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Abstract: Epicatechin is a monomeric flavanol found in food sources such as tea, apples, berries and
cocoa. A number of large-scale epidemiological studies have demonstrated an association between
the consumption of these foods and cognitive function, as well as improved blood flow. The aim of
this review is to summarise the evidence from intervention studies to clarify the effect of epicatechin
on cognition and to consider the role of increased cerebral blood flow as a mechanism for any effects.
The effects of epicatechin as consumed in cocoa are, therefore, reviewed here as this represents the
only dietary source where it is purported to be the major active component. Our main findings are
that a) the positive modulation of tasks that involve memory, executive function and processing
speed in older adults; b) the cognitive benefits are more often shown in studies containing more
than 50 mg epicatechin/day; and c) all studies with a duration of 28 days or longer in populations
>50 years old demonstrate a cognitive improvement. However, as highlighted by this review, it is
not currently possible to attribute effects solely to epicatechin without consideration of synergies.
In order to overcome this issue, further studies examining the cognitive effects of epicatechin in
isolation are required. The role of cerebral blood flow also requires further investigation through
simultaneous measurement alongside cognitive function.

Keywords: epicatechin; cocoa; cognition; cognitive; cerebral blood flow; mood; phenolic;
polyphenol; phytochemical

1. Introduction

Flavanols are a subclass of the bioactive compounds, flavonoids, which can be further sub-divided
into monomeric flavan-3-ols and their oligomeric/polymeric counterparts, procyanidins. Epicatechin
(see Figure 1), along with catechin, is a monomeric flavan-3-ol, which is abundant in food sources such
as tea, apples, berries, and particularly cocoa. A number of large-scale epidemiological studies have
demonstrated a link between the consumption of these epicatechin-rich foods and cognitive function.
For instance, the Paquid longitudinal study demonstrated that the relative risk of dementia was
significantly lower for those in the two highest tertiles of flavonoid consumption, compared to those
in the lowest tertile when followed up 5 years later [1]. In addition, analysis of neuropsychological
function (Benton’s Visual Retention Test, Isaacs Set Test, Mini-Mental State Examination (MMSE)) at
initial assessment of flavonoid intake (including flavanols), revealed a significant positive association
between flavonoid consumption and task performance. An inverse relationship between intake
and cognitive decline over the 10-year follow up was also demonstrated, whereby those in the
highest two quartiles of flavonoid intake had less cognitive decline than those in the lowest
quartile [2]. Other studies have provided data on specific sources of flavonoid. In a cross-sectional
study of 1003 community-dwelling Japanese adults aged 70 years and above, Kuriyama et al. [3]
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demonstrated a significant inverse relationship between catechin-rich green tea consumption and
cognitive impairment, as measured by MMSE, which was not observed for fermented black or
semi-fermented oolong tea, or coffee. The role of flavonoids in this relationship is questioned by data
from the Singapore Longitudinal Ageing Studies cohort showing a significant negative relationship
between cognitive decline (MMSE) and black and oolong tea, but not green tea, in 2194 Chinese
community-dwelling adults aged over 55 [4]. However, further analysis of a sub-sample of this cohort
in a cross-sectional design employing a range of cognitive tasks showed that tea consumption was
associated with the better performance across tasks, irrespective of whether fermented (black/oolong)
or unfermented (green) [5]. Similarly, in the Norwegian Hordaland Health Study (HUSK), 2031 elderly
(70–74 years) tea drinkers performed better in 4 out of 6 cognitive tests as compared to non-tea drinkers;
wine drinkers also showed significantly better performance across all six tests versus non-wine drinkers,
with this effect levelling off at 100 mL/day; and consumers of chocolate performed significantly better
than non-consumers in 5 out of 6 cognitive tests, with a plateau in increased performance at 10 g per
day [6].
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Figure 1. The chemical structure of (−)-epicatechin. 
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effects are often attributed to epigallocatechin-3-gallate (EGCG), rather than epicatechin. The 
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on the brain, it is necessary to consider data collected in randomised controlled trials. However, there 
are currently no published intervention trials examining the effects of isolated epicatechin on human 
cognition. Therefore, as cocoa represents the only dietary source where epicatechin is purported to 
be the major active component, this paper will review human randomised controlled trials exploring 
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compared to a matched control [2]. It is possible that the dose employed in this study was insufficient 
to produce behavioural effects, but another suggestion is that the healthy young participants were 
performing close to ceiling and benefits were therefore unlikely to be observed. This latter suggestion 
is supported by the demonstration of significant improvements to the performance of an intense 60-
min Cognitive Demand Battery (CDB) in healthy young adults. Improvements to executive function 
and attenuation of mental fatigue increases induced by the demanding tasks were observed at 90 min 
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Epidemiological studies suffer a number of well-documented problems, such as the difficulty in
attributing cause and effect and uncontrolled confounds. However, an additional issue with the cohort
data described above is that it does not allow conclusions regarding the role of epicatechin in these
effects. In the case of wine consumption, findings are particularly difficult to interpret in relation to
flavonoid content due to studies showing positive effects on cognition of moderate alcohol intake [7].
Similarly, as tea also contains caffeine and the amino acid l-theanine, it is difficult to determine the
specific contribution of flavonoids to this relationship; and, in the case of green tea, the effects are
often attributed to epigallocatechin-3-gallate (EGCG), rather than epicatechin. The limitations of
epidemiological data require that in order to reliably assess the impact of epicatechin on the brain,
it is necessary to consider data collected in randomised controlled trials. However, there are currently
no published intervention trials examining the effects of isolated epicatechin on human cognition.
Therefore, as cocoa represents the only dietary source where epicatechin is purported to be the
major active component, this paper will review human randomised controlled trials exploring the
role of epicatechin administered in cocoa on cognition. The potential mechanisms for the effects of
epicatechin-rich cocoa on cognition will then be discussed with a particular focus on the role of cerebral
blood flow.

2. Cognition Intervention Studies

In the first intervention study to assess the effects of epicatechin-rich cocoa on cognition, the impact
of 5 days’ supplementation with 172 mg of cocoa flavanols (CF) (31 mg epicatechin) on letter pair
switching performance was assessed. No effects were observed in healthy young females when
compared to a matched control [8]. It is possible that the dose employed in this study was insufficient
to produce behavioural effects, but another suggestion is that the healthy young participants were
performing close to ceiling and benefits were therefore unlikely to be observed. This latter suggestion
is supported by the demonstration of significant improvements to the performance of an intense
60-min Cognitive Demand Battery (CDB) in healthy young adults. Improvements to executive
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function and attenuation of mental fatigue increases induced by the demanding tasks were observed
at 90 min post-administration of 520 and 994 mg of CF (94 and 184 mg epicatechin respectively) when
compared to a control matched for macronutrient, mineral, caffeine and theobromine content [9].
Improvements to sustained [10] and selective attention [11] have been demonstrated in more recent
studies following acute supplementation with CF. However, one study failed to find effects on a single
5-min Stroop task following 900 mg of CF [12], again potentially indicating issues with ceiling effects.
The importance of task demands/fatigue is further highlighted by evidence showing that CF (447 mg
epicatechin) can offset the negative effects of sleep deprivation on a working memory task at 90 min
post-consumption in women [13]. Improvements to visual contrast sensitivity (as assessed by reading
numbers that became progressively more similar in luminance to their background), time to detect
motion direction, and visual-spatial memory were also shown in 18- to 25-year-olds, 90 min following
acute consumption of dark chocolate as compared to white chocolate [14]. However, the use of a control
that was not matched for methylxanthine or macro/micronutrient content makes it impossible to
attribute the effects to phenolic compounds. This issue is overcome when comparing the effects
of a cocoa tablet (3058 mg Theobroma cacao seed extract containing 250 mg CF) to cellulose in 18-to
40-year-olds [15]. Lower mental fatigue ratings prior to a shortened 30-min version of the CDB
described above, as well as a greater number of serial sevens subtractions during the first repetition
of the task were observed in the cocoa group when measured at 3 h post-tablet consumption. Stress
ratings following 30 days’ supplementation were also higher following cocoa than placebo, an effect
that is difficult to explain. It should be noted that each of the significant findings presented was the
result of individual comparisons of the data at each time point. Therefore, given the isolated nature of
these effects and the statistical approach adopted, it would be unwise to over-interpret these findings.

The finding of higher stress levels is also in contrast to findings from Pase et al. [16] showing
increased calm and content ratings following CF supplementation. Cognitive and mood effects were
assessed acutely and following 30 days’ supplementation in 40- to 65-year-olds using the standard
20-min Cognitive Drug Research (CDR) battery employed in numerous dietary intervention studies
(e.g., [17,18]) and Bond-Lader mood scales [19]. Neither 250 nor 500 mg of CF (25 and 50 mg of
epicatechin, respectively) impacted significantly on cognition or mood when measured acutely at
1, 2.5 and 4 h; however, increases in calm and content ratings were observed following 30 days’
supplementation with 500 mg of CF, which the authors suggest may be due to action on GABAA

receptors. Neurocognitive data from the same study showed no effects on a spatial working memory
task assessed at baseline and following the 30-day supplementation. Steady State Visually Evoked
Potentials (SSVEPs) recorded during task performance using Steady State probe Topography (SST),
a form of electrophysiological brain imaging, revealed, perhaps surprisingly, that the pattern of
posterior-parietal SSVEP amplitude in the 250 mg CF group, and to a lesser extent the 500 mg group,
was significantly lower than the pattern observed following the control. Latency was also decreased in
the same region following both the 250 and 500 mg CF interventions, indicative of increased neural
processing speed [20]. In light of the lack of effects on cognition and the reduction in latency, it is
suggested by the authors that this decrease in amplitude may reflect an increase in neural efficiency,
whereby participants are able to perform at the same level with reduced activation. This assertion
is supported by previous data showing a positive association between increased posterior-parietal
activation and task difficulty [21]. It is interesting to note that this potential increase in neural efficiency
seen following 250 mg is not accompanied by the modulation of mood demonstrated by the 500 mg
dose, as presented in Pase et al. [16]. It has been suggested that a longer supplementation may be
required to see robust improvements in cognition. Indeed, Brickman et al. [22] demonstrated that
12 weeks’ supplementation with 900 mg CF (138 mg epicatechin) led to participants in the high
CF group responding 630 milliseconds faster than those consuming a matched low CF control on
a Modified-Benton test, developed to localise the function to the dentate gyrus area of the hippocampus.
This difference in reaction time equates to around three decades of ageing and was evinced as a slowing
of responses from baseline to study end in the control group, as well as a faster response in the high
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CF group. The effects on reaction time were inversely related to cerebral blood volume changes in the
dentate gyrus. These data are extremely exciting and provide an excellent basis for further study.

In addition to the longer intervention employed, Brickman et al. [22] also explored the effects in
a slightly older cohort (50–69 years) and it may be that age played an important role in these effects.
In the first study of the cognitive effects of cocoa in elderly adults, Crews et al. [23] failed to find any
effects of 805 mg of CF (35 mg epicatechin) supplemented to over 60-year-olds (mean 68.7 years) for
6 weeks. However, the treatments were not matched for methylxanthine or micronutrient content
and, importantly, the carbohydrate and energy levels were more than doubled in the control as
a consequence of the use of sugar rather than the sweetener used in the cocoa condition. In addition,
the low levels of epicatechin could explain the lack of cognitive effects. It is, therefore, difficult
to interpret these null findings in relation to flavan-3-ols. Similarly, Sorond et al. [24] failed to
find improvements to MMSE or Trail Making Tasks (TMT) A and B when measured at 24 h and
4 weeks following 1218 mg of CF (219 mg epicatechin) per day in older adults enrolled on the
basis of hypertension or type II diabetes. However, significant improvements to global cognition
and increases in brain-derived neurotrophic factor (BDNF) have been observed following 28 days
supplementation with 494 mg of CF (89 mg epicatechin) in healthy elderly [25]. Furthermore, Desideri
et al. [26] demonstrated improvements to cognition in elderly adults (65+ years) with Mild Cognitive
Impairment (MCI) following 8 weeks’ supplementation. Compared to control, 520 and 994 mg of CF
(95 and 185 mg epicatechin) led to faster completion times on TMT A and B and 994 mg also led to
significantly improved verbal fluency performance compared to the control. Reduced insulin resistance
(IR) as a consequence of CF consumption was found to explain ~40% of composite z score variability.
In a replication of this work in healthy elderly adults, Mastroiacovo et al. [27] observed identical results
to those shown in MCI with the exception that IR explained ~17% of composite z score variability.
In both studies, there were no significant effects on MMSE, highlighting the lack of sensitivity of this
measure to detect small changes in cognition over a short time period. It is currently unclear whether
the lack of improvements reported by Sorond et al. [24], despite improvements on the same tasks
in Desideri [26] and Mastroiacovo [27], relates to the shorter length of intervention, the population
studied, or the high dose employed, and these factors all require further investigation. Similarly,
the only study of acute effects in older adults failed to detect any improvement to cognition [28],
a finding which may relate to the low dose of epicatechin (25 mg and 49 mg), small sample size or
insensitive task selection.

Seven out of nine studies that focused on the effects of a single dose of epicatechin-rich cocoa
explored effects in young populations (<40 years). Of these, six showed positive effects upon
cognition [9–11,13–15]. The only study to fail to show acute effects in a young population employed
a small sample size (n = 12) and a single 2-part task lasting only 5 min [12]. Of the two studies
in older adults (>40 years), one employed a small sample size [28] and the other explored effects
in 40–65 years [16] who may be a particularly difficult age group to detect effects in due to the
presence of undiagnosed underlying conditions with the potential to impact the findings. Of the
10 studies to explore the effects of repeated administration, 4 showed positive effects on cognition.
Those studies that failed to find effects [8,15,16,20,23,24] tended to employ a shorter intervention
period (5 days to 6 weeks), whilst positive effects were observed when administration continued for
longer (8–12 weeks) [22,26,27]. One notable exception to this is the finding of a global improvement to
cognition in older adults following 28 days’ supplementation [25]. This may be due to the combining
of outcomes to increase the power or the use of a crossover design to minimise the impact of individual
differences. Those studies showing a positive effect also employed a higher dose of epicatechin
(>50 mg) than those failing to show effects. One exception to this is a lack of effects following 30 days’
supplementation with 219 mg of epicatechin [24], these null findings may relate to the length of
intervention or to the inclusion criteria of hypertension and/or type II diabetes.

See Table 1 for a summary of randomised controlled trials assessing the impact of cocoa
on cognition.
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Table 1. Randomised controlled trials assessing the effects of cocoa on cognition.

Reference Sample Design Dose, Duration Methods Effects of Epicatechin

Francis et al. (2006) [8] n = 16 females
(18–30 years) RDBPC crossover 172 mg CF (31 mg

epicatechin). Five days Switch task; fMRI; HR (1.5 h PD)
Increased BOLD response in the

dorsolateral prefrontal cortex, parietal
cortex and ACC. No effects on cognition.

Scholey et al. (2010) [9] n = 30 (18–35 years;
mean 22) RDBPC crossover

520 mg CF; 994 mg CF
(94/184 mg epicatechin).

Acute

2 serial subtraction tasks (3 and 7 s); RVIP;
mental fatigue; STAI-Y1 (1.5 h PD)

Increased correct serial 3 subtractions;
94 mg attenuated mental fatigue; 184 mg
improved RVIP RT but increased serial

7 subtraction errors.

Boolani et al. (2017) [10] n = 23 (17 male)
(mean 20 years) RDBPC crossover

499 mg CF (epicatechin
NK); 499 mg CF+70 mg caff;

66 mg caff. Acute

Serial subtractions (3 and 7 s); Bakan; CPT;
motivation; mood; salivary

methylxanthines (baseline and 22, 60 and
98 min PD)

CF vs placebo: decreased Bakan RT and
FA. CF vs. CF + caff: decreased Bakan

correct and increased omission errors. CF +
caff vs. caff: decreased anxiety.

Tsukamoto et al. (2018) [11] n = 10 males
(mean 23 years) RSBPC crossover 563 mg CF (epicatechin NK)

2-part Stroop; Face-name matching; FAS;
mental fatigue; concentration; motivation:
HR; MAP; glucose; lactate (baseline and

30 and 60 min PD at rest and 100, 130 and
160 min PD after exercise)

Improved Stroop interference.

Decroix et al. (2016) [12] n = 12 male
(mean 30 years) RDBPC crossover 900 mg CF (185 mg

epicatechin). Acute

2-part Stroop; NIRS; BDNF (baseline and
95 min PD at rest and 145 min PD

after exercise)

Increased ∆HbO2 during word-colour
Stroop at rest.

Grassi et al. (2016) [13] n = 32 (16 male)
(mean 25 years) RDBPC crossover 520 mg CF (447 mg

epicatechin). Acute

KSS; PVT; 2-back; FMD; BP; PWV (baseline
‘sleep’ condition and 90 min PD in
‘deprivation’ condition following
one-night total sleep deprivation)

Preserved 2-back accuracy in women after
‘deprivation’. SBP, DBP and pulse pressure
lower after CF vs. control. Negative effects

of ‘deprivation’ on FMD and PWV
counteracted by CF. FMD correlated with

2-back accuracy in ‘sleep’.

Field et al. (2011) [14] n = 30 (18–25 years) RSBPC crossover 773 mg CF
(epicatechin NK). Acute

CS; motion coherence threshold; motion
integration time threshold; visual SWM;

CRT (2 h PD)

Improved CS, improved WM accuracy and
speeded motion integration and CRT.

Massee et al. (2015) [15] n = 40 (18–40 years,
mean 24) RDBPC parallel groups 250 mg CF (epicatechin NK).

Acute/30 days

TCD of CCA, SUCCAB, CDB × 3, mental
fatigue and stress before and after CDB,
(baseline and 2 h acutely and at 30 days)

Decrease in fatigue pre-CDB and increase
in sevens correct during the first repetition

acutely. Stress lower at 30 days in the
placebo group.

Pase et al. (2013) [16] n = 72 (40–65 years) RDBPC parallel groups
250 mg CF; 500 mg

(25/50 mg epicatechin).
Acute/30 days

Immediate WR; Simple RT; DV; Choice RT;
Tracking; Spatial WM; Numeric WM;

Delayed WR; Word Recognition; Picture
Recognition; Bond-Lader VAS (baseline, 1,

2.5 and 4 h acutely and at 30 days)

Increased calm and content at 30 days.

Camfield et al. (2011) [20] n = 63 (40–65 years;
mean 52) RDBPC parallel groups

250 mg CF; 500 mg CF
(25/50 mg epicatechin).

Thirty days
SST-SSVEP; SWM (baseline and PD)

Decreased SSVEP amplitude (25 mg) and
increased latency (25 and 50 mg) in

posterior parietal regions.
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Table 1. Cont.

Reference Sample Design Dose, Duration Methods Effects of Epicatechin

Brickman et al. (2014) [22] n = 37 (50–69 years) RDBPC parallel groups 900 mg CF (138 mg
epicatechin). Twelve weeks

ModBent; CBV dentate gyrus (fMRI)
(baseline and PD)

ModBent RT 630 ms faster in CF vs.
control. CBV enhanced in CF; a correlation

between change in cognition and CBV.

Crews et al. (2008) [23]
n = 90 (≥60 years;

mean 69) MCI (≥24
MMSE)

RDBPC parallel groups 755 mg CF (epicatechin NK).
Six weeks

BSRT; WMS-III Faces I and II; TMT; Stroop;
WAIS-III DSST; total cholesterol (HDL,
LDL, VLDL); triacylglycerol; C-reactive

protein (baseline and 6 weeks). A-DACL
General Activation; SBP; DBP; HR

(baseline, and at 2 h PD at 3 and 6 weeks)

No positive effects. CF increased HR
(3 and 6 weeks).

Sorond et al. (2013) [24]
n = 60 (mean 73

years) hypertension
and/or T2D

RDBPC parallel groups
1218 mg CF (219 mg

epicatechin). A duration of
24 h/30 days

MMSE; TMT-A and B; TCD of MCA to
assess neurovascular coupling

(baseline and PD)
No effects in the primary analysis.

Neshatdoust et al. (2016) [25]
n = 40 (22 male)

(62–75 years,
mean 68)

RDBPC crossover
494 mg CF

(89 mg epicatechin).
Twenty-eight days

Go-No-Go; Stroop; plus-minus; TMT; letter
memory; free and delayed WR; word and

face recognition; serial sevens; spatial
delayed recall; virtual 3D radial arm maze;

word stem completion; DSST; RVIP
(baseline and PD)

Significant increase in global cognition
and BDNF.

Desideri et al. (2012) [26] n = 90
(65–82 years) MCI RDBPC parallel groups

520 mg CF; 993 mg CF
(95/185 mg epicatechin).

Eight weeks

MMSE; TMT-A and B; VF
(baseline and PD)

Increased speed of TMT-A and TMT-B. A
total of 185 mg improved VF. Reduced IR,

BP and LP, with IR explaining ~40% of
composite z score variability

Mastroiacovo et al. (2015) [26] n = 90 (~69 years) RDBPC parallel groups
520 mg CF; 993 mg CF

(95/185 mg epicatechin).
Eight weeks

MMSE; TMT-A; TMT-B; VF
(baseline and PD)

Increased speed of TMT-A and TMT-B. A
total of 185 mg improved VF. Reduced IR,

BP and LP, with IR explaining ~17% of
composite z score variability.

Marsh et al. (2017) [28]
n = 12

(post-menopausal
women) (77 years)

RSBPC crossover
200 mg CF; 395 mg CF

(25 mg/49 mg epicatechin).
Acute

Detection task; n-back (1 and 2 back); list
learning and recall; continuous

paired-association learning (separate day
baseline and 60 min PD). FMD; MAP; HR;
TCD of MCA (baseline and 60 min PD).

Milk and dark chocolate increased FMD,
decreased CBV at rest and during tasks

with no effects on cognition or MAP.

ACC = Anterior Cingulate Cortex; A-DACL = Activation-Deactivation Adjective Check List; BDNF = Brain-Derived Neurotrophic Factor; BOLD = Blood Oxygenation Level-Dependent
response; BSRT = Buschke Selective Reminding Test; Caff = Caffeine; CBV = Cerebral Blood Velocity; CF = Cocoa Flavanols; CS = Contrast Sensitivity; DBP = Diastolic Blood Pressure;
DSST = Digit Symbol Substitution Task; DV = Digit Vigilance; FMD = Flow-Mediated Dilatation; fMRI = functional Magnetic Resonance Imaging; HbO2 = Deoxygenated haemoglobin;
HDL = High-Density Lipoprotein; HR = Heart Rate; IR = Insulin Resistance; LDL = Low-Density Lipoprotein; LP = Lipid Peroxidation; MAP = Mean Arterial Pressure; MCA = Middle
Cerebral Artery; ModBent = Modified-Benton test; MMSE = Mini Mental State Examination; MRI = Magnetic Resonance Imaging; NK = Not Known; PD = post-dose; PWV = Pulse Wave
Velocity; RT = Reaction Time; RVIP = Rapid Visual Information Processing; SBP = Systolic Blood Pressure; SST = Steady State Topography; SSVEP = Steady State Visually Evoked Potential;
STAI-Y1 = State Trait Anxiety Inventory state component; TCD = TransCranial Doppler; TMT = Trail Making Test; VAS = Visual Analogue Scales; VF = Verbal Fluency; VLDL = Very
Low-Density Lipoprotein; WAIS-III = Wechsler Adult Intelligence Scale-III; WM = Working Memory; WMS-III = Wechsler Memory Scale-III; WR = Word Recall.
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3. Potential Mechanisms and Bioavailability

3.1. Potential Mechanisms

The exact mechanisms responsible for the effects of flavanols on brain health are yet to be
determined but previous attributions to antioxidant properties have begun to be replaced by
functions which impact synaptic plasticity via a cascade of cell signalling mechanisms, such as
the modulation of receptor function, gene expression and protein synthesis, improved neuronal
survival and increased spine density [29–31]. For instance, the treatment of mouse cortical cells
with (−)-epicatechin in the range 30 nmol/L–30 µmol/L produced a bell-shaped dose-response
on phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding protein
(CREB), with a maximum stimulation observed with doses between 100–300 nmol/L. This neuronal
response was PI3-kinase and extracellular signal-regulated kinase (ERK) 1/2-dependent, and the
phosphorylation of ERK 1/2 and Akt following (−)-epicatechin was shown to follow the same
dose-response. Equivalent phosphorylation of ERK was also shown following the (−)-epicatechin
metabolite, 3′-O-methyl-epicatechin, with no effects of epicatechin glucuronide. Eighteen hours after
treatment with 100 nmol/L epicatechin, cAMP responsive element (CRE) mediated gene expression
was shown to be up-regulated in a partially ERK-dependent manner, and the levels of GluR2 protein
were increased [32]. Neuroprotective effects of (−)-epicatechin have also been demonstrated through
decreased amyloid β-(Aβ) induced apoptosis [33], which is related, at least in part, to activation of
c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) [34–36].

3.2. Caveats for Result Interpretation

Difficulties in elucidating specific mechanisms of action for flavanols are due in part to the
variety of compounds present when administered as food. For example, cocoa contains the
methylxanthines caffeine and theobromine, along with fat, protein, carbohydrates and a range of
minerals, all of which are usually matched in the control intervention but the total flavanol content
includes monomers and procyanidins, which are not matched in the control, therefore presenting
difficulties in ascribing effects solely to epicatechin. In addition, robust effects on biomarkers in vitro
are often not replicated when measured in vivo. One explanation for this is that absorption is
limited in vivo and extensive metabolism takes place in the small and large intestine, the liver
and in cells. Therefore, due to extensive conjugation and metabolism, the substance administered
may differ from that detected in systemic circulation [37,38]. Unlike dimer procyanidins, larger
oligomeric flavanols present in cocoa were not detected in relevant levels in human plasma [39].
Previously, unmetabolised (−)-epicatechin has been detected in plasma at 2 h post-consumption
of high flavanol cocoa drink (containing 917 mg (−)-epicatechin)) [40]. However, recent studies
have failed to detect unmetabolised (−)-epicatechin compounds that were previously identified,
suggesting inadequacies in the previous methodologies [41–43]. The identification and quantification
of (−)-epicatechin conjugates was incomplete due to a lack of purified standards but new methods
emerged indicating inadequacies in earlier methodologies. The rapid metabolism of epicatechin in the
small intestine results in glucuronides, sulphates and/or methyl conjugates. For instance, following the
consumption of 100 g of dark chocolate containing 79 mg of (−)-epicatechin, Actis-Goretta et al. [42]
identified the following epicatechin metabolites as most relevant: epicatechin-3′-β-D-glucuronide
(32%), epicatechin-3′-sulphate (24%), and epicatechin-3′-O-methyl-epicatechin sulphates substituted in
the 4’, 5, and 7 positions. Despite the variable results, the evidence is emerging with regards the major
metabolites and this is expected to continue as techniques and standards are developed. However,
the studies described all suffer from extremely low sample sizes and given the large individual
differences present it is essential that large-scale studies are conducted to explore the factors impacting
on this. In particular, studies often differ with regards restrictions on diet in terms of polyphenol
intake, ranging from no restrictions [40] to 12-h [44] and 48-h [42] restricted (‘beige’) diets. Differences
also occur with regards length of fast from 2 h [44] to 12 h [40,42]. Given the importance of the mucosal
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integrity of the small intestine to absorption and the impact that small intestine microbiota has on
this, it is important to explore the impact of dietary restrictions on bioavailability results. As the
small intestine microbiota can fluctuate over days and even within a day [45], and as cocoa flavanols
have shown prebiotic properties (albeit in faecal samples) [46], the possibility exists that restriction of
polyphenol intake prior to bioavailability studies, negatively impacts on microbiota and this, in turn,
reduces absorption from the small intestine. Therefore, those people who consume higher levels of
polyphenols habitually may show increased absorption in intervention studies and, therefore, greater
benefits over their counterparts with a lower level of intake. This also suggests that bioefficacy may
be reduced in acute studies where a ‘beige’ diet is adhered to and this is something that warrants
further investigation.

3.3. Blood-Brain Barrier

A further issue when considering the impact of epicatechin on brain health is its ability to reach
the brain. Epicatechin has been shown to cross the blood-brain barrier (BBB) in vitro and also to be
conjugated with glucuronic acid in these endothelial cells [47]. Data from animal studies have also
shown epicatechin and its metabolites in brain tissue at pharmacologically relevant levels following oral
administration [48,49] and despite data showing lower brain uptake of sulphated and glucuronidated
derivatives in vitro [50], animal studies have shown that glucuronides can enter the brain [51,52].
However, the present knowledge on the ability of epicatechin and its metabolites to enter the brain is
limited and in the absence of evidence for the biological activity of the metabolites, it is currently not
possible to definitively conclude on the potential for epicatechin to exert direct effects on the brain.

4. Peripheral and Cerebral Blood Flow Intervention Studies

As the potential for the direct effects of epicatechin on the brain has not been conclusively
determined, indirect mechanisms have been explored. One such mechanism is improved blood flow.
Several observational studies have linked habitual cocoa intake to lowered risk for a number of
blood flow-related conditions such as high blood pressure, coronary heart disease, acute myocardial
infarction, heart failure, carotid atherosclerotic plaques and strokes [53–60]. These data from
epidemiological studies are supported by a number of intervention studies that have explored acute
and chronic effects of cocoa on blood pressure [61–68] and platelet function [69–73]. Several studies
have indicated a specific effect of cocoa on endothelial function as demonstrated by the increased
flow-mediated dilation (FMD) whether studied chronically [62,64,68,74,75], acutely [65,75–79],
or acutely superimposed upon a chronic increase [80,81]. Further support for the importance of
endothelial function in this relationship comes from studies showing an absence of the modulation
of endothelial-independent brachial artery diameter [64,76,80,81]. Mills et al. also demonstrated
an improvement in FMD after the oral ingestion of epicatechin (200 mg) [82]. This effect on FMD
was not replicated in older pre-hypertensive adults (40–80 years) when measured chronically or
acute-on-chronically following 4-week supplementation with epicatechin (100 mg/day) [83]. Given the
available data, it seems unlikely that the effects of epicatechin on FMD are only observed acutely but
a dose of 100 mg/day was potentially not sufficient to see these effects in this population. Interestingly,
the latter study employed epicatechin extracted from acacia heartwood with aqueous alcohol, possibly
indicating an impact of the source and extraction method upon the quality of the epicatechin produced.
This is potentially supported by data showing FMD increases in young and elderly participants alike
both acutely and following 2-week epicatechin supplementation when administered in the form of
cocoa [84].

In the first study to extend the findings of improved peripheral vascular function following
cocoa consumption to cerebral blood flow (CBF), arterial spin labelling (ASL) magnetic resonance
imaging (MRI) revealed significant increases in grey matter CBF 2 h post-consumption of 516 mg CF
(93 mg epicatechin) as compared to control in healthy young adults [8]. This is supported by data
from a recent study using the same technique showing regional increases particularly in the anterior
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cingulate cortex and the central opercular cortex of the parietal lobe in older adults (55–65 years) at
rest [85]. The acute modulation of cerebral haemodynamics was also demonstrated by an increase in
deoxygenated haemoglobin in younger adults measured using Near Infrared Spectroscopy both at rest
and during the performance of a Stroop task [12]. Conversely, a reduction in CBF velocity measured
with Transcranial Doppler (TCD) was reported following milk and dark chocolate, as compared to
white chocolate, in post-menopausal women. As this reduction was observed during cognitive tasks
with no effects on performance, the authors interpret this as indicating increased cerebrovascular
efficiency [28]. Other studies employing TCD have failed to find effects on CBF velocity whether
measured acutely (9) or following repeat administration [15,24,86] in samples ranging from 18-to
83-year-olds and employing a range of doses of epicatechin from 25–219 mg. The most salient
explanation for these findings is the lack of sensitivity of TCD to detect small changes in cerebral blood
velocity due to the variability in signal detection. Conversely, the blood oxygenation level dependent
(BOLD) fMRI signal intensity was shown to be significantly increased following 5 days’ consumption
of epicatechin-rich cocoa as compared to control. Given the previously demonstrated increase in grey
matter CBF, it is not clear whether this increase in the BOLD signal indicates an increase in neuronal
activity or merely reflects modulation of vascular function. However, as this modulation of activation
was apparent in brain areas relevant to the task, it is perhaps surprising that no significant effects on
cognitive performance were observed, a finding which indicates that this modulation is not always
sufficient to produce measurable behavioural effects in healthy young adults. In the only study to date
to demonstrate the modulation of cerebral perfusion in conjunction with cognitive change following CF,
increases in cerebral blood volume (CBV) in the right hippocampal circuit were positively correlated
with performance on a Modified Benton task in older adults [22].

See Table 2 for an overview of randomised controlled trials assessing the impact of cocoa on
brain function.
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Table 2. Randomised controlled trials assessing the effects of cocoa on brain function.

Duration
Age

18–40 40–65 >50 References

Acute
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5. Summary of Evidence for Cognitive Effects and Their Relationship to Blood Flow

Of the eight studies that have assessed the cognitive effects of cocoa in young adults, one showed
positive effects that can be confidently attributed to flavan-3-ols [9]; four showed significant
improvements but did not explicitly match for other active compounds such as methylxanthines
and/or macronutrients [10,11,13,14]; others have shown no effects [8,12] or produced only a single
effect [15]. Notably of the three studies to demonstrate robust effects, two employed cognitively
demanding tasks [9,10] and the other showed effects following sleep deprivation [13]. This indicates
that the likelihood of detecting improvements in young adults may be increased in states whereby
ceiling effects are prevented. This may also relate to the proposed mechanism of action for such effects
as cerebral blood flow is more likely to be compromised in times of increased cognitive demand and
when sleep deprived. Neurovascular coupling ensures that increases in demand for the metabolic
substrates glucose and oxygen, as a consequence of neuronal activity, are met by increased cerebral
blood flow. However, tasks or paradigms that are particularly difficult or fatiguing may increase
demands to a level whereby it is possible that the increased supply of substrates may be beneficial.
Similarly, CBF has been shown to be reduced both in sleepwalkers when compared to controls [87] and
following 48-h acute deprivation [88], particularly in the prefrontal cortex. Therefore, as an impairment
to neurovascular coupling is rare in healthy young adults, increases in CBF may only result in cognitive
improvements when this is compromised either through increased demand or reductions in supply,
for example following sleep deprivation.

A lack of cognitive effects has been shown in middle-age [16,20], which may reflect the
complexities inherent in assessing cognition in those potentially suffering currently undiagnosed
comorbidities. However, studies in older adults have shown positive effects on cognition in four
out of seven studies. Improvements were shown to trail making and verbal fluency [26,27] and to
object recognition [22], as well as global cognition [25]. Importantly, the only one of these studies
to measure cerebral blood flow showed a significant correlation between change in cognition and
change in CBV [22]. Of the three studies in older adults that showed null findings on cognition,
the first is likely due to mismatches in sugar and sweetener levels between the placebo and active
treatments [23]. The second [24] potentially relates to the 4-week intervention employed and the
diagnosis of participants as hypertensive or type II diabetic. Although significant improvements have
been reported in older healthy participants following 4 weeks’ CF consumption [25], it is possible
that a longer supplementation is required in those diagnosed with clinical impairment to vascular
function. No significant effects were observed in healthy elderly following acute supplementation [28],
which potentially supports the assertion that an increased length of administration may be required
in accordance with vascular function senescence. However, as cerebral vascular function decreases
with age, as evidenced by reductions in cerebral blood velocity [89], activation, and coupling between
oxygenated and deoxygenated haemoglobin [90], it is possible that effects of epicatechin are more
likely to be detected in older populations. The reasons for this are two-fold, as vascular risk factors are
associated with cognitive impairment [91], this decline with ageing helps to eradicate the confound of
ceiling effects suggested in healthy young adults; and declines in cerebrovascular function with age
provide a mechanism for impacting cognition through improvements to vascular health. This latter
suggestion is supported by data showing that CF induced improvement in endothelial function was
greatest in older adults relative to younger adults [92].

Endothelial function decreases with age as the capacity to produce nitric oxide (NO) diminishes.
NO formed by endothelial NO synthase (eNOS) has a number of impacts on vascular health such
as increased vasodilation and blood flow and decreased vascular resistance, hypotension, platelet
aggregation and adhesion [93]. Increases in plasma nitric oxide metabolites have been observed within
one hour of consumption of flavanol-rich food [40,77] and following (−)-epicatechin in isolation [94]
and a wealth of evidence demonstrates the importance of this to effects of CF on peripheral blood
flow effects. Acutely, plasma nitric oxide species have been positively correlated with FMD [76] and
a reversal of this was observed following the inhibition of nitric oxide synthase by intravenous infusion
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of L-NG-monomethyl-arginine nitrite (LNMMA) [77]. Chronically, increases in nitrite (an oxidative
metabolite of nitric oxide) [80] have been observed, as well as circulating angiogenic cells [68], which are
linked to endothelial nitric oxide synthase [95]. The effects of NO are particularly important with
regards cerebrovascular function due to the tight control of this system and the reliance on a continuous
flow of blood to supply neural substrates. Therefore, in addition to effects on basal CBF of endothelial
NO, neuronal NO plays a crucial role in regulating neurovascular coupling to ensure neuronal activity
is met by sufficient increases in CBF [96], as well as impacting neuroplasticity [97]. The role of NO
in CBF effects of ageing is highlighted by the observation that L-arginine (the immediate precursor
to NO) increased the cerebral blood flow velocity to a lesser extent in older adults (~70 years) than
younger ones (~29 years) [98], and that a decrease in CBF is demonstrated in older but not young
adults following infusion of L-NMMA [99], suggesting that the NO pathway is less involved in the
regulation of basal blood flow in young subjects, or that mechanisms exist to compensate for its
disruption. This latter finding supports the suggestion that cognitive improvements via increased CBF
may be less likely to be observed in healthy young adults. Therefore, in order to further understand
the relationship of CBF to the cognitive effects of epicatechin and to further elucidate the role of NO in
any effects, it is essential that future studies concurrently measure CBF and cognition. It is particularly
important that CBF is measured at rest and during task performance in order to disentangle any global
effects on CBF from those relating to neuronal demand. It is also worth noting that whilst the focus of
this review is the role of CBF, the inclusion of other brain MRI measures such as neuroinflammation,
white matter disease, and amyloid deposition/clearance would help elucidate the impact of epicatechin
on cognition.

6. Conclusions and Future Directions

At present, it is difficult to make definitive conclusions regarding the impact of the consumption
of epicatechin on cognition due to a paucity of data. However, evidence is emerging which suggests
a positive modulation of tasks that involve memory, executive function and processing speed in older
adults following cocoa flavanol (CF) interventions where the major active component is purported
to be (−)-epicatechin [22,25–27]. Due to a lack of consistency in tasks employed across studies,
direct replication of these effects cannot be confirmed or disputed in young adults, but similarities exist
whereby improvement has been shown to tasks which involve varying contributions of information
processing, working memory, and psychomotor speed following CF [9,10,13,15]. In order to further
explore the role of age in any effects, it is necessary to design studies that include older and young
adults, particularly in light of age-associated reductions in eNOS expression [100]. In addition,
as cognitive effects have tended to only be measured acutely in young adults whereas effects in older
adults have typically involved ≥4 weeks’ intervention, the impact of the length of intervention is also
something that requires further clarification in relation to age. This is particularly apparent when
considering that improvements to calm and content mood ratings were shown following 4 weeks’
intervention in middle-aged adults, but not acutely [16]. Moreover, the length of the intervention
may represent an important difference between observational and intervention studies given the
longest supplementation period to date is 12 weeks. It is therefore important to conduct longer studies
which also include a follow-up period to assess the longevity of effects. This would add to data from
studies of phenolic-rich grape juice showing carryover effects indicative of enduring benefits whether
consumed for 12 weeks [101] or acutely [102]. Furthermore, differences in response to epicatechin
as a function of sex have generally not been explored, as is often the case in nutrition intervention
studies, and this is something that should be addressed, particularly in light of cognitive effects shown
in females only following sleep deprivation [13].

In terms of dose, studies to date have employed doses of CF ranging from 172–994 mg with
reported epicatechin levels ranging from 25–447 mg. With the exception of studies in middle-aged
participants, studies including those selected on the basis of a clinical diagnosis, and one study
that may have been underpowered, positive cognitive effects were shown in studies employing
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doses ≥494 mg CF/day. These studies provided supplements that contained more than 50 mg
epicatechin/day were reported. However, the level of epicatechin is not always reported and
interventions differ in other aspects of composition making it difficult to conclusively attribute effects
to epicatechin level. This highlights the need for further studies which delineate the role of epicatechin,
either through the design of studies that allow effects of epicatechin-rich foods to be attributed
to epicatechin or through the supplementation of epicatechin, and its metabolites where possible,
in isolation. A further method to elucidate the role of epicatechin, and particularly metabolites, is to
include the blood measures of these compounds and examine the relationship between these and
cognitive outcome measures.

Mechanistically, although NO has been highlighted as an important pathway for blood flow
effects of CF and improvement to endothelial function has been suggested as a mediator in cognitive
effects of CF, this relationship is extremely complex and requires further exploration along with
other potential mechanisms of action. In older adults, increases in CBV have been correlated with
cognitive improvements but this finding requires replication and other factors should be considered
alongside blood flow effects. In the case of younger adults, although blood flow to the brain has
been shown to increase following CF, this mechanism has not proved sufficient to produce cognitive
improvements. This does not rule out this mechanism of action in certain circumstances but does
provide evidence that increases in CBF do not necessarily lead to cognitive benefits. In order to further
clarify the role of NO in modulations to CBF and cognition, methodologies similar to those in FMD
studies should be employed whereby plasma nitric oxide metabolites were measured [40,77,94] and the
impact of inhibition of nitric oxide synthase on blood flow effects was assessed [77,103]. Interestingly,
100 mg/day of (−)-epicatechin failed to increase FMD or NO in pre-hypertensives despite significant
decreases in the related parameters of fasting insulin and insulin resistance [83]. Given its association
with endothelial function and blood flow, the role of insulin and insulin resistance requires further
exploration in relation to epicatechin, particularly as it has been shown to predict the overall cognitive
performance changes following CF supplementation [26,27]. Finally, future studies of epicatechin
should also consider the effects on mood and the potential for this to modulate cognitive effects.
Pase et al. [16] demonstrated a significant improvement to content and calm ratings following 30 days’
CF supplementation, which they suggest may relate to effects on GABAA receptors. However, mental
stress also impairs endothelial function [104], so it is possible that demand is necessary to impair
this in order to see effects in young subjects; this should be explored by employing tasks that allow
modulation of demand in order to investigate the impact of this across ages, whilst concurrently
measuring mood.

Although promising evidence is beginning to emerge with regards the impact of (−)-epicatechin
on cognition, it is not currently possible to attribute effects solely to epicatechin without consideration
of synergies. In order to overcome this issue, future studies require the use of epicatechin in isolation.
In addition, to avoid the issue of null findings on cognition often observed in nutritional intervention
studies, it is essential that appropriate, hypothesis-driven tasks, are employed. Similarly, although
studies including 28 days or more supplementation in >50-year-olds all showed positive effects on
cognition, there is a lack of evidence regarding the optimal dose and time-frame for cognitive effects.
Therefore, large-scale studies are needed that take these factors into account along with age, sex and
habitual diet, whilst also assessing bioavailability and correlating this with any cognitive effects.
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