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Abstract 

Endodontic disease is a biofilm‑mediated infection, and primary aim in the management of endodontic disease is the 
elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the 
surface‑associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology 
to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches 
for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic 
treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and 
endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial 
communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. 
The biofilm community not only gives bacteria effective protection against the host’s defense system but also makes 
them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. 
Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, 
the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral 
biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host 
defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures 
have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to 
review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of 
biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to 
identify biofilms.
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INTRODUCTION

The most common etiology for the pulpal and 
periradicular pathologies is the microorganisms or the 
microflora. Infection in the oral cavity is caused by a 
number of organisms from different species found 
in the human mouth.[1] These oral bacteria have the 
capacity to form biofilms on distinct surfaces ranging 

from hard to soft tissues. So, the fundamental to 
maintain oral health and prevent dental caries, gingivitis, 
and periodontitis is to control the oral biofilms.[2‑4]

Biofilm mode of growth is advantageous for 
microorganisms, as they form three‑dimensional 
structured communities with fluid channels for 
transport of substrate, waste products, and signal 
molecules.[5] Biofilm formation in root canals is 
probably initiated sometime after the first invasion of 
the pulp chamber by planktonic oral microorganisms 
after some tissue breakdown, as hypothesized by 
Svensäter and Bergenholtz.[6]

Costerton et  al.[7] stated that biofilm consists of single 
cells and microcolonies, all embedded in a highly 
hydrated, predominantly anionic exopolymer matrix. 
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Bacteria can form biofilms on any surface that has 
nutrient‑containing  fluid. biofilm formation mainly 
involves the three major components: Bacterial cells, a 
solid surface, and a fluid medium.[7]

HISTORY OF BIOFILM

Rediscovery of a microbiological phenomenon, first 
described by van Leeuwenhoek, that microorganisms 
attach to and grow universally on exposed surfaces 
led to studies which revealed that surface‑associated 
microorganisms  (biofilms) exhibited a distinct 
phenotype with respect to gene transcription and 
growth rate. These microorganisms involved in biofilm 
elicit specific mechanisms for initial attachment to a 
surface, development of a community structure and 
ecosystem, and detachment.[8]

In 1894, Miller published his findings on the 
bacteriological investigation of pulps.[9] He observed 
many different microorganisms in the infected pulp 
space and realized that some were uncultivable when 
compared with the full range observed by microscopy, 
and that the flora was different in the coronal, middle, 
and apical parts of the canal system.[10]

Kakehashi et al. exposed the dental pulps of conventional 
and germ‑free rats to the oral cavity and reported that 
only conventional rats with an oral microbiota showed 
pulp necrosis and periradicular lesions.[11]

Bacteria may sometimes be unaffected by endodontic 
disinfection procedures in areas such as isthmuses, 
ramifications, deltas, irregularities, and dentinal 
tubules.[12]

DEFINITION OF BIOFILM

Biofilm is embedded in a self‑made matrix of 
extracellular polymeric substances (EPS) and is a mode 
of microbial growth where dynamic communities of 
interacting sessile cells are irreversibly attached to a solid 
substratum, as well as to each other.[13]

BASIC CRITERIA FOR A BIOFILM

Caldwell et  al.[14] highlighted four characteristics of 
biofilm as follows:
•	 �Autopoiesis  –  Must possess the ability to 

self‑organize
•	 �Homeostasis  –  Should resist environmental 

perturbations
•	 �Synergy  –  Must be more effective in association 

than in isolation

•	 �Communality  –  Should respond to environmental 
changes as a unit rather than as single individuals.

The typical example of a biofilm is dental plaque.[14]

COMPOSITION OF BIOFILM

A fully developed biofilm is described as a heterogeneous 
arrangement of microbial cells on a solid surface. The 
basic structural unit, microcolonies or cell clusters, is 
formed by the surface‑adherent bacterial cells.[15] It is 
composed of matrix material consisting of proteins, 
polysaccharides, nucleic acids, and salt, which makes up 
85% by volume, while 15% is made up of cells.[16,17]

As biofilm get matured, its structure and composition 
are modified according to the environmental conditions 
(growth conditions, nature of fluid movements, 
physicochemical properties of the substrate, nutritional 
availability, etc.)[18] The water channels are regarded as a 
primitive circulatory system in a biofilm.

These microcolonies have a tendency to detach from 
the biofilm community and have the highest impact in 
chronic bacterial infection.

During the process of detachment, the biofilm transfers 
cells, polymers, and precipitates from the biofilm to the 
fluid bathing the biofilm, which is important in shaping 
the morphological characteristics and structure of 
mature biofilm.[19] It is also considered as an active 
dispersive mechanism (seeding dispersal).[20]

Biofilm‑mediated mineralization occurs when the metal 
ions including Ca2+, Mg2+, and Fe3+  readily bind 
and precipitate within an ionic biofilm under a favorable 
environment.[21]

CHARACTERSTICS OF BIOFILM

The organic substances surround the microorganisms of 
a biofilm and contain primarily carbohydrates, proteins, 
and lipids. Among the inorganic elements in biofilms are 
calcium, phosphorous, magnesium, and fluoride.[22]

Bacteria in a biofilm have the ability to survive tough 
growth and environmental conditions. This unique 
capacity of bacteria in a biofilm state is due to the 
following features:
•	 �Residing bacteria are protected from environmental 

threats; trapping of nutrients and metabolic 
cooperation between resident cells of the same 
species and/or different species is allowed by the 
biofilm  structure
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•	 �It also exhibits organized internal compartmentalization 
which helps the bacterial species in each compartment 
with different growth requirements

•	 �By communicating and exchanging genetic 
materials, these bacterial cells in a biofilm 
community may acquire new traits.[23]

Bacterial biofilm provides a setting for the residing 
bacterial cells to communicate with each other. Some of 
these signals, produced by the cells, may be interpreted 
not just by members of the same species but also by 
other microbial species.

Quorum sensing is process by which communications 
between these bacterial cells is established through 
signaling molecules in a biofilm.[24,25]

FACTORS AFFECTING FORMATION OF 
BIOFILM

Development of biofilm

The three components involved in biofilm formation 
are: Bacterial cells, a fluid medium, and a solid surface.

Stages

Stage 1  (formation of conditioning layer): Adsorption 
of inorganic and organic molecules to the solid surface, 
creating what is termed a conditioning layer

During dental plaque formation, the tooth surface is 
conditioned by the saliva pellicle.

Stage 2 (planktonic bacterial cell attachment): Adhesion 
of microbial cells to this layer.[26]

Stages of biofilm formation
Phase 1  (transport of microbe to the substrate surface): The 
nature of initial bacteria–substrate interaction is 
determined by physicochemical properties such as 
surface energy and charge density. The bacteria adhere 
to a substrate by bacterial surface structures such as 
fimbriae, pili, flagella, and EPS (g1ycocalyx). Bridges are 
formed between the bacteria and the conditioning film 
by these bacterial structures.[26]

Phase 2 (initial non‑specific microbial–substrate adherence 
phase): Molecular‑specific interactions between bacterial 
surface structures and substrate become active. These 
bridges are a combination of electrostatic attraction, 
covalent and hydrogen bonding, dipole interaction, and 
hydrophobic interaction.

Porphyromonas gingivalis, Streptococcus mitis, Streptococcus 
salivarius, Prevotella intermedia, Prevotella nigrescens, 
Streptococcus mutans, and Actinomyces naeslundii are some of 
the oral bacteria possessing surface structures.[27,28]

Phase 3  (specific microbial–substrate adherence phase): With 
the help of polysaccharide adhesin or ligand formation 
which binds to receptors on the substrate, specific 
bacterial adhesion with a substrate is produced.[29,30]

Stage 3 (bacterial growth and biofilm expansion).

Microcolony is formed by the monolayer of microbes 
which attracts secondary colonizers, and gives rise to the 
final structure of biofilm.[31] This metabolically active 
community of microorganisms is a mature biofilm 
where individuals share duties and benefits.[32]

Two types of microbial interactions occur at the cellular 
level during the formation of biofilm:
•	 Co‑adhesion
•	 Co‑aggregation.[33,34]

BIOFILM MODELS AND BIOFILM 
ASSESSMENT METHODS

The number and type of microorganisms, vitality 
(dead/living cells) of the resident microbial population, 
age, thickness (monolayered or multilayered),) structure 
(homogeneous, irregular, dense, porous), and surface 
topography (peaks and valleys) of biofilms can be 
characterized by biofilm assay which involves different 
techniques such as colorimetric techniques, microscopic 
techniques, microbiological culture techniques, physical 
methods, biochemical methods, and molecular methods.[35]

MISCELLANEOUS ADVANCED TECHNIQUES

Recently, the forces of interaction among bacterial cells 
and between bacterial cells and substrates has been 
studied by atomic force microscopy  (AFM).[36,37] The 
technique is also used to measure the interaction forces 
between bacteria and substrates.[38]

Using this concept, the effects of endodontic irrigants 
on the adherence of Enterococcus faecalis to dentin have 
been studied and it was found that chemicals which 
altered the physicochemical properties of dentin 
might influence the nature of bacterial adherence 
and adhesion forces to dentin that are the factors 
in biofilm formation. Recently, micromanipulators 
have been used to sample individual cells or biofilm 
compartments. Laser‑based optical tweezers are 
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noninvasive and non‑contact tools that can probe the 
interaction between microscopic objects such as bacteria 
and collagen. They give more information about the 
forces of interaction between bacteria and substrate 
quantitatively.[39]

Fourier transform infrared  (FTIR) spectroscopy 
is used to characterize the chemical composition 
of mature biofilm structures qualitatively and 
quantitatively.[40] Similarly, solid‑state nuclear magnetic 
resonance  (NMR) is a powerful analytical tool to 
study the constituents of bacterial biofilm, as well as 
to obtain metabolic information in planktonic cells, 
adherent bacterial cells, and in  situ biofilm bacteria. 
These are noninvasive biophysical   techniques.[41,42] 
Recent advances in micromanipulator‑assisted analysis, 
green fluorescent protein (GFP) tagging, confocal laser 
scanning microscopy  (CLSM), flow cytometry, and 
fluorescence in  situ hybridization  (FISH) have made 
biofilm characterization very comprehensive.

BIOFILMS IN DENTISTRY

Formation of oral biofilm involves three basic steps: 
Pellicle formation, bacterial colonization, and biofilm 
maturation. The organic substance surrounds the 
microorganisms of the biofilm and contains primarily 
carbohydrates, proteins, and lipids.[43,44]

The inorganic elements found in a biofilm are 
calcium, phosphorus, magnesium, and fluoride. The 
concentrations of these inorganic elements are higher in 
biofilm than in saliva.[45]

Salivary micelle‑like globules  (SMGs) from saliva get 
adsorbed to the clean tooth surface to form acquired 
enamel pellicle, which acts as a “foundation” for the 
future multilayered biofilm.[46]

Presence of calcium facilitates the formation of larger 
globules by bridging the negative charges on the 
subunits.[47]

The initial attachment of bacteria to the pellicle 
is by selective adherence of specific bacteria from 
the oral environment. Innate characteristics of the 
bacteria and the pellicle determine the adhesive 
interactions that cause a specific organism to adhere 
to the pellicle. Dental biofilm consists of a complex 
mixture of microorganisms that occur primarily as 
microcolonies. The population density is very high and 
increases as biofilm ages. The acquired pellicle attracts 
gram‑positive cocci such as Str. mutans and Streptococcus 
sanguis, which are the pioneer organisms in plaque 

formation. Subsequently, filamentous bacterium such 
as Fusobacterium nucleatum and slender rods adhere to 
primary colonizers. Gradually, the filamentous form 
grows into the cocci layer and replaces many of the 
cocci. Vibrios and spirochetes appear as the biofilm 
thickens. More and more gram‑negative and anaerobic 
organisms emerge as the biofilm matures. Interestingly, 
it is not only the surface of tooth that can be attached by 
bacterial cells. The surface of some bacteria (bacilli and 
spirochetes) also can serve as attachment sites for certain 
smaller coccoids. This co‑aggregation of F.  nucleatum 
with coccoid bacteria gives rise to “corn‑cob” structure, 
which is unique in plaque biofilms.[48]

The presence of these bacteria makes it possible for 
other non‑aggregating bacteria to coexist in the biofilm, 
by acting as co‑aggregating bridges.[49]

Calcified dental biofilm is termed as calculus. It is 
formed by the precipitation of calcium phosphates 
within the organic plaque matrix, which depends on 
plaque pH, local saturation of calcium and phosphate, 
and availability of fluoride ions and biological factors 
such as crystallization nucleators/inhibitors from either 
bacteria or oral fluids.[50‑52]

ENDODONTIC BIOFILMS

Biofilm classification

Endodontic bacterial biofilms are classified as:
•	 Intracanal biofilms
•	 Extraradicular biofilms
•	 Periapical biofilms
•	 Biomaterial‑centered infections.

The characteristic features in cell–cell and 
microbe–substrate interactions were explained based on 
the phenomena of microbial adherence.[53‑55]

Studies have established the ability of E.  faecalis to 
resist starvation and develop biofilms under different 
environmental and nutrient conditions (aerobic, 
anaerobic, nutrient‑rich, and nutrient‑deprived 
conditions). However, the physicochemical properties 
of E. faecalis biofilms were found to modify according to 
the prevailing environmental and nutrient conditions. 
E. faecalis under nutrient rich environment produces 
typical biofilm structures with characteristic surface 
aggregates of bacterial cells and water channels. Viable 
bacterial cells were present on the surface of the 
biofilm. Under nutrient‑deprived environment (aerobic 
and anaerobic), irregular growth of adherent cell clumps 
were observed. Laser scanning confocal microscopy 
displayed many dead bacterial cells and pockets of viable 
bacterial cells in this biofilm structure.
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The development of E. faecalis biofilm on the root canal 
dentin involves three stages as follows:

Stage 1: Microcolonies are formed as E.  faecalis cells 
adhere on the root canal dentin surface

Stage 2: Bacterial‑mediated dissolution of the mineral 
fraction from the dentin substrate leads to localized 
increase in the calcium and phosphate ions causing 
mineralization (or calcification) of the E. faecalis biofilm

Stage 3: Due to this interaction of bacteria and their 
metabolic products on dentin, E.  faecalis biofilm is 
mineralized.[56‑58]

Recent investigations have shown that E.  faecalis 
has the ability to co‑aggregate with F.  nucleatum. 
The co‑aggregation interactions between E.  faecalis 
and F.  nucleatum suggested the ability of these 
microorganisms to coexist in a microbial community 
and contribute to endodontic infection. These 
apical biofilms cannot be removed by biomechanical 
preparation alone as they are inherently resistant to 
antimicrobial agents. Numerous studies have shown the 
presence of rods, cocci, bacilli, and spirochetes on the 
root surfaces in cases of refractory periodontitis.[59,60]

MICROBIAL DIVERSITY IN ENDODONTIC 
BIOFILM

More than 1000 different bacterial species have been 
identified in the oral cavity by culture and independent 
molecular microbiology, but with advanced massively 
parallel DNA pyrosequencing techniques, the number 
may be higher.[61,62]

Specifically, the diversity of the endodontic microbiota 
has also been unraveled by numerous culture and 
molecular studies. Collectively, different forms of apical 
periodontitis and more than 400 different microbial 
species have been identified in endodontic samples from 
teeth. These taxa are usually found in combinations 
involving many species in primary infections and fewer 
ones in secondary/persistent infections.[63]

At high phylogenetic levels, endodontic bacteria fall into 
15 phyla, with the most common representative species 
belonging to the phyla Firmicutes, Bacteroidetes, 
Actinobacteria, Fusobacteria, Proteobacteria, 
Spirochaetes, and Synergistes.[64‑66]

In addition to bacteria, other microorganisms can be 
found in endodontic infections. Archaea and fungi 

have been only occasionally found in intraradicular 
infections,[67‑69] though the latter can be more prevalent 
in treated teeth with post‑treatment disease.[70]

ENDODONTIC BIOFILM FORMATION 
MECHANISM

First, there is penetration of the organism in the pulp 
where it attaches and spreads further along the root 
canal. Possibly, it is after biofilm formation that the 
infectious process gains sufficient power to cause 
subsequent destruction of the pulpal tissue. At some 
point in the breakdown process, however, a steady 
state is reached where the bacterial mass is held 
up by host defense mechanisms. The demarcation 
zone may be inside the root canal near the root 
canal exit,[71] at the foramen, or, as demonstrated 
by scanning electron microscopy  (SEM),[49,72-74] on 
the external root surface near the exit of the 
foramen to the periapical tissue environment. It 
is not unreasonable to assume that organisms may 
be detached from these positions and occasionally 
congregate in the lesion per se.[75,76]

Hence, the question remains as to whether bacterial 
condensations in a biofilm structure can develop 
or are retained in sites of the root canal system 
other than near the bacteria/inflammatory interface 
zone, where host‑derived proteins and bacterially 
produced adhesive substances may provide the proper 
prerequisites.[77]

BIOFILMS IN ENDODONTIC INFECTIONS

Endodontic microbiota transition is more conspicuous 
with the progression of infection. Nutritional and 
environmental status within the root canal changes 
as infection progresses. It creates more anaerobic 
environment and depletion of nutrition which 
offer a tough ecological niche for the surviving 
microorganisms. The anatomical and geometrical 
complexities  (e.g.  delta and isthmus) in the root canal 
systems shelter the adhering bacteria from cleaning and 
shaping procedures.

Intracanal microbial biofilms

Intracanal biofilms are microbial biofilms formed on the 
root canal dentin of the infected tooth. Identification 
of biofilm was earlier reported by Nair 1987 under 
transmission electron microscopy.[77] Major bulk of 
the organisms existed as loose collections of filaments, 
spirochetes, cocci, and rods. Apart from these, bacterial 
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condensations were seen as a palisade structure similar to 
dental plaque seen on tooth surface.[49] The extracellular 
matrix material of bacterial origin was also found.

Extraradicular biofilm

Extraradicular biofilms formed on the root surface 
adjacent to the root apex of endodontically infected 
teeth are root surface biofilms.[78] In a study of cases 
resisting treatment  (refractory endodontic cases), 
Tronstad et  al.[79] examined the root tips of surgically 
extracted teeth under SEM and found structureless 
smooth biofilm with bacteria of different species and 
varying degrees of extracellular matrix.

F. nucleatum, Po. gingivalis, and Tannerella forsythensis were 
found to be associated with extraradicular biofilm by 
using polymerase chain reaction  (PCR)‑based 16s 
rRNA gene assay.[80]

Periapical biofilm

Periapical microbial biofilms in the periapical region of 
endodontically infected teeth are isolated biofilms which 
can be seen even in the absence of root canal infections. 
Periapical lesions which are associated with Actinomyces 
species and Propionibacterium propionicum can occur when 
the bacteria present in such biofilms overcome host 
defense mechanisms. The aggregation of Actinomyces 
cells is influenced by pH, ionic strength, and cell 
concentration which facilitates biofilm formation.[81,82]

Foreign body–centered biofilm

Foreign body–centered biofilm is found when 
bacteria adhere to an artificial biomaterial surface 
and form biofilm structures.[83] It is also known as 
biomaterial‑centered infection.

It is a major complication associated with prosthesis 
and also in implant‑supported prosthesis. 
Biomaterial‑centered infection reveals opportunistic 
invasion by nosocomial organisms. Takemura 
et  al.[84] reported that gram‑positive facultative 
anaerobes colonize and form extracellular polymeric 
matrix surrounding gutta‑percha, and serum plays 
a significant role in biofilm formation. Studies have 
suggested that extraradicular microbial biofilm and 
biomaterial‑centered biofilm are related to refractory 
periapical disease.

Biofilm can be identified by various methods such as 
environmental SEM, confocal microscopy, and using 
special fluorescent stains (FISH technique).

Bacterial adherence to a biomaterial surface is also 
described in three phases:[85]

	� (1)	� Phase 1: Transport of bacteria to biomaterial 
surface,

	 (2)	� Phase 2: Initial non‑specific adhesion phase, and
	 (3)	 Phase 3: Specific adhesion phase.[85]

In endodontics, e.g.  biofilm on root canal   obturating 
materials can be intraradicular or extraradicular, which 
depends on whether the obturating material is within 
the root canal space or it has extruded beyond the root 
apex.

E.   faecalis, Str. sanguinis, Streptococcus intermedius, 
Streptococcus pyogenes, Staphylococcus  aureus form biofilm 
on GP points.

F.  nucleatum, Propionibacterium acnes, Po. gingivalis, 
and Pr. intermedia do not form biofilm on 
Gutta-Percha(GP) points.

ROLE OF E. FEACALIS IN BIOFILM 

One clinically important property of endodontic 
microorganisms is their ability to form biofilms. In 
treated and untreated root canals, apical periodontitis 
can be classified as a biofilm‑induced disease.[86,87]

To the best of our knowledge, among different clinical 
bacterial isolates recovered from endodontic infections, 
E. faecalis is the only species that has been widely studied 
for its capacity to form biofilms.[88,89]

If bacteria participate in gene exchange within a 
biofilm via horizontal gene transfer, processes leading 
to a spread of antibiotic resistance genes between 
different clinically relevant species can be accelerated. 
As summarized by Madson et  al.,[90] horizontal 
gene transfer rates are typically higher in biofilm 
communities, compared with those in planktonic 
niches. Thus, there is a connection between biofilm 
formation and horizontal gene transfer. In addition 
to this, the persistence of endodontic bacteria via 
biofilm formation underlines the necessity for more 
effective methods not only to completely eliminate 
bacteria during endodontic retreatment but also to 
isolate all the existing microorganisms during the 
microbiological sampling from infected root canals. It 
should also be kept in mind that the complex anatomy 
of the root canal poses further difficulties because 
biofilms of persistent microorganisms within the root 
canals may also be located on the walls of ramifications 
and isthmuses.
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E.  faecalis is a gram‑positive, facultative anaerobic 
coccus that is strongly associated with endodontic 
infections. Being an opportunistic pathogen, it 
causes nosocomial infections and is frequently 
isolated from the failed root canals undergoing 
retreatment.[91,92] The ability of E.  faecalis to form 
biofilms   is advantageous in certain situations. For 
example, clinical strains of E.  faecalis isolated from 
infective endocarditis patients were significantly 
associated with greater biofilm formation than 
nonendocarditis clinical isolates.[93] This may be 
attributable in part to specific virulence traits such as 
gelatinase production and presence of the adherence 
determinant; this combination was shown to be 
associated with the formation of thicker biofilms.[94] 
These virulence traits and others have also been 
identified in the clinical isolates of E.  faecalis from 
asymptomatic, persistent endodontic infections of the 
root canals and the   oral cavity..[95-97] Its prevalence 
in such infections ranges from 24 to 77%. Factors 
which lead to a persistent periradicular infection 
after root canal treatment are intraradicular 
infection, extraradicular infection, foreign body 
reaction, and cysts containing cholesterol crystals. 
Major cause of failure is believed to be the survival 
of microorganisms in the apical portion of the 
root‑filled tooth.

Enterococci are gram‑positive cocci that can occur 
singly, in pairs, or as short chains. They are facultative 
anaerobes which have the ability to grow in the 
presence or absence of oxygen. They can grow in 
extremely alkaline pH, salt concentrated environment, 
in a temperature range of 10–45°C, and survive a 
temperature of 60°C for 30  min. E.  faecalis is able 
to suppress the action of lymphocytes, potentially 
contributing to endodontic failure.[97]

E.  faecalis in dentinal tubules can resist intracanal 
dressings of calcium hydroxide for over  10  days by 
forming a biofilm that helps it resist destruction by 
enabling the bacteria to become 1000  times more 
resistant to phagocytosis, antibodies, and antimicrobials 
than non‑biofilm producing organisms. Calcium 
hydroxide, a commonly used intracanal medicament, 
may be ineffective to kill E. faecalis on its own, if a high 
pH is not maintained.[97]

E.  faecalis has the ability to form biofilm that can 
resist calcium hydroxide dressing by maintaining pH 
homeostasis, but at a pH of  11.5 or greater, E. faecalis is 
unable to survive.

CURRENT THREUPATIC OPTIONS FOR 
ENDODONTIC BIOFILM

Effects of various irrigating systems

One role of root canal irrigation is to help in the killing 
of bacteria and the removal of the bacterial biofilm 
from uninstrumented surfaces  (30–50% of the root 
canal wall).[98] Antimicrobial irrigating solutions and 
other locally used disinfecting agents and medicaments 
play a key role in the eradication of microbes. An ideal 
root canal irrigant should have high efficacy against 
microorganisms in biofilms while being systemically 
non‑toxic and non‑caustic to periodontal tissues.[99,100]

Although current irrigation regimens using sodium 
hypochlorite  (NaOCl) exhibit excellent antimicrobial 
activity, caustic and toxic effects to vital tissues are 
often noted. There is a need for agents that are both 
antibacterial and exert minimal tissue‑irritating effects.

Plant‑derived natural products represent a rich 
source of antimicrobial compounds, and some 
have been incorporated into oral hygiene products. 
However, their application in endodontics is less well 
documented.[101‑103] Berberine (BBr) is an alkaloid 
present in a number of clinically important medicinal 
plants, including Hydrastis canadensis (goldenseal), 
Coptis chinensis (coptis or golden thread), and 
others.[103] It possesses a broad antimicrobial spectrum 
against bacteria, fungi, protozoans, virus, helminthes, 
and chlamydia.[104‑106]

The toxicity and mutagenicity of BBr to human cells are 
relatively low.[107,108] The antimicrobial activity of BBr 
against oral pathogens has been already shown.[109‑111] It 
reduced cell–surface hydrophobicity in Str. mutans and 
F. nucleatum and inhibited the growth of a multispecies 
biofilm of Streptococcus gordonii/F.  nucleatum/Actinobacillus 
actinomycetemcomitans. BBr can also synergize with 
miconazole in inhibiting the growth and biofilm 
formation of Candida albicans.[112]

In case of persistent apical periodontitis, E.  faecalis is a 
commonly isolated species[113‑115] where its long‑term 
survival in the root canal system is due to its ability to 
adhere to dentin and invade the dentinal tubules,[116,117] 
and to form communities organized in biofilms, which 
may contribute to bacterial resistance and persistence 
after intracanal antimicrobial procedures.[118] Nowadays, 
most studies focus on the antimicrobial properties 
of the irrigating solutions, involving both forms of 
bacterial growth, planktonic and biofilm.
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However, some studies look into the residual 
antibacterial activity and its influence on microbial 
adhesion to the dentin surface.[119] This is a relevant 
aspect because microbial adherence to the dentin is the 
first step in colonization, including tubule invasion, and 
the origin of biofilm infections.

Few studies have evaluated the efficacy of endodontic 
irrigants against microorganisms grown as a biofilm.[120] 
NaOCl is a frequently used irrigating solution in 
endodontics because of its ability to dissolve necrotic 
tissue as well as its potent antimicrobial action.[121] 
However, it has not been reported to have any residual 
antimicrobial activity.[122] Other irrigating solutions 
such as chlorhexidine (CHX) and cetrimide (CTR) 
are less effective than NaOCl in eradicating E.  faecalis 
biofilm,[121] but CHX has substantive properties and is 
able to inhibit adherence of certain bacteria to dentin.[123]

Chelating agents are used to remove the smear layer 
produced during mechanical instrumentation. Although 
ethylenediaminetetraacetic acid  (EDTA) is one of the 
most commonly used agents, its antimicrobial activity 
against biofilms is a matter of some controversy.[124,125] 
Maleic acid  (MA), a mild organic acid, has been more 
recently proposed for use as a final irrigating solution, 
as an alternative to EDTA,[126] because of better smear 
layer removal from the apical third of the root canal 
system by MA[127] and its lower toxicity. Furthermore, 
its antibacterial activity has been shown in  vitro against 
E.  faecalis biofilm.[128] Different protocols and/or 
combinations of irrigating solutions are used in the final 
irrigation of the root canals, but their residual activity is 
not well known.

EFFECTS OF INSTRUMENTATION ON 
BIOFILMS

Microorganisms that play an important role 
in periradicular diseases grow mostly in sessile 
biofilms, aggregates, and co‑aggregates.[11,129,130] By 
mechanical instrumentation and irrigation with tissue‑lytic 
and microbicidal solutions and antimicrobial medicaments 
in the root canal, the microbial load   is reduced leading 
to disruption of biofilm.[131] NaOCl in different 
concentrations is used as a root canal irrigant because of its 
antimicrobial action and tissue‑dissolving property.[132]

Previous studies have shown that instrumentation 
and antibacterial irrigation with NaOCl would 
eliminate bacteria in 50–75% of the infected root 
canals at the end of the first treatment session, 
whereas the remaining root canals contain recoverable 

bacteria.[133‑135] In their study, Nair et  al. showed that 
88% of root canal–treated mandibular molars showed 
residual infection of mesial roots after instrumentation, 
irrigation with NaOCl, and obturation in a one‑visit 
treatment. BioPure MTAD (Dentsply Tulsa Dental, 
Johnson City, TN, USA) has been described as a 
universal irrigating solution.[136] Torabinejad et  al.[137] 
have shown that MTAD removes the smear layer 
safely; also, it is effective against E.  faecalis and it can 
eliminate bacteria in human root canals that had 
been infected by whole saliva.[138] A new irrigant, 
Tetraclean, which is mixture of doxycycline hyclate 
present at a lower concentration than MTAD, an 
acid, and detergents, has the ability to eliminate 
microorganisms and smear layer in dentinal tubules 
of infected root canals with a final 4‑min rinse.[139] 
Consequently, recent laboratory studies have focused 
on evaluating the effectiveness of root canal irrigants 
and medicaments against E.  faecalis. Many of these 
studies have grown the bacterial strains as planktonic 
cultures  (bacteria in suspension). However, planktonic 
bacteria do not usually comply with the in vivo growth 
conditions found in an infected tooth, in which bacteria 
grow as a biofilm on the dentinal wall. Therefore, all 
studies about the clinical action of endodontic irrigants 
should be conducted with bacteria in “biofilm form.” 
Up to now, however, very few studies have been 
published about the action of antimicrobial irrigants 
against biofilm. As a result, recent laboratory studies 
have attempted to evaluate the efficacy of antimicrobial 
agents used in root canal treatment against E.  faecalis 
grown as a biofilm.[140]

ERADICATION OF BIOFILM

Effects of different irrigating systems on biofilms

Bacterial etiology has been confirmed for common oral 
diseases such as caries and periodontal and endodontic 
infections. Bacteria causing these diseases are organized 
in biofilm structures, which are complex microbial 
communities composed of a great variety of bacteria 
with different ecological requirements and pathogenic 
potential. The biofilm community not only gives 
bacteria effective protection against the host defense 
system but also makes them more resistant to a variety 
of disinfecting agents used as oral hygiene products or 
in the treatment of infections.[141]

Successful treatment of these diseases depends on biofilm 
removal as well as effective killing of biofilm bacteria. 
Because bacteria causing endodontic infections are 
mostly found in the main root canal, chemo‑mechanical 
debridement plays a key role in treating endodontic 
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infections. However, because of the complex root canal 
anatomy, about 35% of the instrumented root canal area 
is left untouched when conventional rotary and hand 
instruments are used.[142] Therefore, elimination and 
killing of biofilm bacteria from the root canals rely to a 
great extent on the efficacy of endodontic irrigants.

Although bacteria rarely exist in nature in planktonic 
phase, most of the studies of endodontic disinfecting 
agents have been based on bacteria in planktonic 
culture.[143] However, it has been recognized that rapid 
killing of planktonic bacteria by various disinfecting 
agents does not reflect well the effect of the same agent 
on bacteria in in vivo biofilms. It has been demonstrated 
that biofilm bacteria can be 100–1000  times more 
resistant to antibacterial agents than their planktonic 
counterparts.[144] Because of this great difference, a 
growing number of studies are now focusing on the 
killing of biofilm bacteria instead of planktonic bacteria 
by the disinfecting agents.

Endodontic disease is a biofilm‑mediated infection, 
and the primary aim in the management of endodontic 
disease is the elimination of bacterial biofilm from the 
root canal system. As eliminating surface‑adherent biofilm 
bacteria is a challenge, different antimicrobials  (ranging 
from antimicrobial irrigants to advanced and microbial 
methods such as lasers, photoactivated disinfection, 
and nanoparticles) are employed in the management 
of infected root canal systems. Many of these advanced 
antimicrobial strategies show tremendous inhibitory 
effects on most types of microbial biofilm in vitro.[145]

CONCLUSIONS

The most common   endodontic infection is caused by 
the surface‑associated growth of microorganisms.

It is important to apply the biofilm concept to endodontic 
microbiology to understand the pathogenic potential 
of the root canal microbiota as well as to form the basis 
for new approaches for disinfection. It is foremost to 
understand that how the biofilm formed by root canal 
bacteria resists endodontic treatment measures.
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