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The environmental and epidemiological problems caused by antibiotics

and antibiotic resistance genes have attracted a lot of attention. The

use of electron shuttles based on enhanced extracellular electron transfer

for anaerobic biological treatment to remove widespread antibiotics and

antibiotic resistance genes efficiently from wastewater or organic solid waste

is a promising technology. This paper reviewed the development of electron

shuttles, described the mechanism of action of different electron shuttles and

the application of enhanced anaerobic biotreatment with electron shuttles for

the removal of antibiotics and related genes. Finally, we discussed the current

issues and possible future directions of electron shuttle technology.
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Introduction

The discovery of penicillin was one of the greatest milestones in the history of
medicine (Zhang et al., 2015). Since then, more and more ingredients with antibacterial
and anti-inflammatory effects have been discovered or invented and been given a
common name—Antibiotic. Nowadays, antibiotics are widely used in medical, breeding,
and livestock fields and the dangers associated with antibiotic abuse are increasingly
attracting the attention of researchers (Zhang Q. Q. et al., 2014; Zhang Y. J. et al., 2014).
According to statistics, China produces about 210,000 tons of antibiotics every year (Luo
et al., 2011), and about 162,000 tons are used in various practices (Chen Y. et al., 2020).
It is worth noting that not all antibiotics ingested into the human body or other living
organisms are utilized and about 58% of the drug components are excreted from the
body directly and thus into the environment (Huang et al., 2020). As a result, both
the manufacture and consumption of antibiotics lead to a large amount of antibiotic-
containing wastewater into the environment (Zhang et al., 2015; Chen Y. et al., 2020;
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Li F. F. et al., 2020). A total of 94 antibiotics were found in water
bodies and sediments of seven major rivers and four major bay
basins in China (Li et al., 2018); 26 antibiotics were detected in
surface water of Huangpu River in Shanghai, China (Pan et al.,
2020). In addition, antibiotics entering the environment may
exert selective pressure on the spread of antibiotic resistance
bacteria (ARB) and antibiotic resistance genes (ARGs), which is
potentially more harmful than the antibiotics themselves (Zhang
et al., 2015; Qiao et al., 2018; Chen Y. et al., 2020).

As a pivotal link in the treatment of industrial and
domestic wastewater, wastewater treatment plants (WWTPs)
are responsible for the removal of antibiotics from wastewater
(Li J. N. et al., 2016; Chen Y. et al., 2020; Xu et al., 2020).
However, conventional WWTPs were not specifically designed
for the removal of antibiotics (Chen Y. et al., 2020) and
antibiotics entering the biological units of WWTPs often change
the microbial community structure, affect the stability of the
biological treatment units and reduce the treatment efficiency
and even cause the collapse of the biological treatment systems
(Meng et al., 2017a,b; Zhang Z. H. et al., 2018). In addition,
the selective pressure of the WWTPs also promotes horizontal
genes transfer (HGT) and vertical genes transfer (VGT), which
further diffuse ARGs into the environment (Jia et al., 2017;
Chen Y. et al., 2020; Meng et al., 2020). A study of antibiotics
and ARGs abundance in a WWTP and its upstream and
downstream reaches in Nanjing, China, found that the level of
antibiotics in the effluent of the treatment plant was reduced by
90% compared to the raw water and the number of detected
antibiotics was reduced from 10 to 5. However, at the level
of the ARGs only the abundance of cmlA decreased while the
abundance of sul1 and sul3 was increased in a different degree
(Chen Y. et al., 2020). A study of changes in the abundance of
ARGs in two WWTPs in Beijing and Kunming, China, further
showed that the association between antibiotics and ARGs are
not simply direct but that the antibiotic-induced changes in
the structure of bacterial communities in the sludge have an
impact on ARGs (Xu et al., 2020). In other words, WWTPs are
an important sink for antibiotics and an important source of
ARGs.

In addition to antibiotic and ARGs contamination in
wastewater, the risk of antibiotics and ARGs in organic solid
waste such as kitchen waste (Sabri et al., 2020), animal
manure (Tong et al., 2022) and residual sludge from WWTPs

Abbreviations: ARB, antibiotic resistance bacteria; ARGs, antibiotic
resistance genes; WWTPs, wastewater treatment plants; HGT, horizontal
genes transfer; VGT, vertical genes transfer; EET, external electron
transfer; DIET, direct interspecies electron transfer; IHT, interspecies
hydrogen transfer; MIET, mediated interspecies electron transfer;
GAC, granular activated carbon; NQS, sodium 1,2-naphthoquinone-4-
sulfonate; AQS, anthraquinone-2-sulfonate; AQDS, anthraquinone-2-
6-sulfonate; GO, graphene oxide; CNT, carbon nanotube; CD, carbon
quantum dot; ZVI, zero valent iron; nZVI, nano zero valent iron; EPS,
extracellular polymeric substances.

(Dubey et al., 2021) should not be overlooked. Tong’s study
showed that farm swine manure is an important vector for
the transmission of ARGs to the surrounding environment,
and tigecycline resistance genes tet(X), tet(X1), and tet(X10)
are prevalent in farms. Farm workers and the surrounding
environment are the main recipients of ARGs, sharing at least
90% of their ARGs abundance (Tong et al., 2022); Wang et al.’s
(2022c) study noted the abundance of ARGs in residual sludge
from a municipal WWTP up to 3.26 × 109 copies/g dry solid;
Sahar detected six antibiotics in dewatered sludge from WWTPs
with a total concentration of 1,300 ng/g (Dalahmeh et al., 2022).
It is estimated that China generates about 40 million tons of
kitchen waste (Wang et al., 2022d) and 58 million tons of
residual sludge (Wang et al., 2022a) annually, and this figure
would be even larger on a global scale (Wang et al., 2022d).

For the treatment of huge amounts of wastewater and
organic solid waste, there is no doubt that biological treatment
has significant advantages in terms of operating costs.
Considering the high organic loadings of the above pollutants,
it seems that the use of anaerobic biological treatment is
more appropriate than aerobic treatment. Anaerobic biological
treatment plays a pivotal role due to the advantages of
low operating costs, low sludge production, and biogas
recovery (Chen et al., 2008; Cao and Pawlowski, 2012;
Rizzo et al., 2013; Zhang et al., 2022c). However, current
anaerobic treatment technologies still have limits such as
vulnerability to environmental impacts, long conversion time of
intermediates fermentation and low organic matter conversion
rates (Meng et al., 2017a; Zhao et al., 2017; Huang et al.,
2021). In addition, the bactericidal or bacteriostatic properties
make it inevitable that antibiotics entering the biological
treatment unit will markedly reduce the efficiency of the
biological treatment system and even collapse it (Khurana
et al., 2021). Therefore, breaking the bottleneck of traditional
anaerobic biological treatment technology to further improve
the treatment efficiency becomes a challenge. Among the various
anaerobic biological treatment enhancement technologies, using
electron shuttle is a promising technology. Electron shuttle
can reduce the difficulty of electron transfer between electron
donor and electron acceptor, improve the transfer efficiency of
electron transfer, reduce the activation energy of the reaction
and increase the reduction and oxidation rate of pollutants
by one to several orders of magnitude (Van der Zee et al.,
2003). Although there are some review articles on enhanced
anaerobic biological treatment with some electron shuttles
(e.g., activated carbon, metal materials), they mainly focus
on enhanced anaerobic methanogenesis. To our knowledge,
there is no review on enhanced anaerobic biological treatment
with electron shuttles to remove antibiotics and resistance
genes. Therefore, this paper introduces the development of
electronic shuttle technology and the mechanism of action of
different electronic shuttles to enhance anaerobic biological

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1004589
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1004589 August 30, 2022 Time: 17:53 # 3

Deng et al. 10.3389/fmicb.2022.1004589

treatment, and collates the applications of electronic shuttles in
enhancing anaerobic biological treatment to remove antibiotics
and ARGs in recent years. Finally, the current problems of
this technology and the possible future development directions
are discussed. This paper provides a reference for subsequent
researchers to continue exploring electron shuttle enhanced
anaerobic biotreatment for the removal of environmental
pollutants.

Introduction to electron shuttle

In anaerobic biological treatment systems, the redox
process based on extracellular electron transfer (EET) is
the main metabolic pathway of microorganisms, and it has
been demonstrated that the degradation of pollutants by
microorganisms is greatly enhanced with the increase of their
EET capacity (Li F. H. et al., 2020). Traditionally, electron
transfer in anaerobic systems is dependent on intermediates
such as H2 and formic acid and such electron transfer
mechanisms are called interspecies hydrogen transfer (IHT)
or mediated interspecies electron transfer (MIET) (Liu et al.,
2018; He et al., 2019), while the discovery of direct interspecies
electron transfer (DIET) has provided new insights for enhanced
anaerobic biological treatment (Summers et al., 2010). Electron
shuttle is a relatively simple and efficient means of direct
electron transfer facilitation (Liu et al., 2021d). With its favorable
dielectric capacity or through the cyclic transformation of
oxidation and reduction states, it is possible for microorganisms
to accelerate the degradation of extracellular highly toxic
pollutants through electron shuttles and thus reducing the toxic
effects on themselves (Zhao Z. S. et al., 2020).

Natural electron shuttle

Biological components such as cytochrome C, riboflavin,
conductive nanowires, and some natural organic substances
(e.g., humic substances) can naturally act as electron shuttles
to facilitate EET due to their excellent dielectric capacity and
unique biochemical properties (Reguera et al., 2005; Sutton
and Sposito, 2005; Watanabe et al., 2009; Dang et al., 2016;
Faustino et al., 2021). For example, analysis of the structure
of the transmembrane protein complex of the extracellular
membrane revealed that protein metal reducing AB (MtrAB)
can act as an electron transfer channel to transfer intracellular
electrons to the extracellular electron receptor by means of
MtrC, which is tightly bound to it (Edwards et al., 2020);
Geobacter sulfurreducens usually achieves long-distance electron
transfer by means of its conductive nanowires in direct contact
with the electron receptor. Recent studies have shown that
the entire nanowire is composed of the cytochrome C protein
OmcS, with heme closely arranged on the nanowire acting as

an efficient electron transfer agent (Wang F. B. et al., 2019);
In addition to acting as a solid electron shuttle, recent studies
have found that cytochromes can also participate in the electron
transfer process in a solubilized state, with Liu et al.’s (2020c)
study showing that Shewanella oneidensis MR-1 can release
cytochrome C in the solubilized state as an electron shuttle
to accelerate electron transfer from cells to Cr(VI) and the
reduction of Cr(VI).

However, from the application point of view, it is
obvious that the regulation of electron shuttles such as
cytochromes and nanowires are not as convenient as the
direct addition of exogenous electron shuttles. Therefore, more
studies have focused on promoting the anaerobic biological
treatment process by adding soluble organic matter such
as humic substances and riboflavin. Humic substances are
widespread in the environment and are the products of bio-
microbial transformation after the death of plants, animals,
microorganisms, etc. The composition of humic substances
is extremely complex and mainly includes humic acid and
fulvic acid (Kelleher and Simpson, 2006), which are generally
considered as a class of low molecules composed of aromatic,
aliphatic, phenolic, quinone, and N-containing derivatives,
covalently bound through C–C, C–O–C, and N–C bonds
(Sutton and Sposito, 2005; Kulikova and Perminova, 2021). Its
abundant phenolic and quinone moieties play an important role
in it. It was noted that quinone groups in humic substances
can act as electron acceptors (Cervantes et al., 2001), while
phenolic groups have antioxidant activity (Aeschbacher et al.,
2012) and can mitigate the growth inhibition of microorganisms
by quenching free radicals in an unfavorable environment
(Klein et al., 2018). Studies have shown that the addition
of humic substances to anaerobic systems can help break
the energy barrier between microorganisms and promote
electron transfer between different strains to improve anaerobic
treatment efficiency (Zheng et al., 2019; Gao et al., 2021). Humic
substances have shown significant effects in enhanced biological
denitrification (Li M. et al., 2016; Liu et al., 2020b), biological
dichlorination (Yuan et al., 2019; Liu C. Y. et al., 2021a), and
organic solid waste treatment (Gao et al., 2021). As a cellular
secretion, riboflavin has been proved in many studies to be
involved in extracellular electron transfer processes (Song et al.,
2019; He et al., 2020; Wang J. H. et al., 2020). Liu et al.’s
(2020d) study showed that 2 µM riboflavin as an electron
shuttle significantly promoted the decolorization efficiency of
Shewanella putrefaciens CN32 wild-type to the dye acid yellow
36; Ramos-Ruiz et al. (2016) observed that riboflavin increased
the reduction efficiency of anaerobic granular sludge system
to tellurate by 11 times, and further studies found that the
inhibition of anaerobic methanogenic activity by tellurate was
mitigated by adding riboflavin to the UASB reactor, with the
COD removal rate of the riboflavin-added reactor increasing
by 4.6 times higher than that of the reactor without riboflavin
addition (Ramos-Ruiz et al., 2017).
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Artificial electron shuttle

Liquid electron shuttle
Common liquid electron shuttles include phenazines

such as neutral red and quinones represented by sodium
1,2-naphthoquinone-4-sulfonate (NQS), anthraquinone-2-
sulfonate (AQS), and anthraquinone-2-6-sulfonate (AQDS).

As a cationic stain, neutral red is commonly used as a
histological dye with a high lipid-water partition coefficient
of 30 and thus is strongly hydrophobic (Harrington et al.,
2015). Properties such as low toxicity and low redox potential
(Eo = –525 mV Ag/AgCl) make neutral red promising for
applications (Park and Zeikus, 1999). Research has shown that
neutral red can reduce the need for cellular oxidation of NADH
to produce protons for respiration by driving the reduction of
terminal electron acceptors through the reduction process of
oxidized methyl naphthoquinone in an anaerobic environment
(Harrington et al., 2015).

As mentioned previously, many studies have pointed out
that quinone groups in humic substances play an important
role in mediating electron transfer. As a class of model quinone
compounds, AQS and AQDS can also act as electron shuttles
to facilitate the anaerobic process. Usually, after entering
anaerobic system, AQDS is first reduced to its hydroquinone
state AH2QDS by reducing components and then oxidized back
to AQDS by oxidizing components (Cai et al., 2021), with the
help of multiple cycles of AQDS/AH2QDS to promote electron
transfer (Yang et al., 2019; Zhou et al., 2021d); Similar to the
redox cycle of AQDS, AQS is first reduced to its hydroquinone
state AH2QS and AHQS, which is later oxidized to AQS (Cai
et al., 2021; Xu et al., 2021a).

However, soluble electron shuttles inevitably face the
problems of losing and causing secondary contamination with
the effluent. Therefore, researchers have recently explored the
possibility of loading soluble electron shuttles onto solid-phase
carriers such as chitosan (Zhou et al., 2021d), various carbon
materials (Atilano-Camino et al., 2020; Wang et al., 2021a),
and foam (Lu et al., 2021) to convert the reaction system from
homogeneous to multiphase in order to prolong the service
life of electron shuttles and reduce possible contamination.
Formally, these electron shuttles have been transformed from
the soluble state to the solid state.

Solid electron shuttle
Solid electron shuttles mainly include carbon-based electron

shuttles and metal-based electron shuttles.
Carbon-based materials were first used as adsorbents in

water treatment (Gopinath et al., 2021; Zhou et al., 2021b).
Recently, many studies have demonstrated that carbon-based
materials such as granular activated carbon (GAC) and biochar
(BC) can also be used as electron shuttles to effectively
facilitate the anaerobic DIET process due to their excellent
dielectric capacity and redox activity (Zhao and Zhang, 2019;

Deng et al., 2021; Zhang et al., 2022b). For example, Liu
T. X. et al. (2021b) used GAC with exogenous hydrogen
to enhance the anaerobic reactor to degrade butanol-octanol
wastewater generated from coal syngas production, found that
the methane production in the GAC/exogenous hydrogen
treatment group was significantly enhanced compared to the
control group and the relative abundance of Geobacillus
and Methanomonas in the sludge of this group increased
rapidly, speculating that GAC could enhance the anaerobic
process by stimulating DIET; Liu et al. (2020a) used graphite-
modified high-density polyethylene as a carrier to improve
the anaerobic integrated floating fixed membrane-activated
sludge process and found that the organics degradation rate
and methane yield of the reactor with the modified filler
were significantly higher than those of the conventional filler
reactor and the electron exchange capacity of Geobacter and
Methanothrix were increased by 4.2, 7.3%, respectively. In
addition, some studies have shown that the addition of carbon
materials into anaerobic systems helps to inhibit the transfer
of ARGs among bacteria (Liu et al., 2021c, 2022; Fang et al.,
2022).

Furthermore, various carbon nanomaterials such as
graphene, graphene oxide (GO), carbon nanotube (CNT),
and carbon quantum dot (CD) have been investigated
because of their unique size and surface effects and favorable
biocompatibility in enhancing anaerobic bioprocessing (Kumar
et al., 2021; Deng et al., 2022). Yang et al.’s (2020) study found
that the use of CDs enhanced the extracellular electron transfer
capacity and metabolism of the model bacterium Shewanella
oneidensis (S. oneidensis) MR-1; Li H. Y. et al. (2021) found that
the reduction of iron hydroxyl oxide (FeOOH) by Shewanella
putrefaciens CN32 enhanced with CNT is effective in promoting
the TBBPA degradation. After adding CNT to the anaerobic
system, the Fe(II) concentration in the system was 235.5%
of that in the control group without CNT, and the TBBPA
removal rate increased from 20.5 to 87.1%, which was mainly
attributed to the fact that CNT as an efficient electron shuttle
facilitated the reduction of FeOOH by CN32 and thus produced
more Fe(II) for the reduction and degradation of TBBPA (Li
H. Y. et al., 2021). However, it should be noted that due to
the relatively high cost of these nanomaterials, research on
them is currently limited to the laboratory stage. The cost
of the method is something we have to take into account
when the electron shuttle technology are applied in reality
engineering.

Metal-based electron shuttles include zero valent metals and
metal oxides. Current studies on zero valent metal electron
shuttles have focused on zero valent iron (ZVI) and nano zero
valent iron (nZVI) (Jadhav et al., 2021; Shi et al., 2021; Ye et al.,
2021), with a few remaining metals such as cobalt (Abdelwahab
et al., 2021), aluminum (Calabro et al., 2021), etc. Zhu
et al.’s (2020) study pointed out that ZVI promotes anaerobic
biological treatment mainly through two pathways: (1) ZVI
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enriches hydrotropic methanogenic bacteria to reduce the H2

partial pressure in the system to promote acidification (i.e.,
improve IHT); (2) acts as a conductive medium and stimulates
the secretion of extracellular polymeric substances (EPS) to
promote direct electron exchange between microorganisms and
establish direct interspecies electron transfer (i.e., promote
DIET). In this process, the particle size and dose of ZVI dosed
will affect the anaerobic treatment effect (Xu et al., 2021b).

In the case of metal oxides, in addition to acting as
strong conductive media to establish DIET processes, they
often provide efficient electron transfer by cycling metal
ions between high and low valence states (Xu et al., 2022).
Coupling this process with other forms of cyclic processes
can greatly improve the efficiency of anaerobic treatment.
For example, Yang et al. (2019) put Fe2O3 and AQDS
together in an anaerobic system to build a double cycle
of Fe(III)/Fe(II) and AQDS/AH2QDS to achieve a nitrogen
removal efficiency of 82.6%; further, continuous denitrification
by intermittent aeration into the anaerobic system with the
help of Fe(III)/Fe(II) redox cycle increased the total nitrogen
removal up to 98.5% (Yang et al., 2021c); redox cycle of
Fe(III)/Fe(II) can also be used in the efficient degradation of
various environmental pollutants. Li et al. (2022) introduced
magnetite into the anaerobic sulfate reduction system and
found that the addition of magnetite enriched the sulfur
disproportionation microorganism Desulforvibrio aminophilus,
creating an Fe-sulfur cycle by coupling the process of sulfide
oxidation to singlet sulfur with Fe(III) reduction. The benzoate
degradation rate was increased from 56.3 to 77.1% (Li et al.,
2022); similarly, Zhao Z. Q. et al. (2020) introduced magnetite
into the anaerobic sulfate reduction system and increased
phenol removal from 53.1 to 95.5% through an Fe-sulfur cycle
(Figure 1). Jin introduced Fe(OH)3 into the sulfate-containing
azo dye acid orange 7 (AO7) wastewater and found that the
AO7 degradation products 1A2N and its reduced state 1I2NQ
could construct an electronic cycle with Fe(III)/Fe(II), which
consequently promoted azo bond breaking. The COD removal
and decolorization efficiency of the Fe(OH)3-dosed group were
61.7 and 32.0% higher than the control group, respectively.
Besides, the concentration of cytochrome C and the conductivity
of the suspended sludge were also 3.2 and 2.1 times higher than
the control group (Li et al., 2017).

In addition, among the aforementioned carbon-based
electron shuttles and metal-based electron shuttles, adding
carbon nanomaterials alone often faces difficulties in recycling,
while adding metal nanomaterials alone may lead to material
agglomeration causing a significant decrease in the utilization
efficiency (Kassab et al., 2020; Wang et al., 2021b). For both
recyclability and utilization efficiency, combining micron or
nanoscale metal materials with conventional scale carbon
materials to construct metal-carbon composite electron shuttles
is also a common strategy (Wan et al., 2021; Xu et al., 2021c;
Zhang and Wang, 2021; Che et al., 2022).

Application of electron shuttle in
enhanced anaerobic treatment of
antibiotics and ARGS

Wastewater treatment

In Table 1, we list some research on removal of antibiotics
and ARGs by enhanced anaerobic biological treatment with
electron shuttles. Zhou et al. (2018) explored the effect of AQDS
and riboflavin as electron shuttles to promote the degradation
of antibiotic sulfamethoxazole by MR-1, showing that the
addition of AQDS and riboflavin increased the removal rate of
sulfamethoxazole from 38.5 to 70.7% and 95.3%, respectively.
Moreover, the degradation rate of sulfamethoxazole gradually
increased with the increase of iron reduction intensity (Zhou
et al., 2018). Liu et al. (2022) found that the input of biogenic
carbon into the anaerobic system was effective in mitigating
the horizontal gene transfer effect of Cu(II) on ARGs between
Escherichia coli DH5α and E. coli HB101 through the regulation
of three globally regulated genes (korA, korB, trbA). Xiao et al.’s
(2022) study pointed out that the removal of chloramphenicol
by microbial fuel cell containing the electroactive bacteria
Geobacter metallireducens could increase from about 50 to 100%
after addition of Fe3O4 and MnO2 nanoparticles, respectively.
Mechanistic analysis showed that Fe3O4 nanoparticles mainly
enhanced the expression of C-type cytochromes and ethanol
dehydrogenase, while MnO2 nanoparticles mainly enhanced the
expression of type IV pili and pyruvate dehydrogenase, the
expression of NADH-quinone oxidoreductase was increased by
both nanoparticles (Xiao et al., 2022).

Nascimento added AQDS to a UASB reactor with a low
hydraulic retention time (7.4 h) to remove sulfamethoxazole
and methomyl, increasing their removal from 6 to 70% (do
Nascimento et al., 2021); Silva used CNT to enhance the
removal of ciprofloxacin from anaerobic granular sludge and
found that the removal of ciprofloxacin could reach 99% with
the addition of 0.1 g/L of CNT. Further analysis of effluent
biotoxicity showed that enhanced anaerobic treatment with
CNT resulted in a detoxification rate of approximately 46%
for Vibrio fischeri (Silva et al., 2021b). Li J. H. et al. (2021)
study found that adding 1 g/L of nZVI to the anaerobic
system significantly increased the removal of chloramphenicol
from 46.5 to 99.2%, mainly because the addition of nZVI
enabled the enrichment of dechlorination-related bacteria and
functional bacteria associated with refractory pollutants. In
addition, on one hand, the high concentration of nZVI acted as
a chloramphenicol adsorbent to reduce the antibiotic pressure
in the system, and on the other hand made a reduction in the
potential hosts of ARGs, leading to a simultaneous reduction
of antibiotics and ARGs (Li J. H. et al., 2021). Contrasting
with the enhanced anaerobic treatment of chloramphenicol with
electrically assisted, although 89.7% reduction of antibiotics
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FIGURE 1

Microbial sulfur cycle for phenol degradation coupled with Cr(VI) reduction via the potential Fe(III)/Fe(II) transformation (Zhao Z. Q. et al., 2020).

was achieved, the abundance of ARGs in the system was
significantly higher (Guo et al., 2019); Xu’s study also indicated
that the mechanism of ARGs reduction by ZVI in wastewater
is mainly through the reduction of their potential hosts and
inhibition of horizontal and vertical gene transfer processes of
ARGs, including activation of the antioxidant system of specific
bacteria, blocking their efflux pump mechanism and energy
metabolic conversion. It should be noted that the reduction
of ARGs was not significantly affected by ZVI dosing at too
high a concentration (20 g/L), which may be due to the iron
oxidative damage induced by high ZVI dosing (Xu et al.,
2021e,d). Zhao Z. S. et al. (2020) enhanced the removal of
tetracycline by adding Fe3O4 to the anaerobic system. On the
one hand, Fe3O4 can adsorb tetracycline in the aqueous phase
to provide more effective biodegradation conditions, and on
the other hand, the introduction of Fe3O4 helps to establish
the DIET process. Tetracycline removal was increased by 7.3%
under glucose/tetracycline co-digestion conditions compared to
the group without Fe3O4 addition, while tetracycline removal
was increased by 40.4% under tetracycline digestion alone (Zhao

Z. S. et al., 2020). Zhang Z. H. et al. (2018) injected GAC/nZVI
into the EGSB reactor to enhance anaerobic biological treatment
for tetracycline removal and found that the input of GAC/nZVI
led to a significant increase in EPS secretion and electrical
conductivity of the sludge. The COD and TOC removal rates
of the anaerobic system were increased by 12.1 and 10.3%,
respectively, after the addition of the electron shuttle, and the
loss of the electron shuttle was only 5.4% after 34 days of
operation (Zhang Z. H. et al., 2018); similarly, Zhou et al. (2021c)
enhanced the anaerobic biological system with AC/nZVI for the
removal of ciprofloxacin. Compared with the blank group, the
removal rate of ciprofloxacin in the AC/nZVI group increased
from 22.61 to 72.41%, and the volatile fatty acid yield increased
by 173.7%. The abundance of microorganisms associated with
hydrolysis, acid production and ciprofloxacin degradation were
significantly increased after AC/nZVI dosing (Zhou et al.,
2021c).

Farm wastewater often contains high abundance of
antibiotics and ARGs. Wang added biochar made from
dewatered swine manure to swine manure wastewater, which
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TABLE 1 Summary of research on removal of antibiotics and ARGs by enhanced anaerobic biological treatment with electron shuttles.

Digestion substrate Target
contaminants

Electron
shuttle

Dosage Removal
rate

References

Food waste, chicken manure tetA, tetB, tetM, tetW,
tetQ, tetO, tetX, sul1,

sul2, cmlA, floR

AC 15g/L – Zhang J. X. et al.,
2018

Food waste tetA, tetB, tetM, tetW,
tetQ, tetO, tetX, sul1,

sul2, cmlA, floR

AC 15g/L – Zhang J. X. et al.,
2017

Swine wastewater ARGs dewatered swine
manure-derived

BC

20 g/L 99.99% Wang et al.,
2022b

Swine manure ARGs BC 5–20% 40.6–51.7% Yang et al.,
2021b

Swine wastewater sulfadiazine,
sulfamethazine

pomelo peel
derived BC

0.5 g/L 74.1%, 80.1% Cheng et al.,
2021

Chicken manure ARGs AC – 87–95% Zhang et al.,
2019c

Synthetic wastewater ciprofloxacin CNT and
magnetic CNT

0.1 g/L 99% Silva et al., 2021b

Chicken manure tetW, tetO, tetC, tetG,
ermB, sul1 and sul2

nZVI 600 mg/L 44.7–81.3% Qiu et al., 2022

Swine manure ARGs ZVI 75 mmol 25% Zhang J. Y. et al.,
2021

Synthetic wastewater chloramphenicol nZVI 1 g/L 99.2% Li J. H. et al.,
2021

Synthetic wastewater tet ARGs ZVI 5 g/L 95% (sludge),
72% (effluent)

Xu et al., 2021e

Synthetic wastewater tet ARGs ZVI 5 g/L 0.75–1.88 log
(intracellular),
0.67–2.08 log
(extracellular)

Xu et al., 2021d

Sewage sludge sulfamethoxazole,
sulfamerazine,

tetracycline,
roxithromycin

ZVI 1,000 mg/L 97.39%, 74.54%,
78.61%, 56.58%

Zhou et al.,
2021a

Swine manure sulfadiazine Fe-0 5 g/L 86.8% Huang H. N.
et al., 2019

Dewatered sludge and waste
activated sludge

aac(6′)-IB Fe3O4 NPs,
nZVI

0.5 g/L, 1.0 g/L 96.50%, 95.83% Xiang et al., 2019

Food waste ARGs nZVI 2 g/L 86.64% Wang P. et al.,
2019

Cattle manure ARGs nZVI 160 mg/L 75% Ma et al., 2019

Synthetic wastewater tetracycline nZVI 0.50 g/gVS >70% Pan et al., 2019

Synthetic wastewater tetracycline Fe3O4 5 g/L 99.9% Zhao Z. S. et al.,
2020

Secondary sludge and
dewatered sludge

ARGs Fe3O4 NPs,
nZVI

0.5 g/L, 4.0g/L 70.73%, 62.69% Zhang et al.,
2020

Synthetic wastewater ciprofloxacin nZVI/AC 0.56 g/gVS 72.41% Zhou et al.,
2021c

Synthetic wastewater tetracycline nZVI/GAC 1,000 mg/L,
1,200 mg/L

81.5% Zhang Z. H.
et al., 2018

significantly shortened the methanogenic inhibition period and
reduced the abundance of total ARGs in the effluent by nearly
four logs (9.2 × 108–9.1 × 104) with a reduction of MGEs by
74.8% (Wang et al., 2022b); Cheng et al.’s (2021) study showed

that the addition of 0.5 g/L teak peel biochar to an anaerobic
membrane bioreactor increased the removal rate of sulfadiazine
and sulfamethoxazole by more than 30% while alleviating
membrane contamination caused by sulfonamide antibiotics;
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Yao et al. (2021) used ZVI to enhance the anaerobic treatment
of livestock wastewater containing loxarsine and found that the
addition of 1 g/L ZVI reduced the methanogenic inhibition of
loxarsine by 80.7%.

Organic solid waste treatment

High concentrations of antibiotics present in residual
sludge not only inhibit the methanogenic process of anaerobic
digestion of sludge, but also pose an environmental risk
(Ni et al., 2020). Zhou et al. (2021a) used ZVI powder to
enhance anaerobic digestion of medium-temperature sludge
and found that the anaerobic reactor could remove sulfamidine,
sulfamethoxazole, tetracycline, and roxithromycin up to 97.39,
74.54, 78.61, and 56.58%, respectively. After the application of
1 g/L of ZVI, the abundance of AAC (6′)-IB-CR and tetB was
significantly reduced compared to the control group without
ZVI (Zhou et al., 2021a). Xiang et al.’s (2019) study showed
that enhanced anaerobic digestion of municipal sludge using
nZVI contributed to the removal of ermA and ermT (Xiang
et al., 2019); Zhang et al. (2020) used Fe3O4 nanoparticles and
nZVI for enhanced anaerobic digestion of municipal sludge and
found that the removal of total ARGs by both iron nanoparticles
was 70.73 and 62.69%, respectively. There was a significant
advantage of iron-based nanomaterials for blaOXA reduction,
which was mainly due to the reduction of its potential hosts
(Zhang et al., 2020). However, it is necessary to point out that
some metal nanomaterials not only do not contribute to reduce
ARGs, but also pose the risk of dispersal of ARGs. For example,
Huang H. N. et al. (2019) and Zhang Y. R. et al. (2021) study
pointed out that nano-metal oxides such as CuO, ZnO, and
Al2O3 present in the residual sludge may increase the abundance
of MGEs and thus aggravate the dispersion of ARGs during
anaerobic digestion.

Treating livestock manure generated on farms using
aerobic/aerobic composting or co-digestion with sludge is a
common response today, but conventional treatment methods
are not effective in removing antibiotics and ARGs (Chen J. F.
et al., 2020; Li H. Y. et al., 2020; Katada et al., 2021). Yang
et al. (2021b) used biochar to enhance swine manure anaerobic
composting and found that the addition of biochar helped to
enrich DIET microorganisms, and the removal of parC, tetX,
blaCTX-M, blaTEM, and ermF in the biochar treatment group
exceeded 85% with 25% higher methane yield; Zhang J. Y.
et al. (2017) study noted that the addition of 500 mg/L of
GO removed 40.2% of ARGs, but GO at 5 and 100 mg/L
may deteriorate the removal of ARGs (3.7, 23.9%, respectively);
Zhang et al. (2019d) introduced GO into swine manure with
high concentrations of Cu for anaerobic digestion and found
that GO helped to reduce the abundance of ARGs and MGEs
in the anaerobic digestion system and the removal effect of
low concentration of GO (100 mg/L) was better than that of

high concentration of GO (800 mg/L); Wang Q. Z. et al. (2020)
used ZVI to enhance the removal of ARGs from swine manure
anaerobic compost and suggested that ZVI could also reduce
the environmental risk of ARGs by reducing the abundance
of MGEs in swine manure. Qiu et al. (2022) used nZVI to
enhance anaerobic composting of chicken manure and found
that nZVI dosing decreased the abundance of tetW, tetO, tetC,
tetG, ermB, sul1, and sul2 by 66.3, 81.3, 76.8, 59.7, 44.7, 74.4,
and 67.2%, respectively. While the abundance of all ARGs
except sul1 and sul2 increased to varying degrees in the control
group without ZVI (Qiu et al., 2022); Huang W. W. et al.
(2019b) found that the addition of 5.0 g/L of ZVI during
anaerobic composting of swine manure increased the removal of
sulfadiazine by 86.8% and total solids by 26.4%. Ma et al.’s (2019)
study showed that the ARGs removal rate could be increased
by 75% with nZVI injection of 160 mg/L during anaerobic
digestion of cattle manure compared to the control group
without nZVI; Zhang et al.’s (2019b) study found that Fe3O4

applied to enhanced anaerobic digestion of swine manure could
effectively reduce tetG, tetM and tetX, with tetX removal rate
reaching 70.2%, while no Fe3O4 control group showed varying
degrees of increase in these three ARGs. In addition, Zhang
combined the microwave pretreatment process with activated
carbon enhanced anaerobic digestion to synergistically promote
anaerobic digestion of chicken manure to remove ARGs, which
achieved 87–95% removal of ARGs, significantly better than
the control group without microwave and activated carbon
treatment (34–58%) (Zhang et al., 2019c).

In terms of kitchen waste treatment, Zhang J. X. et al. (2017)
study pointed out that the effect of AC addition on the removal
of tetracycline ARGs (e.g., tetA, tetM, tetW, tetO, tetQ, and tetX)
during anaerobic fermentation of kitchen waste was better than
without AC. Moreover, the addition of AC resulted in a more
stable anaerobic digestion system. Further comparison of the
effects of AC on the three modes of kitchen waste digestion
alone, kitchen waste-chicken manure co-digestion, and kitchen
waste-residual sludge co-digestion revealed that the removal of
ARGs in the experimental group with AC addition was better
than the corresponding control group without AC addition
(Zhang J. X. et al., 2018); Wang et al. (2021c) compared the
influence of graphite, graphene and GO on the co-digestion of
sludge and kitchen waste and the abundance of ARGs, finding
that compared with graphite and GO, graphene had significant
advantages on the removal of blaOXA-1, macrolide resistance
genes (ermF and ermB) and some tetracycline resistance genes
(tetQ and tetX), with the removal rates of 89.90, 57.75, 96.11,
95.22, and 88.76%, respectively. While GO showed a significant
removal advantage for sulfonamide resistance genes (sul1, sul2)
and some tetracycline resistance genes (tetM, tetO, and tetW)
with the removal rates of 84.61, 76.12, 87.79, 90.50, and
75.66%, respectively. Furthermore, GO significantly reduced
the abundance of the mobile gene element intl1 (86.17%),
which helped to control the horizontal gene transfer of ARGs
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FIGURE 2

Possible mechanisms of anaerobic treatment of antibiotics (A) without electron shuttle, (B) enhanced by liquid electron shuttle, (C) enhanced by
solid electron shuttle.

Frontiers in Microbiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1004589
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1004589 August 30, 2022 Time: 17:53 # 10

Deng et al. 10.3389/fmicb.2022.1004589

FIGURE 3

Possible mechanisms of electron shuttle enhanced anaerobic treatment of ARGs.

(Wang et al., 2021c); Wang achieved 86.64% removal of ARGs
by feeding 2 g/L of ZVI into the anaerobic digestion system
of kitchen waste at high temperature (55◦C) (Wang P. et al.,
2019).

Mechanisms of electron shuttle
enhanced anaerobic treatment of
antibiotics and ARGS

Enhanced antibiotic treatment

Figure 2 summarizes the mechanism of liquid or solid
electron shuttles enhanced anaerobic treatment of antibiotics.
For soluble electron shuttles, the enhancement of electron

transfer efficiency between microorganisms and antibiotics
is their main pathway of enhancing antibiotic removal. For
example, riboflavin, a natural class of electron shuttles, can
account for up to 75% of the total microbial electron transfer
process (Zhou et al., 2018); Synthetic AQS and AQDS as
model quinone species can significantly enhance microbial
extracellular electron transfer with the help of the cycle of
their oxidation and reduction states (do Nascimento et al.,
2021).

In contrast, the pathways of solid electron shuttles for
enhanced antibiotic removal are more abundant. Mainly, (1)
carbon-based and metal-based materials cast into anaerobic
systems, especially in wastewater treatment, serve as good
carriers for microbial growth and can significantly improve
microbial growth activity (Zhao Z. S. et al., 2020; Yang
et al., 2021a); (2) antibiotics in the aqueous phase are
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adsorbed onto the surface of the electron shuttle by adsorption
(Zhao Z. S. et al., 2020; Cheng et al., 2021), due to
their excellent electrical conductivity acting as an microbial-
antibiotic "electron bridge" to enhance the electron transfer
process (Zhang Z. H. et al., 2018; Zhou et al., 2021c);
(3) the pili and cytochrome C of bacteria are important
mediators of the microbial extracellular electron transfer
process. It has been pointed out that metal oxides (e.g.,
Fe3O4, MnO2) help to stimulate the expression of relevant
functional genes and promote them with different effects (Xiao
et al., 2022). In some cases Fe3O4 can replace cytochrome
C to play an extracellular electron transfer role (Jin et al.,
2019); (4) for some metal-based electron shuttles, efficient
electron transfer can be achieved with the help of cycling
of high and low valence of dissolved metal ions, such
as Mn(IV)/Mn(II) cycle and Fe(III)/Fe(II) cycle (Xu et al.,
2022).

In addition, the introduction of either soluble or solid
shuttles into anaerobic biological systems enriched bacteria
with DIET capability resulting in a significant enhancement of
extracellular electron transfer efficiency (Zhao Z. S. et al., 2020;
do Nascimento et al., 2021).

Enhanced removal of ARGs

The mechanism of liquid or solid electron shuttles enhanced
anaerobic treatment of ARGs are summarized in Figure 3.
ARGs migrate and disperse into the environment through
two pathways, HGT and VGT (Zhang et al., 2022a). From
the perspective of inhibiting VGT, on the one hand, electron
shuttles introduced into anaerobic biological systems can
reshape the community structure and reduce the abundance
of potential hosts of ARGs (Zhang et al., 2019a, 2020;
Xu et al., 2021e); On the other hand, nanoscale electron
shuttles, especially metal-based electron shuttles, can damage
cell structure and lead to the release of intracellular reactive
oxygen species and alter cell membrane permeability to
interfere with cell growth and metabolism and finally inhibiting
the growth and even death of the host cells involved
(Su et al., 2019; Zhang J. Y. et al., 2021; Qiu et al.,
2022).

From the perspective of inhibiting HGT, ARGs can spread
between different strains with the help of Mobile Genetic
Elements (MGEs) such as plasmids, transposons, and integrons.
Studies have pointed out that biochar and nanometallic
materials can inhibit the spread of ARGs in the environment
by adsorption, causing intra-plasmid condensation clustering
and damaging the plasmid structure (Su et al., 2019; Fang
et al., 2022); class 1 integron-integrase gene (intI1) is usually
used as an indicator gene for MGEs. Many studies have shown
a significant correlation between intI1 and changes in the
abundance of ARGs during anaerobic bioprocessing of ARGs

by various types of electron shuttles (Li J. H. et al., 2021;
Yang et al., 2021b; Qiu et al., 2022), i.e., electron shuttles
can control the abundance of ARGs by reducing MGEs;
it has also been suggested that the adsorption by electron
shuttles decreases the mobility of microorganisms in anaerobic
systems and thus reduce the mobility of microorganisms in the
anaerobic system, which in turn limits the possibility of HGT
and thus limits the enrichment of ARGs (Zhang J. X. et al.,
2017).

Conclusion and perspectives

For the current widespread pollution of antibiotics and
ARGs in the environment, enhanced anaerobic biological
treatment with electron shuttles for the removal of antibiotics
and ARGs is a promising technology. The electron shuttle
achieves efficient degradation of pollutants by (1) using redox
cycling process or excellent electrical conductivity or (2)
enriching microorganisms capability of DIET to accelerate
extracellular electron transfer.

As soluble electron shuttles, natural or artificial
components such as riboflavin, AQS and AQDS were used
to enhance anaerobic biological treatment. Compared
with soluble electron shuttle, solid electron shuttle such
as carbon-based or metal-based materials overcomes the
disadvantages of losing and causing secondary contamination
in effluent and therefore being more widely applied.
With the development of nanotechnology, increasing
number of nanomaterials such as carbon nanotubes,
graphene, graphene oxide, and nanometallic particles
are also used as electron shuttles in enhanced anaerobic
biological treatment. In the awareness of recyclability and
utilization efficiency, a growing number of researchers
now tend combining carbon-based materials with nano
metal materials to prepare carbon-metal composite
electron shuttles.

Numerous studies have shown that the mechanisms of
antibiotic removal by electron shuttles enhanced anaerobic
systems are: (1) adsorbing antibiotics from the aqueous phase
and providing sites for their interaction with microorganisms;
(2) increasing the metabolic activity of microorganisms; and
(3) facilitating electron transfer between microorganisms and
antibiotics through valence cycling or “electron bridges.”
For ARGs, the mechanisms of their removal by electron
shuttle-enhanced anaerobic systems are (1) modulation
of microbial communities to reduce the potential hosts
of ARGs, (2) damage to the cellular structure of ARGs
hosts, and (3) adsorption and deactivation of MGEs to
weaken HGT of ARGs.

In the author’s opinion, there are several shortcomings in the
current research in this field or directions that can continue to
be explored in the future, as follows.
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1. Although nanomaterials are increasingly used as
electron shuttles in enhanced anaerobic biological
treatment processes, there are few studies on the
environmental hazards caused by nanomaterials
entering the environment (Silva et al., 2021a).
Therefore, more research is needed on the
environmental toxicology and ecological risks of
nano-based electron shuttles.

2. Carbon-based electron shuttles have drawn attention
due to the biocompatibility and excellent ability to
mediate electron transfer. Considerable studies have
confirmed the significant effect of various carbon
nanomaterials on promoting anaerobic processes.
However, considering their high preparation cost, it
is difficult to apply them to large scale practical
applications. Cost-effective and more efficient carbon-
based electron shuttles through interfacial modulation
and various advanced means is a possible research
development direction.

3. Presently, the field of anaerobic biological treatment
has been challenged not only by various types of
traditionally refractory organic compounds such
as PAHs, phenols, PCBs, but also by emerging
pollutants such as endocrine disruptors, microplastics,
pharmaceuticals and personal care products. In
contrast to studies on solid organic waste, current
research on wastewater often focuses on anaerobic
biological treatment of a specific pollutant, whereas
multiple pollutants often coexist in actual wastewater.
For example, microplastics have been noted to enhance
the propagation of intracellular and extracellular ARGs
in municipal wastewater (Cheng et al., 2022). The multi
media micro-interface behavior and pollutant removal
mechanisms of electron shuttles-microorganisms-
pollutants in complex environments remain to be
further explored.
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