
Glaucoma refers to a group of heterogeneous diseases 
causing optic nerve fiber damage. Primary open-angle glau-
coma (POAG) is the most common type of glaucoma in most 
populations. Elevated intraocular pressure (IOP), defined as 
>22 mmHg, is a principal risk factor for POAG and can cause 
optic nerve damage [1]. Heritability estimates (h2) for IOP 
range from 0.29 to 0.67 [1].

Genome-wide association studies (GWASs) have been 
successful in mapping genetic variants for IOP. On a large 

scale, a GWAS meta-analysis was performed on 18 cohorts 
comprising 35,296 individuals. This study showed robust 
associations among 12 different single-nucleotide poly-
morphisms (SNPs) representing nine different genes/loci. 
Notably, four of these genes (TMCO1, CAV7, ABCA1, and 
GAS7) were also associated with POAG, highlighting the key 
role of this endophenotype in end-stage ocular disease [2].

Linkage mapping of genes for IOP identified seven 
regions of interest on chromosomes 2, 5, 6, 7, 12, 15, and 19 
[3]. Chromosomes 6 and 13 were implicated in another IOP 
linkage study [4]. Evidence for the linkage of a maximum 
IOP has been mapped to chromosome 10 near region 10p15-
p14, which is near another locus involved in up to 17% of 
low-tension glaucoma pedigrees [5]. Chromosome 2p15-p16.3 
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Purpose: Primary open-angle glaucoma (POAG) refers to a group of heterogeneous diseases involving optic nerve 
damage. Two well-established risk factors for POAG are elevated intraocular pressure (IOP) and a thinner central 
corneal thickness (CCT). These endophenotypes exhibit a high degree of heritability across populations. Large-scale 
genome-wide association studies (GWASs) of outbred populations have robustly implicated several susceptibility gene 
variants for both IOP and CCT. Despite this progress, a substantial amount of genetic variance remains unexplained. 
Population-specific variants that might be rare in outbred populations may also influence POAG endophenotypes. The 
Norfolk Island population is a founder-effect genetic isolate that has been well characterized for POAG endophenotypes. 
This population is therefore a suitable candidate for mapping new variants that influence these complex traits.
Methods: Three hundred and thirty participants from the Norfolk Island Eye Study (NIES) core pedigree provided DNA. 
Ocular measurements of CCT and IOP were also taken for analysis. Heritability analyses and genome-wide linkage 
analyses of short tandem repeats (STRs) were conducted using SOLAR. Pedigree-based GWASs of single-nucleotide 
polymorphisms (SNPs) were performed using the GenABEL software.
Results: CCT was the most heritable endophenotype in this cohort (h2 = 0.77, p = 6×10−6), while IOP showed a heritabil-
ity of 0.39 (p = 0.008). A genome-wide linkage analysis of these POAG phenotypes identified a maximum logarithm of 
the odds (LOD) score of 1.9 for CCT on chromosome 20 (p = 0.0016) and 1.3 for IOP on chromosome 15 (p = 0.0072). 
The GWAS results revealed a study-wise significant association for IOP at rs790357, which is located within DLG2 on 
chr11q14.1 (p = 1.02×10−7). DLG2 is involved in neuronal signaling and development, and while it has not previously been 
associated with IOP, it has been associated with myopia. An analysis of 12 known SNPs for IOP showed that rs12419342 
in RAPSN on chromosome 11 was nominally associated in Norfolk Island (NI; p = 0.0021). For CCT, an analysis of 
26 known SNPs showed rs9938149 in BANP-ZNF469 on chromosome 16 was nominally associated in NI (p = 0.002).
Conclusions: These study results indicate that CCT and IOP exhibit a substantial degree of heritability in the NI pedi-
gree, indicating a genetic component. A genome-wide linkage analysis of POAG endophenotypes did not reveal any 
major effect loci, but the GWASs did implicate several known loci, as well as a potential new locus in DLG2, suggesting 
a role for neuronal signaling in development in IOP and perhaps POAG. These results also highlight the need to target 
rarer variants via whole genome sequencing in this genetic isolate.
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is implicated in IOP [6], while 2cen-q13 is found in normal-
tension glaucoma, with onset at over 50 years; chromosome 
7q35-q36 has also been found to be associated with IOP [7].

A thinner central corneal thickness (CCT) is also a risk 
factor for POAG and has been shown to have high herita-
bility across populations (0.65–0.95) [1]. A large GWAS of 
>20,000 individuals confirmed the previously identified 10 
different loci and revealed the presence of 16 new loci associ-
ated with CCT [8]. Of particular interest is the FNDC3B gene 
on chromosome 3, which was also associated with POAG in 
this study and with IOP in the GWAS of Hysi et al. [2]. This 
suggests that variants of the FNDC3B gene may be conferring 
a pleiotropic effect on POAG endophenotypes and end-stage 
clinical diseases.

Despite this progress, a substantial amount of genetic 
variance remains unexplained. Population-specific variants 
that might be rare in outbred populations may also influence 
POAG endophenotypes. Founder-effect genetic isolates may 
offer some advantages for gene mapping because of such 
features as reduced genetic heterogeneity and an extensive 
familial structure. Linkage and association analyses of 
ocular phenotypes in a Dutch population isolate revealed new 
linkage regions for optic disc morphology at 20p13 (SIRPA 
and RNF24/PANK2 loci) and 2q33-q34 (IGFBP2 locus). In 
addition, significant and suggestive GWAS signals at the 
previously identified RERE, LRP1B, CDC7, TGFBR3, and 
ATOH7 loci were replicated in this isolate [9].

The Norfolk Island (NI) population, located off the east 
coast of Australia, is a genetic isolate with well-defined 
familial lineages dating back 12 generations to the originating 
founders, 12 Tahitian women and six European men. As part 
of the Norfolk Island Eye Study (NIES), the prevalence of 
chronic ocular diseases has previously been reported [10]. In 
general, the prevalence of blindness and visual impairment 
was observed to be lower than that in mainland Australia. 
However, the prevalence of glaucoma was higher in NI at 
6% compared to 3% in mainland Australia [10]. Differences 
between NI pedigree and non-pedigree groups were observed 
for several POAG risk factor traits, suggesting a possible 
genetic influence some traits [11]. In an effort to understand 
better the genetic basis of POAG, we focused on two primary 
risk factor phenotypes—elevated IOP and a thinner CCT—by 
conducting heritability, genome-wide linkage and association 
studies of a large core pedigree from the NI isolate.

METHODS

Subjects and phenotyping: The study sample consisted of 330 
participants from the NIES. These individuals belong to a 
single large NI pedigree of 6,537 members dating back to the 

original Bounty mutineers and Tahitian founders. Pedigree 
construction and characteristics have been well described 
in previous papers [12-14]. All participants underwent a full 
eye examination as part of the NIES, which was designed to 
investigate the genetics and epidemiology of ocular disease 
traits in this population. Comprehensive ocular measurements 
for IOP and CCT were taken (see [11] for details).

Genotyping: Genotypes for all 330 individuals were obtained 
for 400 microsatellite (STR) markers with an average hetero-
zygosity level of 76% spaced at 10cM. Chromosomal marker 
maps were obtained from the Marshfield Centre for Medical 
Genetics. Cytobands for markers were obtained from the 
University of California Santa Cruz (UCSC) Genome 
Browser.

Individuals were also genotyped for a genome-wide 
panel of SNPs using Illumina Infinium High Density (HD) 
Human610-Quad BeadChip version 1, according to the 
manufacturer’s instructions. Samples were scanned on the 
Illumina Bead Array 500GX Reader. Raw data were obtained 
using the Illumina Bead Scan image data acquisition soft-
ware (version 2.3.0.13). Raw data from the Illumina data files 
were then SNP genotyped in R using the CRLMM package 
[15]. Genotype data then underwent initial quality control 
routines using PLINK [16]. SNPs were filtered based on a 
minor allele frequency of >0.01, a call rate of >0.95, and a 
Hardy–Weinberg equilibrium testing p value of >10−5. After 
this initial quality control, 590,603 SNPs were exported from 
PLINK and imported into the CRAN package GenABEL 
[17]. Further filtering (including Mendelian inheritance viola-
tions and sex-checking based on available X and Y markers) 
in GenABEL led to the reduction of the SNP set to a total of 
~480,000; this included the removal of both X and Y chromo-
some SNPs after gender checking, as well as the removal of 
mitochondrial and XY SNPs.

Statistical analyses: Heritability analyses were conducted 
using a variance components-based methodology imple-
mented in the Sequential Oligonucleotide Linkage Analysis 
Routines (SOLAR) version 4.0.6 software package [18]. 
Heritability estimates (h2) were calculated as the ratio of 
the trait variance explained by additive polygenic effects to 
the total phenotypic variance of the trait [19]. The applied 
polygenic model assumes an infinite number of genetic 
factors, each with a small additive effect contributing to the 
trait variance. Estimates were screened for covariate effects 
of sex, age, age*sex, age^2, age^2*sex, height, ultraviolet 
autofluorescence, glaucoma status, visual acuity pinhole, 
sphere, cylinder, axis, kvalue-v, kvalue axis, CCT, ACD, IOP, 
pterygium, eye color, visual acuity, axial length, outdoors, 
and kvalue-h. Glaucoma was treated as a continuous variable 
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using “EnableDiscrete 0” to circumvent convergence errors 
due to discrete trait modeling in SOLAR. Covariates with 
p values less than or equal to 0.10 were retained in the final 
model. SOLAR requires kurtosis to be <0.8 and a standard 
deviation of <0.5 to proceed with the analysis. The SOLAR 
bivariate analysis was used to calculate genotypic, envi-
ronmental, and phenotypic correlations between metrics. 
Genome-wide linkage mapping of adjusted eye metric traits 
was conducted with SOLAR using a multipoint analysis.

A pedigree-based GWAS analysis of all heritable endo-
phenotypes was batched using custom R scripts in GenABEL 
[17]. A correction was made for the relatedness and admix-
ture inherent in the NI population using the polygenic model 
with age and sex interactions, as well as the genetic structure 
—the top two genomic principal components of the complete 
SNP set, as calculated by KING [20]. For an association 
analysis, the mmscore function implemented in GenABEL 
was used. This function represents a mixed-model approxi-
mation analysis of the association between a trait and genetic 
polymorphism(s) and it is specifically designed for associa-
tion testing in samples of related individuals. This allows for 
per-SNP association testing using a mixed-model polygenic 
approach. After adjusting for linkage disequilibrium (LD) 
among SNPs using Meff [21], the study-wide significance 
was set at p = 1.84×10−7. This significance threshold has been 
used in previous GWAS publications of NI [22,23]. GWAS 
Manhattan plots were generated for each trait association 
using a custom modified version of the GenABEL plot.scan.
gwaa function (for all Manhattan plots, see Supplemental 
Material).

Previous studies of CVD risk have determined the 
current trimmed pedigree structure and size had >80% 
power to detect the heritability of phenotypes whose varia-
tion is partially attributable to additive genetic effects and 
to detect major effect loci via linkages and associations as 
that are statistically significant at accepted thresholds [24,25]. 
Evidence that the major effect loci exist for complex quantita-
tive traits in this NI pedigree has also been published [22,23].

RESULTS

Heritability analyses showed that CCT was the most heritable 
trait, with an unadjusted h2 of 0.85 (p = 1.5×10−6). Adjusted 
heritability for CCT decreased to h2 = 0.77 (p = 5.7×10−6), 
with the inclusion of IOP, pterygium, and sphere as signifi-
cant covariates. The adjusted IOP heritability was 0.39 (p 
= 0.008) with significant covariates anterior chamber depth 
(ACD) and ultraviolet autofluorescence, a biomarker for sun 
exposure accounting for 1% of the trait variation. Overall, 
the heritability values for CCT and IOP in the NI population 

fell within the range of heritability estimates among world-
wide populations [1]. Importantly, these results indicate a 
substantial influence of genetic factors on these traits in the 
NI pedigree.

A genome-wide linkage and association analysis was 
performed on the core NI pedigree to identify loci for CCT 
and IOP. Table 1 summarizes logarithm of the odds (LOD) 
scores for the traits adjusted for significant covariates. There 
were no statistically significant linkage peaks (i.e., LOD ≥ 
3). The highest linkage peak was for CCT on chromosome 
20 (LOD = 1.9, p = 0.0016). Table 2 summarizes the GWAS 
results. For IOP, there was a statistically significant asso-
ciation at rs790357 located in DLG2 on chromosome 11q14.1 
(odds ratio [OR] = 1.70, p = 1.02×10−7). This top-ranking SNP 
was part of a cluster of seven SNPs forming an LD block 
spanning a 16.6-kb region (Pall< p = 1.00×10−6). There were 
also several suggestive hits on chromosomes 10 and 20 for 
IOP. For CCT, there were no association peaks that met the 
genome-wide level of statistical significance, but there were 
several suggestive hits, with the most significant being for 
rs13095933 on chromosome 3 (p = 2.86×10−6). We also exam-
ined the previously associated index SNPs for IOP (n = 12) 
and CCT (n = 26), as reported in the large-scale GWASs of 
Hysi et al. (2014) and Lu et al. (2013), respectively [2,8]. These 
results showed that for IOP, only one SNP—rs12419342 in 
RAPSN on chromosome 11—was statistically significant at 
the nominal level (p = 0.0021). For CCT, the only statistically 
significant SNP was rs9938149 in BANP-ZNF469 on chromo-
some 16 (p = 0.002).

DISCUSSION

Herein, we examined the genetic isolate of NI and performed 
heritability and genome-wide linkage and association studies 
of phenotypes associated with POAG, CCT, and IOP. Overall, 
the heritability estimates were consistent with previous 
values, and the indicated genetic factors influence these traits. 
A linkage analysis for IOP showed that the highest LOD 
Score occurred on chromosome 15 (LOD 1.3), where a peak 
was also found in the Beaver Dam Eye Study [4]. Linkage 
results for CCT did not overlap any previously published 
peaks. Although a previous study indicated a linkage to 
chromosome 3 for IOP [7], in this study, chromosome 3 was 
associated with CCT.

A GWAS of ocular endophenotypes in this study iden-
tified a statistically significant association at a SNP repre-
senting a 16.6-kb locus harboring the Disks large homolog 
2 (DLG2) gene. DLG2, also known as channel-associated 
protein of synapse-110 (chapsyn-110) or postsynaptic density 
protein 93 (PSD-93), is involved in neuronal signaling and 

http://www.molvis.org/molvis/v23/660
https://www.ncbi.nlm.nih.gov/snp/?term=rs13095933
https://www.ncbi.nlm.nih.gov/snp/?term=rs12419342
https://www.ncbi.nlm.nih.gov/snp/?term=rs9938149


Molecular Vision 2017; 23:660-665 <http://www.molvis.org/molvis/v23/660> © 2017 Molecular Vision 

663

development. Specifically, the protein forms a heterodimer 
with a related family member that may interact at postsyn-
aptic sites to form a multimeric scaffold for the clustering 
of receptors, ion channels, and associated signaling proteins. 
DLG2 is expressed in many neuronal and immunological 
tissues and the retina [26]. DLG2 variants have not previ-
ously been associated with IOP or POAG. However, a GWAS 
performed by Kiefer et al. identified a significant and repli-
cated association of a DLG2 SNP (rs2155413) and myopia 
in a large cohort of >400,000 individuals [26]. Myopia is 
associated with intra-ocular pressure and is a risk factor for 
POAG [26].

Our GWAS also revealed several suggestive minor 
effect peaks in the NI population that may represent new loci 
requiring replication. Surprisingly, association testing of the 
known SNPs for IOP and CCT did not indicate confirma-
tion in NI for most loci. This may reflect the modest sample 
size of NI, a different genetic architecture for these traits in 
NI, or both. In addition, the fact that CCT does not exhibit 
a major effect locus indicates it is of a greater than expected 
complexity (e.g., genetic heterogeneity) in the NI isolate.

This study indicates that the POAG endophenotypes 
CCT and IOP exhibit a substantial degree of heritability in 

the NI pedigree, indicating a genetic component. A genome-
wide linkage analysis of these traits did not reveal any major 
effect loci, but a GWAS did implicate several known loci, 
as well as a potential new locus in DLG2, suggesting a role 
for neuronal signaling and development in IOP and perhaps 
POAG. Given the substantial degree of heritability, further 
genetic studies are warranted, and future endeavors imple-
menting approaches such as whole genome sequencing may 
help identify important, rare, or private variants of these 
ocular traits.
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Table 1. Summary of genome-wide linkage reSulTS of Poag endoPhenoTyPeS in The norfolk Pedigree.

Endophenotype Loci Chr. Map Distance (cM) LOD score >1* P value
IOP 3 15 116 1.3 0.0072
  22 51 1.1 0.012
  8 60 1.2 0.0094
CCT 5 20 15 1.9 0.0016
  11 40–58 1.7 0.0026
  14 59 1.2 0.0094
  4 102 1.3 0.0072
  3 55 1.4 0.0056

IOP: intraocular pressure, CCT: central corneal thickness.* Results adjusted for age and sex

Table 2. Summary of gwaS reSulTS for Poag endoPhenoTyPeS in The norfolk Pedigree.

Endophenotype Loci* Chr. Top SNP Position Allele β P value
IOP 3 11 rs790357 83,620,940 T 0.60 1.02E-07
  10 rs10761970 67,160,860 T −0.36 8.38E-06
  20 rs2285142 40,978,940 C 0.40 5.34E-06
CCT 4 1 rs856077 158,969,075 C 0.43 4.15E-06
  3 rs1164313 144,339,407 T 1.48 5.31E-06
  3 rs13095933 148,408,108 G 0.44 2.86E-06
  3 rs344002 156,455,269 T −0.87 5.15E-06

IOP=Intra-ocular pressure, CCT=Central corneal thickness,*Loci=a cluster of >3 directly adjacent SNPs yielding a p value <1E-05
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