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A B S T R A C T   

Background: Inflammatory responses influence the outcome of immunotherapy and tumorigenesis by modulating 
host immunity. However, systematic inflammatory response assessment models for predicting cancer immuno-
therapy (CIT) responses and survival across human cancers remain unexplored. Here, we investigated an in-
flammatory response score model to predict CIT responses and patient survival in a pan-cancer analysis. 
Methods: We retrieved 12 CIT response gene expression datasets from the Gene Expression Omnibus database 
(GSE78220, GSE19423, GSE100797, GSE126044, GSE35640, GSE67501, GSE115821 and GSE168204), Tumor 
Immune Dysfunction and Exclusion database (PRJEB23709, PRJEB25780 and phs000452.v2.p1), European 
Genome-phenome Archive database (EGAD00001005738), and IMvigor210 cohort. The tumor samples from six 
cancers types: metastatic urothelial cancer, metastatic melanoma, gastric cancer, primary bladder cancer, renal 
cell carcinoma, and non-small cell lung cancer. 
We further established a binary classification model to predict CIT responses using the least absolute shrinkage 
and selection operator (LASSO) computational algorithm. 
Findings: The model had high predictive accuracy in both the training and validation cohorts. During sub-group 
analysis, area under the curve (AUC) values of 0.82, 0.80, 0.71, 0.7, 0.67, and 0.64 were obtained for the non- 
small cell lung cancer, gastric cancer, metastatic urothelial cancer, primary bladder cancer, metastatic mela-
noma, and renal cell carcinoma cohorts, respectively. CIT response rates were higher in the high-scoring training 
cohort subjects (51%) than the low-scoring subjects (27%). The five-year survival rates in the high- and low score 
groups of the training cohorts were 62% and 21%, respectively, while those of the validation cohorts were 54% 
and 22%, respectively (P < 0⋅001 in all cases). Inflammatory response signature score derived from on-treatment 
tumor specimens are highly predictive of response to CIT in patients with metastatic melanoma. A significant 
correlation was observed between the inflammatory response scores and tumor purity. Regardless of the tumor 
purity, patients in the low score group had a significantly poorer prognosis than those in the high score group. 
Immune cell infiltration analysis indicated that in the high score cohort, tumor-infiltrating lymphocytes were 
significantly enriched, particularly effector and natural killer cells. Inflammatory response scores were positively 
correlated with immune checkpoint genes, suggesting that immune checkpoint inhibitors may have benefited 
patients with high scores. Analysis of signature scores across different cancer types from The Cancer Genome 
Atlas revealed that the prognostic performance of inflammatory response scores for survival in patients who have 
not undergone immunotherapy can be affected by tumor purity. Interleukin 21 (IL21) had the highest weight in 
the inflammatory response model, suggesting its vital role in the prediction mode. Since the number of metastatic 
melanoma patients (n = 429) was relatively large among CIT cohorts, we further performed a co-culture 
experiment using a melanoma cell line and CD8 + T cell populations generated from peripheral blood mono-
cytes. The results showed that IL21 therapy combined with anti-PD1 (programmed cell death 1) antibodies 

* Corresponding authors. 
E-mail addresses: wangyun@sysucc.org.cn (Y. Wang), liangyang@sysucc.org.cn (Y. Liang).   

1 These authors contributed equally: Shuzhao Chen, Mayan Huang, Limei Zhang, Qianqian Huang 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2023.12.001 
Received 9 June 2023; Received in revised form 29 November 2023; Accepted 2 December 2023   

mailto:wangyun@sysucc.org.cn
mailto:liangyang@sysucc.org.cn
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.12.001
https://doi.org/10.1016/j.csbj.2023.12.001
https://doi.org/10.1016/j.csbj.2023.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.12.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 369–383

370

(trepril monoclonal antibodies) significantly enhanced the cytotoxic activity of CD8 + T cells against the mel-
anoma cell line. 
Conclusion: In this study, we developed an inflammatory response gene signature model that predicts patient 
survival and immunotherapy response in multiple malignancies. We further found that the predictive perfor-
mance in the non-small cell lung cancer and gastric cancer group had the highest value among the six different 
malignancy subgroups. When compared with existing signatures, the inflammatory response gene signature 
scores for on-treatment samples were more robust predictors of the response to CIT in metastatic melanoma.   

1. Introduction 

Cancer immunotherapy (CIT; adoptive cell transfer (ACT) [1], mel-
anoma antigen family A3 (MAGE A3) [2] therapy, Bacillus Calm-
ette–Guérin (BCG) immunotherapy [3], and immune checkpoint 
inhibitor (ICI) therapy [4]), has improved outcomes for patients with 
various types of cancers. However, the majority of patients do not derive 
long-term benefits from or achieve a durable clinical response to these 
therapies. Moreover, strong and concise predictive biomarkers to guide 
CIT are lacking, which has hindered the classification of patients into 
responsive and non-responsive categories and caused the overuse of CIT, 
which introduces associated costs and unnecessary potential side effects. 
Therefore, there is an urgent need to develop a parsimonious prediction 
model that can assess patient response to CIT to identify those who may 
benefit. 

Previous studies have identified gene signatures in CIT responses. For 
example, Xiong et al. identified and validated a signature (including 108 
genes) called ImmuneCells.Sig, which is enriched in genes associated 
with the triggering receptor expressed on myeloid cells 2 (TREM2) re-
ceptor in macrophages, γδ T cells, and B cell subpopulations. [5] Loss of 
major histocompatibility complex class I (MHC-I) can predict primary 
resistance to anti-CTLA-4 therapy [6], and melanoma-specific MHC class 
II gene expression predicts response to anti-PD-1/PD-L1 therapy. [7] Ju 
et al. revealed the potential application of the NLRP3 inflammasome 
signature (including 30 genes) as a predictive biomarker of immuno-
therapy response. [8] Ayers et al. reported a T-cell-–inflamed gene 
expression signature (including 18 genes) that can be used to identify 
PD-1 checkpoint blockade-responsive biology and predict clinical 
response across a variety of tumor types, including bladder, gastric, head 
and neck squamous cell carcinoma, triple-negative breast cancer, anal 
canal, biliary, colorectal, esophageal, and ovarian cancers. [9] In our 
previous studies, we found that the glycoprotein VI-mediated platelet 
activation signaling pathway signature (including 35 genes) scores were 
robust predictors of the response to anti-PD-1 blockade in metastatic 
melanoma [10]. We also identified four functional gene signatures 
associated with the endothelium, effector cells, B cells, and tumor pro-
liferation rate that accurately predict the response of metastatic mela-
noma patients to immune checkpoint blockade (ICB) therapy [11]. 
However, gene expression profiles are not widely used in clinical prac-
tice because of the lack of reproducibility associated with various array 
platforms and interpretative methods. Thus, accurate biomarkers for 
predicting patient survival and CIT responses have not been identified. 

Inflammation can affect immune cell infiltration and response to 
therapy. Inflamed tumors are characterized by the enrichment of tumor- 
infiltrating T cells, such as CD4 + and CD8 + T-cells. [12] These immune 
cells are frequently found adjacent to the tumor cells. Furthermore, 
many effector cytokines can be detected at the transcriptome level in 
inflamed tumors. [13] Immunohistochemistry analyses have suggested 
that programmed cell death 1 ligand 1 (PDL1) is expressed on 
tumor-infiltrating immune cells or tumor cells, [14] which indicates that 
a pre-existing antitumor immune response occurs in the inflammatory 
environment within tumor tissue. Indeed, anti-PDL-1/PD-1 therapy has 
shown a more effective response in patients with an inflamed tumor 
microenvironment than in patients without such a microenvironment. 
[15,16] This indicates that inflammatory response-related genes can be 
involved in immunotherapy for various cancer types. However, whether 

inflammatory response genes can serve as predictive biomarkers of the 
CIT response requires further investigation. 

In this study, we aimed to develop an inflammatory response score 
model to predict immunotherapy response. Data for the model were 
obtained from public datasets of inflammatory response-related genes 
across six cancer types, including non-small cell lung cancer, gastric 
cancer, metastatic urothelial cancer, primary bladder cancer, metastatic 
melanoma, and renal cell carcinoma. 

2. Methods 

2.1. Studies and patient selection 

We systematically retrieved the publicly database to identify eligible 
gene expression datasets with information on immunotherapy response 
in subjects with solid malignancies. Criteria for inclusion were as fol-
lows: (a). All patients with a confirmed diagnosis of solid malignancies; 
(b). All patients were received immunotherapy; (c). All patients with 
treatment response information; (d). All data were publicly available 
and usable. Finally, the 12 published CIT response datasets was selected 
(Table S1). The Hugo et al. (GSE78220) [17], Kim et al. (GSE19423) [3], 
Lauss et al. (GSE100797) [1], Cho et al. (GSE126044) [18], 
Ulloa-Montoya et al. (GSE35640) [2], Ascierto et al. (GSE67501) [19], 
and MGH datasets (GSE115821 [20] and GSE168204 [21]) were 
downloaded from the Gene Expression Omnibus database (http://www. 
ncbi.nlm.nih.gov/geo/). The Gide et al. (PRJEB23709) [22], Kim et al. 
(PRJEB25780) [23], and Van Allen et al. datasets (phs000452.v2. p1) 
[24] were obtained from the Tumor Immune Dysfunction and Exclusion 
database (http://tide.dfci.harvard.edu/) [25]. The Lee et al. dataset 
(EGAD00001005738) [26] was downloaded from the European 
Genome-phenome Archive database (https://ega-archive.org/access/ 
data-access/) [27]. The IMvigor210 cohort [28] data were obtained 
using the IMvigor210CoreBiologies package for R software. A robust 
multi-array quantile method was then employed to normalize the data 
from the different arrays [29]. Patient responses to CIT were assessed 
according to the Response Evaluation Criteria in Solid Tumors (https: 
//recist.eortc.org/). Details on the immunotherapy response datasets 
are provided in Table S1, and a summary of the study is provided in 
Fig. S1. 

RNA-Seq by Expectation Maximization data and clinical information 
for the 20 cohorts from The Cancer Genome Atlas (TCGA) were down-
loaded from TCGA PanCanAtlas [30], which is available at https://gdc. 
cancer.gov/about-data/publications/pancanatlas. More than 7000 
tumor samples were selected after filtering out samples that lacked 
clinical survival information (n = 54). All TCGA abbreviations are 
shown in Table S2. 

The inflammatory response Gene Ontology (GO) dataset 
(GO:0006954) for Homo sapiens containing 851 genes was chosen from 
Gene Ontology Browser (https://www.informatics.jax.org/vocab/gene 
_ontology) by searching the keyword "inflammatory response." A 
similar dataset containing 854 genes for Gene Set Enrichment Analysis 
(GSEA) [31] (GOBP_INFLAMMATORY_RESPONSE) was obtained from 
the MSigDB dataset (https://www.gsea-msigdb.org/gsea/msigdb). 
Finally, 808 genes common to both these datasets, which were anno-
tated by the respective GO (GO:0006954) and GSEA (GOBP_IN-
FLAMMATORY_RESPONSE) categories, were selected for further 
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downstream analysis. 

2.2. Construction and validation of inflammatory response scores 

Coefficient profiles of the 808 inflammatory response genes were 
selected based on Least Absolute Shrinkage and Selection Operator 
(LASSO) binomial logistic regression model analysis. [32] The inflam-
matory response score model used a 10-fold cross-validation estimator 
to penalize the maximum-likelihood estimation. Data from 784 patients 
who underwent CIT were randomly partitioned into training (70%) and 
validation (30%) sets. The predict.glm function was used to employ the 
logistic regression model for the training and validation cohort data. 
Inflammatory response signatures were generated according to the 
training cohort data, and the ability of these signatures to predict CIT 
response was evaluated based on the testing and overall cohort 
(including training and testing groups). 

The inflammatory response score was calculated as follows: 

Scores =
∑n

i=1
expi ∗ βi  

where n, expi, and β represent the number of genes, mRNA expression 
value, and the LASSO coefficient of gene i, respectively. The expression 
values were normalized across the datasets using the robust multi-array 
quantile method. 

Patients with metastatic melanoma undergoing CIT were singled out 
and further divided into on-treatment and pre-treatment cohorts to 
verify the predictive power of the inflammatory response signature. 
Data from the metastatic urothelial cancer cohort were sufficient for 
independent analyses of the inflammatory response based on the 
multivariable Cox regression method. 

2.3. Gene set enrichment analysis 

Using the clusterProfiler package, the potential biological functions 
associated with inflammatory response scores between the low-scoring 
and high-scoring groups of each cancer type were determined using 
the GSEA tool. [33] The curated gene sets (h.all.v7.2.symbols.gmt and 
c2.cp.reactome.v7.5.1.symbols.gmt) can be obtained from the GSEA 
website (http://www.gsea-msigdb.org/gsea/downloads.jsp). Statistical 
significance was defined at a p-value threshold of 0.05. 

2.4. Immunity analysis and gene expression 

The Estimation of Stromal and Immune cells in Malignant Tumor 
tissues using Expression data (ESTIMATE) [34], Estimating the Pro-
portions of Immune and Cancer cells (EPIC) [35], Microenvironment 
Cell Populations-counter (MCPcounter) [36], Immune Cell Abundance 
Identifier (ImmuCellAI) [37], CIBERSORT [38], xCell [39], tumor im-
mune estimation resource (TIMER) [40], and Single-sample Gene Set 
Enrichment Analysis (ssGSEA) [41] algorithms were used to assess the 
cellular component or cellular immune response profiles between the 
high- and low-score groups. ESTIMATE is an algorithm that uses gene 
expression signatures to infer the fraction of stromal and immune cells in 
tumor samples [34]. EPIC estimates the proportions of immune and 
cancer cells using RNA-seq-based gene expression reference profiles 
from immune cells and other nonmalignant cell types found in tumors. 
[35] MCPcounter estimates the immune and stromal composition of 
heterogeneous tissue based on transcriptomic data [36]. ImmuCellAI 
precisely estimates the abundance of 24 immune cell types, including 
18 T-cell subsets, based on gene set characteristics. [37] CIBERSORT 
imputes gene expression profiles and provides estimates of the abun-
dance of member cell types in a mixed cell population using gene 
expression data [38]. The novel xCell method was used to infer 64 im-
mune and stromal cell types based on gene signatures [39]. TIMER is a 
comprehensive database for systematically studying tumor infiltrating 

immune cells in various malignancies [40]. ssGSEA is a variation of the 
GSEA algorithm that calculates enrichment scores for groups of samples 
and sets of genes [41]. Data from Thorsson et al. were used to compare 
the infiltration of effector cells and natural killer (NK) cells in an ICI 
cohort. [42] Furthermore, the tumor-infiltrating immune cell subgroups 
and immune functions between the two groups were quantified using 
ssGSEA. Potential immune function, immune type, and immune check-
point signatures were retrieved from recent literature [8,43] and are 
shown in Table S3. 

2.5. Culture conditions 

Peripheral blood mononuclear cells (PBMCs) of one healthy donor 
were isolated via Ficoll-Hypaque density gradient centrifugation using a 
human peripheral blood lymphocyte isolation kit (Cat# LTS1077, TBD 
Science, Tianjin, China) according to the manufacturer’s instructions. 
CD8 + T cells were purified from the human PBMCs using an EasySep 
Human CD8 + T Cell Iso Kit (Cat# 17953, Stemcell Technologies, 
Vancouver, Canada) according to the manufacturer’s instructions. Pu-
rified CD8 + T cells were cultured in RPMI-1640 medium (Cat# 
C11875500BT, Gibco, Thermo Fisher Scientific, Inc) with 10% fetal 
bovine serum (FBS, Cat# 086–150, Wisent, St-Bruno, QC, Canada), 1% 
penicillin, and 100 μg/mL streptomycin in 12-well plates (TCP010012, 
Jet Biofil, Guangzhou Jet Bio-Filtration Co, China), and stimulated for 
two days with Immunocult Human CD3/CD28 T Cell Activator (Cat# 
10971, Stemcell Technologies, Vancouver, Canada) containing recom-
binant human IL-2 (10 ng/mL) (Cat# 200–02–10, PeproTech, Rocky 
Hill, NJ, USA). The SK-MEL-246 cell line was cultured in culture plates 
with DMEM medium (Cat# C11995500BT, Gibco, Thermo Fisher Sci-
entific, Inc), including 10% FBS. For routine cultures, the SK-MEL-246 
cells were seeded in 25 cm2 cell culture bottle (TCF012050, Jet Biofil, 
Guangzhou Jet Bio-Filtration Co, China). CD8 + T cells were cocultured 
with tumor cells at a 1:1 ratio in 12-well flat-bottom tissue culture plates 
and treated with recombinant human IL-21 (Cat# 200–21–2, Pepro-
Tech, Rocky Hill, NJ, USA) and/or anti-PD-1 drug (Trepril monoclonal 
antibody) (Cat# JS001, Shanghai Junshi Biosciences, Shanghai, China) 
or vehicle. After 48 h of treatment, the cells were harvested from the co- 
culture system, and then flow cytometry was performed. 

2.6. Flow cytometry 

Single cells were re-suspended in phosphate-buffered saline (PBS, 
Cat# E607016–0500, Shengong, Shanghai, China) containing 2% FBS 
and stained with fluorochrome-conjugated or biotinylated antibodies 
against CD3 (Clone HIT3a, Biolegend, San Diego, CA, USA), CD8 (Clone 
RPA-T8, BD Biosciences, Franklin Lakes, NJ, USA), and perforin (Clone 
dG9, Biolegend, San Diego, CA, USA). Dead cells were excluded using 
Fixable Viability Stain 440UV (Cat# 566332, BD Biosciences, Franklin 
Lakes, NJ, USA). To detect surface markers, cells were stained with the 
indicated antibodies for 30 min at 4◦C. Before intracellular staining of 
perforin, cells were stimulated with Cell Stimulation Cocktail plus pro-
tein transport inhibitors (Cat# 00–4975–93, eBioscience, San Diego, CA, 
USA) for six hours. Data acquisition was performed on the CytoFLEX 
Flow cytometer (Beckman Coulter, Fullerton, CA, USA), and the per-
centages of cells were calculated using the FlowJo software (FlowJo 
LLC, Ashland, OR, USA). 

2.7. Statistical analysis 

Correlations between immune signatures and inflammatory re-
sponses were evaluated using Spearman’s correlation. The prediction 
accuracy of the immunotherapy response risk score for CIT was quan-
tified using the area under the curve (AUC), which was calculated using 
the R software package “ROCR”. [44] Univariate and multivariate Cox 
regression analyses were performed using the Coxph function in R. [45] 
Survival was estimated according to the Kaplan–Meier method and 
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compared with the results of the log-rank test. Hazard ratios with 95% 
confidence intervals (CIs) for 20 cancer types were collected and 
analyzed using the R package “metafor” based on a random effects 
meta-analysis model. [46] Statistical significance was defined at a 
p-value threshold of 0.05. All statistical analyses were carried out using 
R software version 4.1.0 [47] (https://www.r-project.org/) and 
GraphPad Prism (GraphPad Software, La Jolla, CA, USA). 

3. Results 

3.1. Patient characteristics 

In this study, we analyzed 12 published datasets that include RNA- 
seq data of different cancer types, namely, metastatic urothelial can-
cer, metastatic melanoma, gastric cancer, primary bladder cancer, renal 
cell carcinoma, and non-small cell lung cancer. The patients were 
treated with ICI (anti-PD-1/anti-PDL-1/anti-CTLA-4 monotherapy), 
ACT, MAGE A3 antigen-specific cancer immunotherapy, or BCG 
immunotherapy. ACT involves the autologous or allogeneic trans-
plantation of tumor-infiltrating lymphocytes or genetically modified T 
cells expressing novel T-cell receptors or chimeric antigen receptors, and 
it represents a highly intensive immunotherapy regime that has yielded 
remarkable response rates in clinical trials of melanoma. [1] MAGE-A3 
immunotherapy was designed to enhance humoral and cell-mediated 
immune responses against MAGE-A3-expressing cells. [2] BCG was 
initially developed as an agent for vaccination against tuberculosis, and 
it represents the first successful immunotherapy against established 
human bladder cancer. [3] CIT response data were available for 784 
patients in the 12 datasets and were included in the downstream anal-
ysis. A concise description of the 12 datasets is presented in Table S1. 
After correction, the RNA-Seq data from the 12 datasets were concate-
nated and randomly partitioned into two subsets, 70% as the training set 
and 30% as the validation set. In the training cohort, 808 candidate 
inflammatory response-related genes were extracted based on overlap 
between a specific GO annotation (GO: 0044546) and GSEA pathway 
gene (GOBP_INFLAMMATORY_RESPONSE). 

3.2. Construction of inflammatory response score 

The penalized maximum likelihood estimator was applied to 1000 
bootstrap replicates, and 808 candidate inflammatory response-related 
genes were analyzed using LASSO binomial regression to construct an 

inflammatory response risk score (Fig. 1A and B). The optimal values of 
the penalty parameter lambda (Fig. 1B) were determined via 10-fold 
cross-validation with 1 standard error. Coefficients were obtained to 
construct a model score composed of eight genes (Fig. 1C). 

The inflammatory response-predicting score was developed using a 
multivariable binary logistic regression model using the following 
formula: 

Inflammatory response score = (0.21491250 ×IL21 mRNA expres-
sion value) - (0.03889620 × EXT1 mRNA expression value) - 
(0.05185152 × ICAM4 mRNA expression value) + (0.17571700 × IFNG 
mRNA expression value) – (0.03137898 × LPAR1 mRNA expression 
value)– (0.01954522 × NOX4 mRNA expression value) 
+ (0.02632763 × TAPBP mRNA expression value) + (0.06288640 ×

TTBK1 mRNA expression value). 

3.3. Valuation of the inflammatory response score 

A binary classifier was generated using the ROCR package for the 
high- and low-score groups to determine their potential for differenti-
ating the corresponding responders (R) from the non-responders (NR). 
The inflammatory response score achieved AUCs of 0.70 (95% CI: 0.59, 
0.74), 0.67 (95% CI: 0.59, 0.74), 0.69 (95% CI: 0.66, 0.73) for the 
training, validation, and overall cohorts, respectively, which suggested a 
potential role for the inflammatory response score in predicting the 
response to CIT (Fig. 2A–C). 

Next, subjects in the training, validation, and overall cohorts were 
divided into high- and low-score groups using the optimal cut-off values 
of the inflammatory response score. The proportion of patients in the 
high- and low-score groups with 5-year survival was 62% (95% CI: 55, 
70%) and 21% (95% CI: 16, 29%; P < 0⋅001; Fig. 2D) in the training 
cohort, respectively; 54% (95% CI: 39, 74%) and 22% (95% CI: 14%, 
36%; P < 0⋅001; Fig. 2E) in the validation cohort, respectively; and 60% 
(95% CI: 54%, 67%) and 22% (95% CI: 17%, 28%; P < 0⋅001; Fig. 2F) in 
the overall cohort, respectively. The proportions of patients in the high- 
and low-score groups with 5-year progression-free survival (PFS) were 
47% (95% CI: 27%, 83%) and 15% (95% CI: 19%, 28%; P < 0⋅001; 
Fig. 2G) in the training cohort, respectively; 21% (95% CI: 5%, 94%) and 
5% (95% CI: 1%, 3%; P = 0⋅02; Fig. 2H) in the validation cohort, 
respectively; and 52% (95% CI: 30%, 91%) and 5% (95% CI: 4%, 27%; 
P < 0⋅001; Fig. 2I) in the overall cohort, respectively. These results 
suggested that the inflammatory response score showed a good ability to 
differentiate patient survival between the high- and low-score groups. 

Fig. 1. Constructing an inflammatory response score model for a cancer immunotherapy (CIT) cohort. A. LASSO coefficient profiles of the candidate inflammatory 
response genes. The horizontal coordinate deviance represents the ratio of the residual explanation, and the ordinate is the coefficient of the gene. B. Partial 
likelihood deviance of the covariates revealed by the LASSO regression binary model. Points correspond to the means, and error bars correspond to the standard 
deviations. The numbers above panels A and B represent the number of gene variables involved in the LASSO model. The units of panels A and B are expressed in 
arbitrary units (A.U.). C. Coefficient values for each of the eight selected genes. A positive weighting coefficient for a gene signature indicates that upregulation of this 
gene contributes to the probability of a specimen belonging to its type of CIT response. Coefficient values are expressed as arbitrary units (A.U.). 

S. Chen et al.                                                                                                                                                                                                                                    

https://www.r-project.org/


Computational and Structural Biotechnology Journal 23 (2024) 369–383

373

We also observed that the high-score patients had higher response rates 
(Fig. S2A-C). Subsequently, we found that the inflammatory response 
scores in patients who responded to immunotherapy were higher than 
those who showed no response in all three cohorts (Fig. 2J–L). These 
results also showed that patients in the high-score group were more 
appropriate for immunotherapy and a higher overall response rate was 

linked with high inflammatory response scores, which was consistent 
with the survival analysis findings above. 

Analysis of CIT data is complicated by unknown sample purity; thus, 
several algorithms for estimating sample tumor content based on tran-
scriptomic data have been developed. To address this issue, in the CIT 
cohort, we used the ESTIMATE algorithm [34] to calculate the tumor 

Fig. 2. Validation of the inflammatory response score model. A–C. Assessment of the sensitivity and specificity of the inflammatory response risk score model in 
each dataset using ROCR analysis. D–I. Kaplan–Meier curves of inflammatory response risk score. Kaplan–Meier curves for overall survival by different immune risk 
levels in the training (D), validation (E), and overall cohorts (F). Kaplan–Meier curves for progression-free-survival by different immune risk levels in the training (G), 
validation (H), and overall cohorts (I). J–L. Distribution of the inflammatory response to immunotherapy among samples in the training (J), validation (K), and 
overall cohorts (L). p values were computed via a one-sided Wilcoxon rank-sum test. 
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purity in each subject. We then conducted a correlation analysis of the 
inflammatory response scores and tumor purity and observed a negative 
correlation between them (Spearman R = − 0.47, P < 0.001, Fig. S3A). 
All patients were divided into low-purity and high-purity tumor groups 
based on the ESTIMATE score, with the median values as the cut-off: 
< 0.777 (low purity) and ≥ 0.777 (high purity). Then, using the me-
dian inflammatory response score as the boundary, samples were 
divided into high-score (> − 0.560) and low-score groups (< − 0.560), 
and a Kaplan–Meier survival analysis was conducted. The Kaplan–Meier 
curve analysis showed that the overall OS and PFS of the high-score 
group were significantly higher than those of the low-score group 
among the low- and high-purity sets (Fig. S3B and C). 

To determine whether the inflammatory response gene signature was 
an independent prognostic covariate, we tested it via multivariable Cox 
analyses of the CIT cohort. The inflammatory response score was an 
independent covariate for OS (Fig. 3A) and PFS (Fig. 3B) in the CIT 
cohort after adjusting for tumor purity scores. Furthermore, all samples 
were divided into four groups: group A: ESTIMATE scores > 0.777 and 
inflammatory response scores > − 0.560; group B: ESTIMATE scores 
> 0.777 and inflammatory response scores < − 0.560; group C: ESTI-
MATE scores < 0.777 and inflammatory response scores > − 0.560; and 
group D: ESTIMATE scores < 0.777 and inflammatory response scores 
< − 0.560. Log-rank tests demonstrated significant differences in the 
distribution of both OS (Fig. 3C) and PFS (Fig. 3D). Group A experienced 
a longer OS period than the other three groups (Fig. 3C). Although PFS 
did not significantly differ between Group A and the other three groups, 
a trend of longer PFS was observed in patients with high inflammatory 
response scores (Fig. 3D). 

Previous studies [10,11,21,48] have revealed that predictive signa-
tures derived from on-treatment samples of metastatic melanoma are 
superior to those derived from pre-treatment samples in terms of pre-
dicting ICB response. This indicates that the signatures in patients prior 
to and during ICB immunotherapy should be identified and evaluated. 

The sensitivity and specificity of the inflammatory response score 
between on- and pre-treatment metastatic melanoma tumor tissues were 
assessed using receiver operating characteristic (ROC) analysis. Since all 

on-treatment samples (n = 84) are treated with ICB therapy, we only 
performed the ROC analysis in 264 pre-treatment metastatic melanoma 
patients treated with ICB therapy. We found that the inflammatory 
response scores derived from the on-treatment tumor specimens had a 
higher AUC (0.80; 95% CI: 0.67, 0.93; Fig. 4A) than that those derived 
from the pre-treatment samples (0.66; 95% CI, 0.59, 0.72; Fig. 4B). The 
Kaplan–Meier cumulative curve indicated that patients with high scores 
survived significantly longer than those with low scores. The pro-
portions of patients with 5-year survival in the high- and low-score 
groups were 90% (95% CI: 73%, 100%) and 35% (95% CI: 24%, 51%; 
P < 0⋅001; Fig. 4C) in the on-treatment cohort, respectively; 69% (95% 
CI: 60%, 80%) and 33% (95% CI: 25%, 44%; P < 0⋅001; Fig. 4D) in the 
pre-treatment cohort, respectively. The proportions of patients with 5- 
year PFS in the high- and low-score groups were 57% (95% CI: 24%, 
100%) and 8% (95% CI: 3%, 23%; P < 0⋅001; Fig. 4E) in the on- 
treatment cohort, respectively; and 46% (95% CI: 33%, 65%) and 14% 
(95% CI: 6%, 31%; P < 0⋅001; Fig. 4F) in the pre-treatment cohort, 
respectively. 

Considering that the clinical characteristics of most of the patients in 
the CIT cohort were incomplete, a sub-group of 235 patients with met-
astatic urothelial cancer with complete clinical information was con-
structed. The AUC for predicting the response to CIT in patients with 
metastatic urothelial cancer according to the risk score was 0.71 (95% 
CI: 0.64, 0.78; Fig. S4A). Patients with high scores showed greater OS 
than those with low scores, and their 2-year survival rate was 63% (95% 
CI: 50%, 80%) and 27% (95% CI: 51%, 92%; P < 0.001, Fig. S4B), 
respectively. Multivariable Cox regression analyses showed that the 
inflammatory response score was independently correlated with sur-
vival, with a HR of 0.27 (95% CI: 0.14, 0.51; P < 0.001; Fig. S4C) in the 
metastatic urothelial cancer dataset. 

The CIT response is related to various treatment modalities in 
different entities. We further performed ROC analyses of the different 
cancer types and obtained AUCs of 0.82, 0.80, 0.71, 0.70, 0.67, and 0.64 
for the non-small cell lung cancer, gastric cancer, metastatic urothelial 
cancer, primary bladder cancer, metastatic melanoma, and renal cell 
carcinoma cohorts, respectively (Fig. S5A). The small sample size in the 

Fig. 3. Identification of inflammatory response score model associated with patient survival. A-B. Multivariate regression analysis of OS (A) and PFS (B) in patients 
from CIT cohorts. C-D. OS (C) and PFS (D) analysis among four groups stratified by both ESTIMATE scores and inflammatory response. P-values less than 0.05 are in 
bold in the figure. 
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Fig. 4. Evaluation of the inflammatory response score in tumor species of on-treatment and pre-treatment patients with metastatic melanoma. A–B. Receiver 
operating characteristic curves of inflammatory response risk score in predicting immunotherapy response between on-treatment and pre-treatment cohorts of 
patients with metastatic melanoma. C–D. Kaplan–Meier curves of inflammatory response score for overall survival by different inflammatory response score levels in 
the on-treatment (C) and pre-treatment cohort (D). E–F. Kaplan–Meier curves of inflammatory response score for progression-free survival by different inflammatory 
response score levels in the on-treatment (E) and pre-treatment cohort (F). 
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renal cell carcinoma cohort (n = 11) led to high uncertainty in model 
development, which limited the predictive performance of the model. In 
response to CIT, cells within the tumor microenvironment may undergo 
significant alterations at the transcriptome level. Tumor tissues collected 
before and after treatment may show a high degree of heterogeneity and 
thus could obtain a low AUC value for the metastatic melanoma cohorts. 

Two out of eight genes (IL21 and IFNG) included in the inflammatory 
response score presented substantially higher coefficients in the final 
model (Fig. 1C), meaning that they outweigh the overall score value. 
This is in line with previous reports on the predictive significance of 
tumor expression of IL21 [49] and IFNG [9]. An analysis of the pre-
dictive performance of the signatures of the two genes (IL21 +IFNG) 
revealed that the ROCs of the training and test cohorts were 0.65 and 
0.67, respectively (Fig. S5A and B). Although the accuracy of the eight 
genes is indeed slightly improved, an assay based on the score of the two 
genes (IL21 +IFNG) may have greater potential for use in treatment 
monitoring because it is superior in terms of both financial and technical 
handiness. 

3.4. Association between inflammatory response score and immunity in 
the CIT cohort 

To assess the relationship between inflammatory response scores and 
immune responses in patients with cancer receiving CIT, we compared 
the ESTIMATE [34], EPIC [50], MCPcounter [36], Immune AI [37], 
CIBERSORT [38], Xcell [39], and ssGSEA [41] algorithms and estimated 
the changes of immune cell types and functions between the high- and 
low-score groups based on inflammatory response gene signatures in the 
overall CIT cohort (Fig. 5A, Table S4). Correlation analysis revealed that 
the infiltration of effector and NK cells and immune functions, including 
checkpoint molecules, co-stimulatory ligands, co-stimulatory receptors, 
cytolytic (CYT) activity, interferon (IFN) response, MHC-I, MHC-II, T 
helper 1 cell (Th1), T helper 2 cell (Th2), and tumor-infiltrating 
lymphocyte (TIL) signatures was significantly higher in the high-score 
group than in the low-score group (Fig. 5B, Table S5). We also 
observed that the higher the model score, the higher proportion of im-
mune cell infiltration, including B cells, effector cells, and NK cells 
(Fig. 5C). 

In addition, we further investigated the differences in the expression 
of eight immune checkpoints between the high- and low-score groups. 
Patients with higher HAVCR2, TIGIT, BTLA, CD274, CTLA4, LAG3, 
PDCD1, and PDCD1LG2 levels presented a higher inflammatory 
response score (Fig. 5D–K, Table S6). 

3.5. Comparison of inflammatory response signatures and published 
predictive signatures 

We then evaluated the predictive performance of the inflammatory 
response signatures derived from on-treatment specimens. To this end, 
we further compared the inflammatory response scores against those of 
previously reported transcriptome-based predictive signatures, 
including the epithelial-to-mesenchymal transition (EMT). Sig [51], 
immuno-predictive score (IMPRES). Sig [52], innate anti-PD-1 resis-
tance (IPRES). Sig [53], LRRC15 + carcinoma-associated fibroblasts 
(LRRC15. CAF). Sig [54], immune-related genes (IRG). Sig [55], 
anti-CTLA4 resistance MAGE gene (CRAM). Sig [56], PDL1. Sig [57], 
plasma.cells.Sig [58], cytolytic activity (CYT). Sig [59], and CD8. Sig 
[57]. This analysis indicated that the inflammatory response signature 
derived from on-treatment specimens was the most effective at pre-
dicting the responses to ICB therapy (Fig. 6, Table S7). 

3.6. Pan-cancer profiling of inflammatory response scores 

To explore the pan-cancer distribution characteristics of the in-
flammatory response scores, we analyzed approximately 7000 tumors of 
20 cancer types from TCGA. These 20 cancers showed significant 

differences in the inflammatory response scores (analysis of variance, 
P < 0⋅0001, Fig. 7A, Table S8), indicating a distinctive intensity of 
inflammation with diverse cancers. Lung adenocarcinoma (LUAD) and 
ovarian serous cystadenocarcinoma (OV) had the highest and lowest 
average inflammatory response scores, respectively. 

Univariate Cox regression analyses for the TCGA cohort suggested 
that the inflammatory response risk score was associated with a good 
prognosis in a wide array of tumor types, including BRCA, BLCA, CESC, 
GBM, THCA, HNSC, SKCM, and LUAD. In a meta-analysis, the inflam-
matory response risk score tended to be associated with a good prognosis 
in terms of OS (Fig. 7B, Table S9). The proportion of cancer cells in a 
tumor sample is called the tumor purity, and it represents an important 
factor to consider in genomic analyses of bulk tumors. TCGA analyses 
are complicated with unknown tumor purity, and consensus measure-
ment of purity estimation (CPE) [60] algorithms for estimating sample 
tumor content based on transcriptomic data have been developed to 
address this issue. Patients in the TCGA cohort were divided into three 
groups based on their CPE scores using the following cut offs: < 0.6 
(low-purity group), 0.6–0.9 (medium-purity group), and ≥ 0.9 (high--
purity group). For each group, a meta-analysis analysis was conducted 
on subgroups to determine their survival. We found that the inflam-
matory response score tended to be associated with a longer OS in the 
low-purity group and medium-purity group but not in the high-purity 
group (Fig. S6). These results revealed that the predictive performance 
of inflammatory response scores in patients who had not undergone 
immunotherapy could be affected by the purity of the tumor. 

3.7. Inflammatory response score is significantly correlated with 
immunity in 20 cancer types 

To elucidate the association between the inflammatory response risk 
score and tumor immunity, GSEA was performed. This analysis indi-
cated significant enrichment of genes involved in immune-related 
pathways in hallmark gene sets, particularly the interferon alpha/ 
gamma response pathways, in all 20 cancer types with high inflamma-
tory response scores. This suggests that a high inflammatory response 
score is markedly associated with the interferon alpha response and 
interferon gamma response signaling pathways (Fig. 8A, Table S10). 
These findings were further validated using Reactome gene sets (Fig. S7, 
Table S11). 

Furthermore, we examined diverse immune signatures, including 
checkpoint molecule, co-stimulatory ligand, co-stimulatory receptor, 
immune CYT, IFN response, MHC-I gene, MHC-II gene, and TIL infil-
tration signatures. Each immune signature includes several representa-
tive gene markers (Table S3). The CYT scores were defined by granzyme 
A and perforin expression, which are dramatically reflected the activa-
tion of CD8 + T cell and immune status [34]. IFNs can modulate innate 
immune responses in a balanced manner that promotes antigen pre-
sentation and NK cell functions [34]. The MHC is a group of genes that 
encode proteins on the cell surface that have an important role in im-
mune response. Their main role is to bind peptide fragments derived 
from genomic mutations or pathogens and display them on the cell 
surface for recognition by cognate T cells to initiate an immune 
response. [61] TILs are a mixture of proinflammatory immune cells in 
the tumor microenvironment, including cytotoxic T cells, helper T cells, 
regulatory T cells, and B cells. They can influence the prognosis of cancer 
patients by directly or indirectly participating in immune responses [8]. 
Strikingly, we found that the inflammatory response score was highly 
correlated with the CYT and TIL immune signatures in the 20 cancers 
(Fig. 8B, Table S12). Given the high degree of correlation between the 
immune response score and CYT among these five immune signatures, 
we performed a marker gene expression analysis based on a ssGSEA, the 
TIMER database, and data from Thorsson et al. to further illustrate the 
relationships between the score and effector cells and NK cells. These 
cells mainly secrete GZMA and PRF1, which represent an indicator of 
CYT in tumors. We obtained consistent results from the ssGSEA 
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Fig. 5. Validation of the inflammatory response score model. A. Heatmap for immune responses based on the ESTIMATE, EPIC, MCPcounter, Immune AI, 
CIBERSORT, Xcell, and single-sample gene set enrichment analysis (ssGSEA) algorithms among high and low score groups. B. Correlation matrix heat map showing 
the relationship between inflammatory response risk scores and expression levels of immune cell and immune signatures in the cancer immunotherapy cohort. R: 
Spearman’s correlation coefficient. C. Expression of immune cell and immune signature between high- and low inflammatory response score groups. 
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(Fig. 8C–D), TIMER database (Fig. 8E–-F), and Thorsson et al. data 
(Fig. 8G–H), which showed that LUAD, LUSC, UCEC, BLCA, CESC, 
LIHC, BRCA, COAD, SKCM, KIRC, THCA, and HNSC (Table S12) dis-
played higher levels of effector cells and NK cell infiltration in the 
high-score group compared with the low-score group (Mann–Whitney U 
test, P < 0⋅05 for all cases). This suggested that the inflammatory 
response signature score may influence tumor immunity mainly by 
mediating the CYT of immune cells, which is consistent with the tumor 
immunity analysis in the CIT cohort. 

Significant associations between the inflammatory response score 
and immune checkpoints at the individual level across the 20 cancer 
types were observed (Fig. 8H). Subsequently, estimation of the immune 
checkpoint levels revealed that 17 cancer types (BLCA, BRCA, CESC, 
COAD, ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC, OV, READ, SKCM, 
STAD, THCA, and UCEC) demonstrated a significant increase in check-
point molecule scores in the high-score group compared with the low- 
score groups, whereas three cancer types (KIRP, PAAD, and PRAD) did 
not (Fig. 8J). 

3.8. IL21 significantly increased the cytotoxicity of CD8 + T cells 

Using the inflammatory response score model, the score with the 
highest weight was assigned to IL21. To determine whether IL-21 pro-
moted the cytotoxicity of CD8 + T cells co-cultured with melanoma 
cells, CD8 + T cells/SK-MEL-246 cells were co-cultured alone in 12-well 
plates in normal medium or medium treated with IL-21 (human re-
combinant IL-21) and/or anti-PD1 monoclonal antibody (Trepril 
monoclonal antibodies). Flow cytometry revealed that the cytotoxic 
activity of CD8 + T cells was improved after treatment with IL- 
21 + anti-PD1 monoclonal antibody (Fig. 9A and B). 

4. Discussion 

Cancer immunotherapy (CIT) has revolutionized the treatment of 

multiple types of tumors [62], although only a subset of patients has 
shown profound clinical benefits and durable responses [63]. To opti-
mize therapeutic decision-making, robust and concise features that 
predict CIT treatment response must be identified. 

Inflammation of the tumor microenvironment is an important event 
that impacts the therapeutic response and survival. In this study, we 
evaluated the potential response to CIT therapy by building a concise yet 
effective predictive model based on only eight inflammatory response 
genes. Our study demonstrated that inflammatory response gene scores 
are effective biomarkers of CIT responses. Regardless of the tumor pu-
rity, patients in the low-score group had a significantly poorer prognosis 
than those in the high-score group. Previous studies have pointed out 
that a high-inflammation tumor microenvironment contains an abun-
dance of proinflammatory cytokines, such as IL-1β, IL-12 and IL-2, 
which contribute to T-cell activation and expansion. [12] The results 
of the immunity analysis in the CIT cohort revealed that TILs, including 
B cells, effector T-cells, M1 macrophage cells, and Th1 cells, were 
significantly increased in the high score group, and that some 
immune-activated functions (i.e., T-cell co-stimulation, MHC-mediated 
antigen presentation, and CYT activity) were significantly enriched in 
the high-score group compared with the low-score group. This might 
explain why patients with high inflammatory response scores had a 
higher rate of response to CIT, their trend towards longer OS, and 
significantly better PFS compared with those patients with low scores. 

Previous studies have suggested that on-treatment tumor samples 
can more reliably predict patients’ endocrine therapy responses 
compared to pre-treatment samples in breast cancer [64,65]. However, 
gene signatures capable of predicting response to CIT therapies in mel-
anoma have largely been identified based on the association between 
pre-treatment samples and patients’ clinical response. We assessed the 
performance of inflammatory response gene signatures in predicting the 
responses of melanoma to ICB therapy and found that the AUC for the 
inflammatory response gene signatures derived from the on-treatment 
samples was 0.80, which was more informative than the AUC for the 

Fig. 6. Comparison of predictive performance of inflammatory response gene signature against other CIT response signatures. Bar plots of AUCs for 11 CIT response 
signatures are shown for the on-treatment cohorts. Each cohort’s sample number is shown in the legend. 
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inflammatory response gene signatures derived from the pre-treatment 
samples. Our results demonstrated that the inflammatory response 
gene signature scores for on-treatment samples are more robust pre-
dictors of the response to ICB in metastatic melanoma. As cancer ther-
apies generally induce complicated changes in genes, it makes sense that 
on-treatment samples may provide more valuable insights into the dy-
namic changes at the transcriptional level correlated with clinical 
response. These findings have implications for treatment selection in 
current clinical practice because most studies have used pretreatment 
biopsies to construct prediction signature. Accurate on-treatment sig-
natures scores can help medical oncologists identify subgroup of 

patients who will more likely benefit from CIT therapies. Inflammatory 
response gene signatures from on-treatment samples can be used to 
identify patients who will not benefit from CIT treatment immediately 
after treatment initiation before substantial toxicities and costs are 
incurred. 

Furthermore, we defined the inflammatory response score spectrum 
of over 7000 tumor samples from 20 cancer types. Owing to the tissue- 
specific/cell-specific role of inflammatory response intensity, there are 
discrepancies in the inflammatory response scores in diverse cancers. 
The inflammatory response score was significantly associated with OS in 
BRCA, KIRP, GBM, BLCA, THCA, SKCM, HNSC, KIRC, LUAD, and CESC, 

Fig. 7. Inflammatory response score analysis in 20 cancer types. A. Inflammatory response risk scores among all samples grouped by cancer. Risk scores of each 
patient are measured on a scale of 0–1. B. Results of the Cox proportional hazards regression of the OS analysis using inflammatory response risk scores for 20 cancer 
types. If the p-value is less than 0.05, it is shown in bold font. A random-effects meta-analysis was used to generate the pooled hazard ratios and p-values. Statistical 
test of heterogeneity is shown in the last column. 
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and similar immunity analysis results were obtained for the TCGA 
cancer type cohort. However, the prognostic performance of inflam-
matory response scores in TCGA cancer patients can be affected by 
tumor purity, which was inconsistent with above results found for the 
CIT cohort. These findings indicated that researchers need to be cautious 
when using inflammatory response scores to predict survival of cancer 
patients who have not received immunotherapy. 

The expression levels of immune checkpoint genes, such as those 
encoding PD-1, PDL-1, and CTLA-4, have been explored as biomarkers 
for the prediction of the CIT response. [66] The inflamed-tumor immune 
microenvironment is characterized by high infiltration of cytotoxic T 
lymphocytes (CTLs) expressing PD-1 and tumor cells expressing PDL-1 
[67]. In our study, a significant association between inflammatory 
response scores and immune checkpoint gene levels was found in both 
the CIT cohort and all 20 TCGA cancer types, indicating that patients in 
the high-score group were more likely to have an infiltrated-inflamed 
tumor microenvironment. This indicated that patients with cancer in 
the inflammatory response low-score group received local application of 
inflammatory signals to amplify the pro-inflammatory signals and pro-
mote immune cell recruitment, whereas those with high scores also 
encountered a blockade of immune inhibitory pathways mediated by 
immune checkpoints. 

IL21 showed the highest prognostic significance in patients with 

cancer undergoing CIT. Previous studies have demonstrated the anti-
tumor effects of IL21 in the immune microenvironment. For example, 
IL21 exerts antitumor effects by enhancing the cytotoxicity of CD8 + T- 
cells and NK cells. [68,69] IL21 therapy combined with checkpoint 
blockades enhances the antitumor effect by inducing NK cells to tumor 
sites and reducing the frequency of dysfunctional tumor antigen-specific 
CD8 + T-cells inside the tumor microenvironment. [70,71] In our study, 
we reported similar results and showed that the cytotoxic activity of CD8 
T-cells was increased when using IL21 + anti-PD1 antibody treatment in 
CD8 T cells/SK-MEL-246 cells compared to that of the PBS group. The 
high-score group with an immune activation environment expressed 
high levels of checkpoint molecules, probably due to the high expression 
levels of IL21. 

This study has several limitations. First, the prediction response rate 
needs to be improved further. The AUC was approximately 0.7 in the 
training cohort and 0.67 in the test cohort. In the CIT cohort, the in-
flammatory response scores had relatively higher AUC values for the 
response for non-small cell lung cancer and gastric cancer but lower AUC 
values for renal cell carcinoma. Thus, inflammatory response scores 
exhibited varying predictive implications in different tumor types 
because of tumor heterogeneity. The inflammatory response score ap-
pears represent an appropriate initial estimate of inflammatory re-
sponses in cancers and should not be considered a prediction. Second, 

Fig. 8. Relationships between inflammatory response scores and signaling pathways and immunophenotypes. A. Relationships between inflammatory response risk 
scores and signaling pathways in patients with cancer with high and low scores. Normalized enrichment scores (NES) and p-values were determined using the GSEA 
algorithm. B. Correlation of inflammatory response scores with diverse immune signatures including CYT, TILs, IFN, MHCI, and MHCII in 20 cancer types from The 
Cancer Genome Atlas (TCGA). R: Spearman’s correlation coefficient. D–I. The infiltration levels of effector cells and natural killer (NK) cells in the low and high 
score groups were stratified by the inflammatory response risk scores in 20 cancer types from TCGA using marker gene expression analysis (D–E), the TIMER 
database (F–G), and the data of Thorsson et al. (H–I). P values were calculated on the Mann–Whitney test. J: Correlation between checkpoint molecule scores and 
inflammatory response scores in 7729 cancer samples. R: Spearman’s correlation coefficient. J: The checkpoint molecule scores in low and high risk score groups 
stratified by the inflammatory response risk scores in 20 cancer types. P values were calculated on the Mann–Whitney test. 

Fig. 9. Frequency of perforin+CD8 + T cells is increased in CD8 T cells/SK-MEL-246 cells treated with IL21 plus Anti-PD1 monoclonal antibody. Representative 
FlowJo smoothing coexpression of CD8 with perforin (A). Data are represented as box and bar graphic plots (B), and error bars represent the mean and SD (n = 3). P 
values were calculated based on a Student test. 
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owing to dataset access limitations, the RNA-Seq data for approximately 
700 patients were obtained and analyzed in the study. However, a 
higher number of patients are required to verify the immunotherapy 
response model in the future. Third, it is impossible to evaluate whether 
the model can serve as an independent prognostic factor for bladder 
cancer or other cancer types due to a lack of complete clinical variables. 
Finally, the detailed mechanism underlying the impact of most model 
genes on the response to immunotherapy is unclear. Therefore, this issue 
is worthy of further study. 

In conclusion, we developed and validated an immunotherapy 
response prediction model for multiple cancers that involves the 
expression of inflammatory response genes. Inflammatory response 
score signatures derived from on-treatment samples have a high ability 
to predict the efficacy of CIT response in patients with metastatic mel-
anoma. Our data also suggest that inflammatory response genes can 
serve as independent prognostic factors in BLCA under CIT conditions. 
Further immunity analyses indicated that inflammatory response gene 
signatures may influence tumor immunity, mainly by mediating CYT 
and TILs, particularly effector cells and NK cells. Our study highlighted 
the impact of the inflammatory response scores on the immunotherapy 
response. These findings can pave the way for further investigations on 
the prognostic and therapeutic potential of inflammatory response 
scores. Moreover, an inflammatory response model should be developed 
as a new approach for predicting patient survival and response to cancer 
immunotherapy. 
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