the conduction band. In the case of indirect band gap semiconductor materials, a
phonon created heat influence and lowered the reliability of the devices. Furthermore, the



Polymers 2021, 13, 3484 13 of 18

interband transition were better than the intraband transition in the large band gap semi-
conductor. In former ones, there are transitions from the valence band to the conduction
band, deep state, and shallow state transition [54].

3.6. Urbach Energy as a Measure of Order or Disorder

Figure 13 displays the Urbach diagram for the PEO and PEO-loaded samples. From
the plot, the prediction of whether the samples were crystalline or amorphous after doping
was decided. The Urbach tail was seen in amorphous and disordered materials and was
vital for realizing the electronic passage property of these materials. It can be proved
that the band tail levels in the amorphous structure resulted from strains in the network
that were adequate to thrust the levels to the forbidden band gap. Interestingly, the tails
decayed exponentially into the band gap [52,55]. At relatively low absorption levels, the
absorption coefficient (α) was best described by the Urbach formula [56]:

α = αo exp(−hω/∆E) (6)

where αo refers to a constant and ∆E denotes energy, which was obtained from the tail
width of localized levels inside the forbidden gap. The resultant of state tailing at the
Urbach band edges came from the disorder of the structure. These tail states indicated
the contribution of the photon energy absorption below the energy band gab, i.e., the tail
states were characteristic behavior of absorption in the sub-gap region [56]. As Saq’an et al.
stated, the Urbach energy decrement was sufficient evidence of growing the crystalline
structure. Prasher et al. emphasized that when Urbach energy increases, it indirectly
indicates a growth in the amorphous portion [55]. All of this demonstrated the accuracy of
Urbach energy in predicting the structure of solid materials, i.e., the structure of samples
transferred from crystalline to amorphous beyond the doping. The Urbach energy of parent
PEO and loaded PEO are listed in Table 3. The Urbach energy increased from 0.692 eV
to 1.487 eV parent PEO and the PEO doped with 8 wt.% of CaTiO3 particles, respectively.
This shift in energy revealed the growth of the amorphous region. In the present study, a
lowering in intensity and increase in the broadness of the diffraction peak of pure PEO
were recorded after adding CaTiO3 particles.
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Table 3. Urbach energy for pure PEO and PEO doped solid polymer films.

Sample Designation Urbach Energy (eV)

NCP-0 0.692
NCP-1 1.398
NCP-2 1.487

3.7. Optical Microscopy Study of PEO Morphology

PEO-based polymer with high molecular weight and polycrystalline materials with
micron-sized randomly aligned distinct domains (See Figure 14a). Each domain was made
up of aligned or tangled chains characterized by a wide range of topological interactions.
Physical crossings, knotting, and looping were examples of such interactions [57,58]. It is
worth noting that pure PEO electrolytes contain semi-crystalline and amorphous regions
and intermediate regions at the crystalline/amorphous interphase, below the melting
temperature (≈ 330 K). At ambient temperature, PEO’s semi-crystalline structure resulted in
both amorphous and crystalline phases [38,59–61]. In pure PEO samples, some spherulites
of varying sizes were generated by lamellar eutectics, as seen in Figure 14a. Spherulites
covered a larger surface area in pristine PEO than what was found in doped samples.
Because spherulites were the crystalline phase of PEO, this was evidence of increased
crystallinity relative to doped samples [62,63]. The composite film became smoother as
the fraction of CaTiO3 increased, spheroids’ size decreased, and individual spheroids’
boundaries became apparent (see Figure 14b,c). The literature suggests that, spheroids
form through random nucleation and develop radially until they collide at borders, as
shown in Figure 14a. The morphological behavior of crystalline polymers with flexible
chains was characteristic. If we closely look at one of the spheroids, one can see that it has
more fiber texture (amorphous phase) than the others [64].
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4. Conclusions

In conclusion, the construction of direct band gap polymer composites with improved
amorphous phase showed the efficiency and eligibility of the polymer for application in
optoelectronic devices. Implementation of the solution-cast technique was carried out in the
construction of PEO/CaTiO3 nanocomposites. Development of amorphous nature in parent
PEO with CaTiO3 was evidenced via XRD. The refractive index dispersion behavior of PEO
was shifted to a greater wavelength by loading with CaTiO3. The optical properties of the
PEO-based composites had a small optical energy band gap close. Both the refractive index
and dielectric constant were significantly modified when an optimum quantity of CaTiO3
was added into the PEO polymer. Taucs model was successfully applied in determining
the type of electronic transition within the samples. The desired optical energy band gap
was achieved from the analysis of the dielectric loss parameter. The improvement in band
gap and flexibility of films that were achieved, were potentially usable in optoelectronic
devices. Summarily, the most significant possible electron transition type was determined
from the diagram of dielectric loss. This development of UV-Vis absorption also made
the prepared nanocomposite film the candidate of choice in future nanotechnology-based
device utilization.
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