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Early diagnosis of oral cancer is critical to improve the survival rate of patients. The current strategies for screening of patients for
oral premalignant and malignant lesions unfortunately miss a significant number of involved patients. Optical coherence to-
mography (OCT) is an optical imaging modality that has been widely investigated in the field of oncology for identification of
cancerous entities. Since the interpretation of OCT images requires professional training and OCT images contain information
that cannot be inferred visually, artificial intelligence (AI) with trained algorithms has the ability to quantify visually undetectable
variations, thus overcoming the barriers that have postponed the involvement of OCT in the process of screening of oral neoplastic
lesions. This literature review aimed to highlight the features of precancerous and cancerous oral lesions on OCT images and

specify how AI can assist in screening and diagnosis of such pathologies.

1. Introduction

Medical imaging is an inseparable part of medical diagnosis
and plays a pivotal role in cancer screening and follow-up of
treatments. In the specific field of oncology, imaging pro-
vides valuable anatomical and functional information that
can preciously improve the results of screening, diagnosis,
treatment, and follow-up [1]. Computed tomography (CT),
magnetic resonance imaging (MRI), ultrasonography, pos-
itron emission tomography, single photon emission CT, and
other modalities are utilized to detect tumoral changes.
However, none of these modalities can address all aspects of
a cancer diagnosis. CT, MRI, and ultrasonography provide
structural information about the tumors, such as their lo-
cation and extension; meanwhile positron emission to-
mography and single photon emission CT reveal functional
and molecular information [2]. Besides, there are still de-
mands to improve spatial and contrast resolutions of these
modalities to provide more accurate information [1, 3].
Early diagnosis of tumoral changes not only ensures
appropriate timing for surgical intervention and subsequent

treatment and increases the survival rate but also decreases
postsurgical morbidity, especially in invasive and malignant
tumors, because less tissues are involved. Definite cancer
diagnosis relies on histopathological assessment that re-
quires tissue preparation and is time-consuming. Moreover,
in large tumors, several samples from different sites need to
be excised. Besides, in the process of surgical removal of a
tumor, surgeons need to examine the excised margins
several times to ensure leaving clear and tumor-free margins.
In such cases, immediate and precise histopathological
examination may not be practically possible [4]. Artificial
intelligence (AI) could be important as an auxiliary diag-
nostic tool due to the fact that intraoperative frozen sections
are not ideal outcome predictors in certain locations [5].
Therefore, the use of computer science may be of assistance
to noninvasively improve the accuracy of diagnosis.
Approximately 300,000 new cases of oral cancer are
diagnosed annually worldwide which are responsible for
over 145,000 deaths per year. Oral cancer ranks the sixth
most common cancer worldwide, with an increasing inci-
dence rate but constant survival rate during the past decades
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because of delayed detection and reliance on traditional
screening methods. The importance of early detection of oral
cancer is further understood when comparing the 5-year
survival rate of 80-90% in case of early diagnosis and
treatment with 30% rate in cases diagnosed in advanced
stages [6, 7]. Oral leukoplakia, erythroleukoplakia, and
verrucous hyperplasia are precancerous lesions with the
potential to transform into squamous cell carcinoma (SCC)
[8]. SCC accounts for 90% of all oral malignancies [9].
Biopsy is the gold standard for oral cancer diagnosis;
however, it is painful, and, in case of extensive or multiple
lesions, site and size selection for surgical removal of biopsy
sample is critical and sometimes confusing [10]. Moreover,
the prepared histological specimen may not reflect the
identity of the whole lesion due to lesion heterogeneity.
Adjunctive methods to aid the clinicians in selecting the best
site for biopsy decrease false-negative results [11].

Optical coherence tomography (OCT) is a noninvasive
real-time imaging modality that delivers three-dimensional
(3D) high-resolution microscale images (axial and lateral
resolutions of 13-17 ym and 17-22 ym, respectively). An 8
pm axial resolution and a 2 ym axial and lateral resolution
are reported as state of the art. OCT is fast, repeatable, and
well tolerated by patients [12-14]. It has several potential
applications in oncology. Real-time nondestructive high-
resolution radiation-free OCT images make it an ideal
modality for screening of neoplastic tissue changes. More-
over, it can aid in targeted biopsy, intraoperative surgical
margin and lymph node histopathological assessments, and
postoperative evaluation of treatment response, resulting in
more successful tumor resection and improved survival rate
[4]. Evidence shows that OCT images reveal helpful infor-
mation for detection of early-stage oral cancer [15].

Al is affecting most aspects of human life; image-based
medical diagnosis is not an exception. Screening of oral
lesions relies on subjective interpretation of clinical features,
which considerably varies in accuracy, sensitivity, and
specificity as reported in the literature. Dentists are at the
frontline of encountering cancerous lesions and have vari-
able levels of diagnostic accuracy in detection of different
lesions. Delayed referral to a specialist is a major cause of
poor outcome of management of oral premalignant lesions
[16-19]. AI enables easy access to specialized diagnosis
specially in patients who cannot be referred to more
equipped medical centers because of residing in remote
localities or due to high transportation costs. Free software
utilization can improve the accuracy of surgical treatment
planning for oral cancer as well [20]. The recent COVID-19
pandemic proved the importance of technologies that
eliminate the necessity of physical presence to receive ser-
vices [21, 22]. The screening process for oral lesions cur-
rently lacks an accurate, nonsurgical, and reproducible
imaging approach. Unfamiliar images for dental clinicians
and a software environment that is difficult to interact for the
operators are the main barriers against the widespread use of
OCT for detection of oral lesions, despite its unique char-
acteristics and high diagnostic value [16].

This literature review aims to summarize the features of
oral precancerous and cancerous lesions on OCT images for
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medical and dental practitioners who are involved in di-
agnosis and treatment of these lesions and highlight how AI
can improve the screening and diagnosis of such lesions.

2. Methods

A comprehensive search was conducted in PubMed for
articles published in English up to August 28, 2021, using
this query: (((optical coherence tomography) OR (OCT))
AND ((oral cancer®))) AND ((artificial intelligence) OR
(machine learning) OR (deep learning) OR (convolutional
neural network)). The inclusion criteria included studies that
investigated oral precancerous or cancerous lesions on OCT
images by any AI algorithm. Relevant articles were initially
included based on their title and abstract and subsequently
by their full text. The reference lists of relevant articles were
also explored to find possibly missed articles.

2.1. OCT

2.1.1. Mechanism of Action. OCT uses a partially coherent
near-infrared light beam of variable wavelength to image
partially transparent tissues. The infrared wavelength
(780-1550nm) is a spectrum of light with deepest pene-
tration into biological tissues (biological window) [23]. The
beam reflected from the tissue layers produces an electric
signal which can be detected afterwards. The term “to-
mography” implies the provided sections of the imaged
object [24].

OCT consists of a broadband light source, an imaging
system, a transducer, a data processor, and a computer to
control the entire scanning process and image visualization
[24]. The imaging principle of OCT is similar to that of
ultrasonography. They both measure the backscattered beam
emitted to the tissues, but, due to the differences in the
wavelength and speed of light and acoustic waves, the
penetration depth and the resolution they present are dif-
ferent. The mechanism of receiving the backscattered beam
is fundamentally different as well [24]. The velocity of light is
much higher than that of ultrasound waves; thus, mea-
surement of time delay is impractical. Therefore, OCT uti-
lizes an interferometer to calculate the pathway difference of
light [25, 26]. The emitted beam is divided into the reference
beam and sample beam which colligate again after reflection
from the reference mirror and tissues, respectively. A
photodetector or spectrometer records the interferences and
digitizes them to be depicted graphically on a computer
[27, 28]. The optical interfaces backscatter the emitted light
with a time delay that is retrieved by Fourier transformation
and used to calculate the distance between the optical re-
flections of tissue layers through interferometry resulting in
A-scan sections. B-scan or longitudinal images employ a
series of A-scans along a line on the x-axis and z-axis to
create 2D views. C-scans or enface images are also 2D views
obtained from the x-axis and y-axis. Volumetric data are
reconstructed by 2D scanning of the layers [28-30].

The optical characteristics of a sample dictate the optical
path and penetration depth of OCT beam, and OCT images
reflect the coefficient of transmission information of a
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sample [31]. The penetration depth declines as the density of
the material increases [32]. Translucency of the medium
determines the penetration depth as well [2, 19]. The axial
resolution is defined by the wavelength and bandwidth of the
light source [33].

OCT devices can be time-domain or frequency-domain
devices based on their reference arm optics. The frequency-
domain devices are of two types as well, spectral OCT and
swept source OCT, based on the receiving compartments
and output properties. The swept source OCT uses ultrahigh
speed (kilohertz wavelength, center wavelength 1300 nm)
laser beam which enhances the sensitivity of the system,
penetration depth, resolution of the system, and scanning
rate (1 second or less imaging speed), resulting in a shorter
acquisition time [31, 34-37]. In the swept source OCT, the
axial and transverse resolutions are determined by linewidth
of the laser beam and focus spot size, respectively [23].

OCT can accompany probes and catheters to image
internal organs and structures [4]. It should be noticed that
mechanical compression of OCT probe on the soft tissue
alters the optical properties of the tissue layers, increases the
contrast between the layers, and decreases the thickness of
the layers [38].

Although OCT is fundamentally a label-free modality,
different contrast agents are studied to target specific cells or
tissues including magnetic nanoparticles, gold nano-
particles, and encapsulating protein-shell microspheres
[39-44]. Vessels could be detected on OCT images based on
signal changes of light without additional contrast agents or
dyes [45]. A study conducted to image the sublingual mi-
crocirculation found OCT to be suitable for this purpose
[46]. A significant correlation has also been reported be-
tween histological slides and OCT images [10].

2.1.2. Dental Applications. OCT has proven its novel ca-
pabilities in some fields of medicine such as ophthalmology
and cardiology; however, it has not been widely used in
dentistry. OCT has been employed as a valuable tool for
assessment of the anterior part of the visual pathway, optic
nerve characterization, and visualization of cellular layers of
macula [47]. Functional blood vessels of the eyes can be
three-dimensionally reconstructed by OCT angiography
based on its ability to detect moving red blood cells, which
induce variations in the OCT signal [48]. OCT has been
widely studied for detection of skin cancers and cutaneous
inflammatory diseases based on its ability in imaging of skin
tissue layers and substructures [49-51]. The hard and soft
tissues of the maxillofacial region need a wide range of OCT
rays. The scattering properties of wavelengths below
1000 nm match the dimensions of tissue particles, resulting
in more efficient imaging. The tissues with higher water
content dissipate the energy of the beam more; conse-
quently, hard and soft tissues require adjusted wavelengths
to obtain the best images [52]. Nontransparent tissues limit
the penetration of OCT beam because of absorption and
scattering effects [4]. OCT has higher penetration depth in
comparison with the majority of optical imaging modalities
[53-55].

Different sites of the oral cavity and hard-to-reach areas
require customized applicable probes. For some pathological
lesions, greater depth and a larger field of view may be
required for a more comprehensive assessment of the tissues
[56, 57].

The first designed OCT device for dental applications was
hoped to be used for imaging of gingival margins, peri-
odontal attachments, and pockets [58]. OCT has been used
for evaluation of caries, propagation of demineralization or
remineralization process, cracks, wear, erosion, deforma-
tions, age-related changes, restoration defects, root canal
system, detection of pulp horns and isthmuses, sealing ef-
ficacy of cements, and evaluation of penetration depth of
different materials into the tooth structure [59-65]. A
unique superiority of OCT over the conventional X-ray
examination for caries detection is visualization of incipient
caries that could not be detected radiographically without
radiation exposure. Radiography cannot distinguish active
caries from arrested caries [24, 66]. Moreover, enamel and
dentin could be easily differentiated on OCT images due to
their different optical properties [12]. OCT shows promising
results in pediatric dentistry for incipient caries detection
due to its real-time and noninvasive nature [67]. In max-
illofacial surgery, OCT can be used for soft tissue assessment
and differentiation of normal tissue from dysplastic and
malignant changes. Some studies used OCT to evaluate the
periodontal tissues, peri-implant tissues, radiation-induced
oral mucositis, and bullous lesions [68-72].

2.1.3. Oncological Applications. OCT does not have a large
field of view or high penetration depth, but its micro-
resolution and high soft tissue contrast due to differences in
scattering properties make it an ideal nonsurgical modality
to spatially differentiate cell layers and tissues. It has been
widely used in oncological studies in vivo and in vitro
[4, 73-75]. Visualization of microanatomy is not the only
domain that OCT can shine in; it has been used to assess
several cellular dynamics and cell processes that occur in
premalignant and malignant tissues [76, 77]. Several OCT
devices and probes have been commercialized for onco-
logical applications [4].

Three-dimensional cell colonies are developed to aid in
investigation of tumorigenesis mechanism and drug re-
sponse with no need for animal models. OCT can monitor
such samples periodically and repeatedly. It has been
demonstrated that OCT has the ability to detect dead cells
based on their scattering properties [78]. OCT is a good
modality to monitor neoplastic changes in cellular scale and
treatment response in 3D culture studies [76].

2.1.4. Cancer Indicators. Measurement of epithelial thick-
ness on OCT images is valid, reliable, and practicable. The
normal epithelial thickness is 75-550 ym in different sites
and can be imaged by OCT with 2-3 mm penetration depth
and 10-12 ym resolution [38, 79, 80]. The oral mucosa on
OCT images is described as a hyporeflective epithelium
underlined by the basement membrane and a hyperreflective
lamina propria beneath them, containing blood vessels and



minor salivary glands [10]. The normal oral epithelium has a
homogenous distribution of cells that are uniform in size
and nucleus/plasma ratio, while this arrangement is im-
paired by cancer clusters and nests with variable cell sizes
and nucleus/plasma ratio in cancerous epithelium [8].

Neoplastic changes are characterized by cells that are
abnormal in shape and size and have enlarged nuclei. Such
changes at the cellular and subcellular levels change the
optical scattering properties of OCT, which enhances their
detection. Some important histological indicators of ma-
lignancy in the epithelial tissue include expanded dysplastic
cells, irregular epithelial stratification accompanied by
broadened rete pegs, basal hyperplasia, and elongated papilla
core [10, 81]. Dysplastic cells in the epithelium produce a
dispersed speckle pattern on OCT B-scans [33]. Speckle
formation is inevitable on OCT images because of the
heterogeneous nature of the biological tissues which in-
terferes with the optical beam in various levels [82].

Researchers have tried to find some indicators to dif-
ferentiate intact, premalignant, and neoplastic tissues in
epithelial mucosa, subepithelial tissue, and basement
membrane of oral mucosa on OCT images. Thickening of
basement membrane is a sign of tumor invasion and can be
considered as an indicator of malignant changes. In a
previous study, the mean epithelial layer thickness was the
highest in microinvasive carcinoma, followed by carcinoma
in situ, dysplasia, and benign lesions [83]. Another study
confirmed increased thickness of epithelial layer after dys-
plastic changes, albeit the boundary between the epithelium
and lamina propria, unlike SCC, could be delineated [84].
Tsai et al. considered epithelial thickness, the standard de-
viation of A-mode scan intensity profile, and the exponential
decay constant of spatial-frequency spectrum of the A-mode
scan profile as indicators to distinguish benign and malig-
nant oral lesions [8, 84, 85]. They found that, in abnormal
oral mucosal lesions, the standard deviation increased, the
decay constant of the spatial-frequency spectrum decreased,
and the epithelium thickness increased [8]. Neoangio-
genesis, surface integrity, surface profile (even or uneven),
epithelial homogeneity, loss of stratification in squamous
epithelium, and tissue vascularization are other indicators as
well [10, 86]. Neoplastic transformation can cause stromal
changes, alter collagen and other extracellular components,
or induce fibroblast proliferation [87, 88].

A clear boundary between the epithelium and lamina
propria could not be identified on B-mode scans of can-
cerous lesions [8]. The epithelial thickness and basement
membrane integrity are valid indicators to differentiate
normal and dysplastic tissues, as well as invasive carcinoma
[89]. The epithelial thickness increases prior to disappear-
ance of lamina propria due to invasion of cancer cells [8].

The epithelial and subepithelial changes following dys-
plastic transformation result in stronger light scattering and
fluctuation of spatial distribution. The mean intensity of
spatial reflection is greater in dysplastic oral epithelium in
comparison with normal tissue. Moreover, collagen deposi-
tion in lamina propria results in a reduction in SD level [85].

There is a distinctive contrast in signal intensity between
the epithelium and lamina propria (bright epithelium and
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brighter lamina propria) in oral premalignant tissues;
subsequently, this boundary can be precisely identified [85].
Lee et al. [85] used computer analysis to automatically
differentiate normal and precancerous oral mucosa. They
successfully plotted the boundary between the epithelium
and lamina propria, measured the epithelial thickness, and
estimated the range of dysplastic cell distribution.

2.1.5. AL There are some drawbacks related to the onco-
logical applications of OCT such as limited penetration
depth, limited area and volume of scans, demand for higher
resolution to visualize more cellular and subcellular details,
too much noise, difficult image interpretation, and the
training required for image interpretation [31]. Interpreta-
tion of OCT images is extremely operator-dependent, be-
cause there is no defined comprehensive and precise
standard for interpretation of OCT images [30]. Interpre-
tation of OCT images requires training and expertise, and
since the configuration of OCT images is basically different
from the conventional images, even medical imaging experts
have difficulty in reading the OCT images. Al and machine
learning algorithms can assist in interpretation of OCT
images, providing fair and equal accessibility to an auto-
mated professional diagnosis with high accuracy [90].
Cutting-edge technologies introduced to the biomedical
field might have too much presentable information and data,
but as long as these datasets could not be precisely and
efficiently translated to a clinical insight in a timely manner
to affect the diagnosis and treatment outcome, they would be
a waste of cost and time [91]. Deep learning algorithms and
AT have not still found their appropriate clinical position
despite their marvelous ability to increase the accuracy of
interpretation and eliminate the efforts, cost, and time spent
to train the operators [50].

Automatic processing of the features of OCT images not
only saves the time of analyzing abundant volume of data but
only will digitize the data that could not be interpreted
subjectively [33]. Machine learning and deep learning are
two subfields of AI. Machine learning algorithms need
structured and labeled datasets; meanwhile deep learning
algorithms generate their own subsets of data by identifi-
cation of differences within layers of neural networks. Unlike
the machine learning algorithms, deep learning algorithms
require an abundant amount of data to build their network
and perform their best [16]. Machine learning is fed by a
large amount of ground truth manually labeled by the cli-
nicians. Generation of expert-defined annotations is time-
consuming and costly and is deteriorated by intergrader
variability [92]. Deep learning has a multilayered con-
volutional neural network to learn and distinguish image
features [93]. Deep learning enhances predictive accuracy by
weight adjustment of data through a process called back-
propagation [94]. It strengthens or weakens the weight of
each synapse based on the input “answer” to reach the
highest agreement. Deep learning diagnosis is built based on
the multiblinded experts’ decisions. If the introduced data to
the algorithm are large enough, intergrader variability will
not have a significant impact on evolution of training. A
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Figure I: Clinical, OCT, and histological images. Clinical (a) and OCT (b) images were captured from all subjects, and biopsy samples were
collected (wherever indicated) and assessed histopathologically (c). Histological images were taken at 100x resolution (scale bar = 100 ym)
using Nikon DSFi2 and NIS elements D4 20.0. The nondysplastic lesions shown were histologically diagnosed with lichen planus, pyogenic
granuloma, and hyperkeratosis. Normal buccal mucosa images were taken from a healthy volunteer without any habit history. Repre-
sentative images of all dysplastic grades and a buccal oral squamous cell carcinoma (OSCC) are also depicted (image courtesy of https://bit.

ly/316d1S1).

trained model might present unknown information, because
it might recognize features that could not be detected by the
operators [21, 95].

Artificial neural networks are machine learning algo-
rithms made of associated working units known as neurons.
The neurons are arranged in layers and acquire a value based
on the activation frequency. When the neuron layers extend
to more than 2-3 layers, it is known as deep learning ar-
tificial neural network. Deep learning convolution neural
network is a model with multiple neural layers that ad-
ministrate template-matching of input data with ground
truth. Convolution neural network can be trained by con-
tinuous introduction of structured data and can upgrade its
operation ability [96]. Convolutional neural networks are
the most popular deep learning programs for analyzing
visual figures [21]. Deeper number of convolutional layers
and bridge connections between layers in deep learning

algorithms bring about higher performance [82]. Even a
minor sensitivity to variations in tissue characteristics might
be sufficient for deep neural network architecture to diag-
nose alterations in the relevant image properties, a specialty
that even an expert rater cannot reach visually [82]. Various
neural network architectures are introduced for semantic
segmentation process [97]. Manual image segmentation
needs time and expertise and has variable reproducibility,
and, in contrast to automated algorithms trained for this
application, high-quality images are required [98].

Deep learning algorithms have shown promising results
in ophthalmology such as macular edema detection, retinal
thickness measurement, and retinal layer segmentation
[95, 99-105]. They have been successfully used for com-
partmentalization of retinal layers with statistics comparable
to the human grader [106]. Automated detection of basal cell
carcinoma on OCT images has shown promising results with
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excellent statistics of around 95% for accuracy, sensitivity,
and specificity [90]. An automated segmentation algorithm
can delineate the basement membrane and measure the
epithelial thickness [107]. AI has been used to extract
pathological features of CT, MRI, and endoscopy images
[108-110]. Hwang et al. [21] designated a workflow for
involvement of Al in the processing of OCT images for
macula edema screening. Their workflow framework can be
generalized to oral lesion screening on OCT images.

A marvelous preponderance of image translation by Al
is that Al can quantify variations which could not be even
detected by inspection. Specific characteristics of the tissue
texture could not be quantified by the naked eye. Moreover,
Al is able to integrate multiple data variables including
imaging, geographical, clinical, pathological, and electronic
health data as well as risk factors, resulting in a more
comprehensive and analytical diagnosis [16].

Appending a diagnostic algorithm to the OCT system
eliminates the operator training considerations as well as
inter- and intraoperator diagnostic errors and nullifies
subjectivity in interpretation of images. It can speed up the
analysis of large amounts of datasets as well.

There are few studies that utilized computational algo-
rithms for normal or cancerous tissue characterization
[8,85]. Lee et al. [85] used standard deviation of the intensity
of OCT images to identify normal and dysplastic oral
mucosa. Pande et al. [33] described algorithms to charac-
terize morphological features on OCT B-scans of hamster
cheek pouch. They evaluated aberration of layered structure
of the epithelium and epithelial thickness, which are indi-
cators of malignant transformation. Their algorithm showed
78.5%, 76.6%, and 87.8% sensitivity for diagnosis of benign,
precancerous, and cancerous lesions, respectively, and
87.6%, 86.2%, and 94.3% specificity for the aforementioned
lesions, respectively. These results were strongly suggestive
of automated oral cancer detection on OCT images. James
et al. [111] implemented artificial neural networks and a
support vector machine model to annotate image features of
OCT images obtained from the normal oral mucosa and
benign and malignant lesions (Figure 1).

The statistics demonstrated that OCT-based diagnosis of
malignant and dysplastic oral lesions integrated with AI had
comparable results (93-96% sensitivity and 74-49% speci-
ficity) to the biopsy. Heidari et al. [112] deployed a con-
volution neural network to discriminate normal and
abnormal head and neck mucosa on 3D OCT images. They
reported 100%, 70%, and 82% sensitivity, specificity, and
accuracy, respectively, for identification of cancer-positive
images.

A cloud-based platform has been launched for remote
machine learning of OCT image analysis that could be
employed for analysis of tumor images. Open access to this
platform will nourish the algorithms with more diverse data,
leading to enhanced performance [106].

2.2. Limitations. High cost and limited availability limit the
extensive application of OCT in the clinical setting, leading
to less available necessary data to enrich and enhance Al
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algorithms. Affordable OCT devices not only provide ac-
cessibility to this modality but also would supply the image
analysis algorithms with more datasets. Since the diagnosis
of oral cancer and precancerous lesions, interpretation of
OCT images, and development of Al algorithms for auto-
mated OCT image interpretation require profound exper-
tise, qualified teams with experts from all related fields are
required to collaborate interactively to achieve the desirable
results. These requirements decrease the pace of employing
AT algorithms in oral cancer screening and diagnosis by
OCT images. Further studies are required to analyze and
improve the efficiency and accuracy of Al algorithms for
detection of cancerous changes before we could use such
automated interpretation systems in the clinical setting.

3. Conclusion

Al algorithms have rendered hopeful outcomes in inter-
pretation of OCT images of oral mucosa and discrimination
of normal oral epithelium from precancerous and cancerous
lesions. Progressive evolution of AI algorithms for inter-
pretation of OCT images (which requires continuous data
feed as ground information) paves the way towards auto-
mated oral cancer screening by OCT, even though it might
be a long road to bring the integration of OCT and Al into
the clinical setting. In addition to the need for further studies
to provide OCT imaging data for AI algorithms, the existing
challenges such as standardization of labeling, validation of
automated interpretations, and development of infrastruc-
tures for application of AI in oral cancer screening and
diagnosis must be addressed to enable the application of AI
in OCT for the aforementioned purposes and enhance early
detection of oral mucosal cancerous changes with no need
for physical presence of experts.
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