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1  |  BACKGROUND

Neuroinflammatory disorders are characterized by the implications 
of both peripheral infiltration and local immune-mediated targeting 
of various central nervous system (CNS) components, which can 
typically contribute to neuroaxonal and glial degeneration, followed 
by gross atrophy (Gilhus & Deuschl, 2019). Whereas the diagnosis 
of neuroinflammatory disorders had previously been based on the 
clinical presentation of symptoms, we are now offered the oppor-
tunity to glimpse the processes in vivo using magnetic resonance 
imaging (MRI) (Gilhus & Deuschl,  2019). Moreover, conventional 
MRI allows for qualitative identification of neuroinflammation, and 
more recent advancements in this field now also enable quantitative 
monitoring of various neuroinflammatory and neurodegenerative 
processes (Kremer et al., 2015; Magnims et al., 2015). Multiple scle-
rosis (MS) is one of the most prominent chronic neuroinflammatory 
disorders and is characteristically defined by both focal and diffuse 
inflammatory-mediated demyelination and neuroaxonal degenera-
tion (Reich et al.,  2018). Despite a well-established understanding 
of typical conventional imaging MRI biomarkers for MS that thereby 
facilitate the diagnosis (Thompson et al.,  2018), there remains a 
wide range of neuroinflammatory disorders and mimics with signif-
icant MRI-based imaging similarities that contribute to misdiagnosis 
(Geraldes et al., 2018). A multicenter study revealed that MS misdi-
agnosis resulted in the development of unnecessary disability in a 
significant proportion (31%) of patients due to the improper applica-
tion of the McDonald diagnostic criteria (Solomon et al., 2016, 2019).

One of the foremost MS mimics to consider, which was previ-
ously considered to be a severe optic-spinal MS variant (Lennon 
et al., 2004, 2005), is the neuromyelitis optica spectrum disorders 
(NMOSD). This overlap is particularly due to the relapsing clinical 
nature of NMOSD, which shares considerable overlap with the 
relapsing–remitting (RRMS) subtype of MS and radiological fea-
tures, as emphasized in Figure  1a (Geraldes et al.,  2018; Solomon 
et al., 2021). Differentiating NMOSD from MS is of significant im-
portance for patients, particularly considering that the treatment 
options and prognosis vary (Piehl,  2021; Wallach et al.,  2021). 
Without proper diagnosis and subsequent treatment, approximately 
50% of persons with NMOSD will require a wheelchair and have se-
vere visual impairment within 5 years of their first symptoms, and 
approximately a third of will have died (Huda et al., 2019). The re-
cent development of numerous promising disease modulatory ther-
apies has provided a more positive outlook for those with NMOSD 
(Cree et al., 2019; Pittock et al., 2019; Traboulsee et al., 2020; Zhang 
et al., 2020). Importantly, NMOSD is distinct from the pathology of 
MS, in that the autoimmunity, for most, targets the astrocytic aqua-
porin 4 (AQP4) water channels along astrocytic end-feet that main-
tain the blood–brain barrier and brain-CSF interfaces rather than 
the myelin insulation axons, as in MS. The byproduct of AQP4-IgG 
antibody-mediated targeting is an astrocytopathy with increased 
water permeability, and cytokine release followed by the swelling 
of astrocytes (Chang & Chang, 2020). However, there is a portion 
of those with NMOSD who are seronegative for AQP4-IgG auto-
antibodies, and among them, a majority has been found to have 
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antibodies for myelin oligodendrocyte glycoprotein (MOG-IgG), de-
veloping MOG antibody disease (MOGAD). At last, acute dissem-
inated encephalomyelitis (ADEM), another MS mimic disorder, is 
closely related to MOG-IgG and becoming well-recognized, partic-
ularly in children (Narayan et al., 2018).

The sensitivity of conventional MRI in identifying inflammation 
in the CNS has made MRI investigation a common clinical standard 

investigatory procedure following neuropathological suspicion 
(Albrecht et al., 2016). The importance of MRI as a paraclinical tool 
in the diagnosis of MS is exemplified in the most recent iteration of 
the McDonald criteria; where MRI can solely satisfy both diagnos-
tic principles of dissemination of pathology in both time and space 
(Thompson et al.,  2018). Diagnostically characteristic MS lesions 
will occur in periventricular, cortical/juxtacortical, and infratentorial 

F I G U R E  1  Advanced MRI quantification of myelin and neuroaxonal integrity in MS and NMOSD. (a) Myelin quantification: Synthetic 2D 
T2-weighted FLAIR axial image and the corresponding 2D SyMRI-based myelin content map in: healthy control, 56-year-old female healthy 
participant; NMOSD (AQP4+), a 60-year-old female participant; PPMS, a 53-year-old female participant; RRMS, a 40-year-old female 
participant, and SPMS, a 44-year-old female participant. (b) Neurite integrity: T2-FLAIR image highlighting two apparently similar MS lesions 
in a young female with RRMS. NODDI reveals that the posterior lesion (right-most) is differentiated by less pronounced axonal loss, more 
edema, and heterogeneous microstructural integrity relative to the frontal lesion (left-most). The neurite density index is representative of 
neuroaxonal and glial densities. The isotropic fraction infers CSF or parenchymal edema. The orientation dispersion index is suggestive of 
axonal fanning or interneurite spacing. NODDI measures are a quantitative unitless scale of 0–1. (c) 3D Myelin quantification: Myelin maps 
from a newly developed 1.2 mm isotropic 3D SyMRI prototype (≈8 min acquisition) of a 30-year-old male, which represents an approximate 
2.9× improvement in resolution relative to typical prior 2D SyMRI acquisitions at 1 × 1 × 5 mm3 (accounting for slice gap in relative 
resolution). AQP4+, aquaporin 4 seropsitivity; FLAIR, fluid attenuated inversion recovery; mm, millimeter; NODDI, neurite orientation 
density and dispersion imaging; NMOSD, neuromyelitis optica spectrum disorders; PPMS, primary progressive multiple sclerosis; RRMS, 
relapsing–remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis
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brain regions and the spinal cord (Bakshi et al.,  2008; Thompson 
et al.,  2018). Whereas characteristic MRI-based pathology in 
NMOSD will more often occur in the form of (i) periependymal brain 
lesions, (ii) extensive optic nerve lesions, and (iii) longitudinally ex-
tensive transverse myelitis (LETM) of the spinal cord (Solomon 
et al., 2021). However, conventional MRI lacks specificity to some 
of the various targets and processes associated with neuroinflam-
matory disorders. Moreover, conventional MRI, while sensitive and 
highly qualitatively valuable has limited quantitative comparison 
across imaging sessions. Therefore, the diagnostic and monitoring 
value of MRI across all neuroinflammatory disorders could be further 
improved by using advanced quantitative MRI (q-MRI) techniques 
that may provide additional insight into the disease and offer new 
diagnostic possibilities (Kremer et al., 2015; Magnims et al., 2015). 
Recent technological and hardware developments have allowed 
for more substantial probing of tissue integrity in the clinical set-
ting (Granberg et al., 2016). Numerous non-conventional advanced 
q-MRI neuroimaging approaches have demonstrated utility in char-
acterizing the primary pathological features of neurological disor-
ders, specifically those with a significant neuroinflammatory and/
or neurodegenerative component (Filippi et al., 2019). The value of 
q-MRI in predicting both physical and cognitive disability worsening 
in MS has been demonstrated to exceed that of conventional lesion 
volume measures (Ouellette, Mangeat, et al., 2020). Representative 
SyMRI myelin (rapid estimation of myelin, REMyDI) and neurite ori-
entation density and dispersion imaging (NODDI) maps for healthy, 
MS, and NMOSD participants enrolled in our prospective studies are 
presented in Figure 1.

Historically, MS was stereotypically described as a neurologi-
cal disease of the cerebral white matter. More recently, the major-
ity of the field has begun to address gray matter (GM) pathology 
in MS. Notably through specific conventional cortical imaging se-
quences (at 3 T), phase-sensitive inversion recovery (PSIR), or double  
inversion recovery (DIR), to capture cortical lesions, but more sen-
sitively at ultra-high field strength (7 T), typically by T2*-weighted 
imaging (Mainero et al.,  2009). Gray matter pathology has been 
demonstrated to extensively occur in MS histologically (Lucchinetti 
et al., 2011), by 7 T MRI in the cortex (Treaba et al., 2019), and deep 
GM (Mehndiratta et al., 2021), while being related to clinical disabil-
ity (Ouellette, Treaba, et al., 2020). Moreover, significant neuroaxo-
nal degeneration (Granberg et al., 2017) and demyelination (Louapre 
et al., 2015) have been observed to occur beyond cortical lesions, as 
captured by q-MRI techniques. However, the patterns in which GM 
alterations occur in NMOSD relative to MS, particularly in early MS, 
remain undetermined.

There is a significant value in the application of non-conventional 
q-MRI techniques to characterize and map the contributing patho-
physiological processes across neuroinflammatory disorders to 
better understand their dynamics, thereby supporting potential fol-
low-up for serological testing in clinical cases where conventional 
MRI white matter signal abnormalities share neuroanatomical simi-
larity. We can further our understanding of these relatively more re-
cently identified neurological disorders by contrasting their patterns 

of pathology with disorders that are more frequently investigated, 
such as MS, as done here by Andica and colleagues.

2  |  CONTRIBUTION OF THE PRESENT 
WORK TO THE FIELD

The findings of the present cohort by Andica and colleagues echo 
and expand upon findings from prior studies in MS and NMOSD. 
The neuroanatomical agreement across the nonconventional  
q-MRI techniques for tissue integrity underlines the significance 
and/or susceptibility of the limbic and paralimbic regions in both MS 
and NMOSD. In MS, reduced tissue integrity, by R2* or 1/T2*, has 
been observed in the limbic cortices to be related to physical and 
cognitive clinical disability (Wen et al.,  2017). Interestingly, there 
have been numerous case reports of limbic encephalitis as an initial 
clinical presentation in AQP4-IgG+ NMOSD (Seok et al., 2019) and 
MOG-IgG+ ADEM (Uchigami et al., 2020). However, the reason for 
the neuroanatomical significance involvement of the limbic system 
in MS and NMOSD is less well-characterized. Here, Andica and col-
leagues present significantly lower neurite density in the cerebellar, 
limbic, and paralimbic cortices of participants with NMOSD relative 
to both healthy participants and those with RRMS. Take, for exam-
ple, the parahippocampal cortex, a significant region in this study 
that was identified across DTI, NODDI, and myelin content metrics. 
The parahippocampus has extensive connectivity to various brain 
regions, including temporal, frontal, parietal cortices, and deep GM 
structures (Aminoff et al.,  2013). Any severing of the intermedial 
connectivity could produce an indirect degeneration via Wallerian 
degeneration. Alternatively, in the parahippocampal region, there 
could be a differential expression of the primary pathological driver 
in NMOSD, AQP4, which has been shown to differ based on the ratio 
of astrocytic M1/M23 proteins (Eshaghi et al., 2016; Saji et al., 2013). 
Therefore, the difficulty lies in whether you are observing a reduc-
tion of tissue integrity (demyelination/axonal or astrocyte degen-
eration) due to primary disease-specific pathology or secondary 
degeneration following a distant lesion, which also has topological 
variance between MS and NMOSD. Longitudinal prospective stud-
ies that include a connectivity paradigm will be required to address 
this.

One of the more intriguing observations is the value of the 
NODDI neurite integrity metrics relative to the myelin quantifica-
tion of SyMRI, not only across all comparisons but also particularly 
for the comparisons including participants diagnosed with RRMS, a 
demyelinating disorder. There have been prior studies on patients 
with early RRMS (>5 years disease duration) with diffusion-based 
imaging abnormalities, using the composite hindered and restricted 
model of diffusion (CHARMED) (De Santis et al.,  2019; Mangeat 
et al., 2018; Toschi et al., 2019). Granted, the participants included 
here by Andica and colleagues are participants with RRMS rather 
than the more progressive subtypes, and therefore, there would, 
overall, be less demyelination. However, with a disease duration  
average exceeding 10-years and some more advanced EDSS scores, 
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I would have expected there to be some more group differences 
observed, particularly concerning healthy control participants. I be-
lieve this is most likely due to a combination of the region of interest 
and the sequence parameters. First, the region of interest, mainly 
the cortical gray matter, which can be appropriately described as 
the “cortical ribbon” a highly convoluted and thin structure that var-
ies with a global cortical thickness to be approximately ≈2.5 mm in 
healthy individuals (Lemaitre et al., 2012) and roughly ≈2.3 in par-
ticipants with MS (Ouellette, Treaba, et al.,  2020). Therefore, to 
reasonably estimate the cortex, particularly by quantitative voxel-
wise analysis, at the very least, one voxel should be able to mostly 
fit within the cortex, approximately 1.5 mm isotropic would be most 
ideal. Additionally, a true 3D sequence would be the most ideal ap-
proach as 3D imaging conventional imaging is the clinical standard 
for most sequences at most facilities.

3  |  FUTURE CONSIDER ATIONS

Certainly, moving forward, there needs to be diversification and 
expansion of enrollment to more fully account for the spectrum 
of disorders indicated in the grouping of NMOSD, namely, AQP4-
IgG+ NMOSD, MOG-IgG+ (MOGAD), double seronegative NMOSD 
(AQP4-IgG− and MOG-IgG−), and also comparable neuroinflammatory 
disorders, ADEM and systemic lupus erythematosus (SLE). There is 
sincere value for including other neuroinflammatory MS mimics, al-
lowing the comparative differences across these neuroinflammatory 
disorders to shed light not only on their individual pathophysiology 
but identifying differences and shared observations across the disor-
ders. There has also been increasing application of machine learning 
approaches with q-MRI data to support differential diagnosis between 
neuroinflammatory disorders that share imaging similarities (Mangeat 
et al., 2020). Comparative evaluation could potentially shed more light 
on these diseases' pathophysiological dynamics and facilitate the de-
velopment of disease-specific biomarkers, as has been done for some 
of the relatively more recently identified MRI hallmark biomarkers 
being identified in MS, including chronic paramagnetic rim lesions 
(Absinta et al., 2016), cortical lesions (Mainero et al., 2009), and cen-
tral vein lesions (Sati et al., 2016). Potentially moving forward, at higher 
field strengths (7 T) and more q-MRI techniques with larger cohorts, 
we can surmise the clinical value of stacking these unique biomarkers 
relative to other neuroinflammatory disorders.

There is a unique role of nonconventional and advanced q-MRI 
to support the imaging arm of large multisite cross-collaboration 
clinical research initiatives. The added research and clinical value are 
most emphasized in q-MRI techniques that have demonstrated: (i) 
histological validation, (ii) repeatability/reproducibility, and (iii) clin-
ical utility. The development of 3D SyMRI imaging (Figure 1c) of the 
brain and spinal cord would hold value for future studies, specifically, 
for characterizing cortical pathology, as done here. The increased 
signal-/contrast-to-noise provided by ultra-high field 7 T MRI of the 
brain and spinal cord across neuroinflammatory disorders could pro-
vide heightened sensitivity in identifying pathological differences 

across disorders (Ouellette, Treaba, et al., 2020). Notably, 7 T MRI 
could be valuable in identifying the relationship between vasculature 
(T2* effect) and pathology as derived by paramagnetic disturbances 
related to iron distribution in susceptibility-weighted imaging (SWI) 
in neuroinflammation. The rarity of some of these neuroinflamma-
tory disorders shifts the emphasis away from “quantity” toward that 
of “quality” and richness of the data, thereby providing a heightened 
necessity to layer in additional advanced multimodal techniques in 
these cohorts. To that end, positron emission tomography (PET) im-
aging of inflammation (11C-PBR28) mediated by activated microglia/
macrophages has been found to be increased in the GM (Herranz 
et al.,  2016, 2019) and cerebellum (Barletta et al.,  2019) of those 
with MS, which shares considerable overlap with the observations 
described in this study by Andica and colleagues.

Recent technological advancements now allow for faster imag-
ing and the ability to stack more q-MRI techniques into a clinical 
acquisition without the drawback of increasing the scanning dura-
tion. A few of the recent more promising techniques include simulta-
neous multislice (Ye et al., 2016), wave-controlled aliasing in parallel 
imaging (Wave-CAIPI) (Bilgic et al., 2015), compressed sense (Ning 
et al.,  2016), and time-resolved imaging for ultra-fast multipara-
metric quantitative MRI (3D-EPTI) (Wang et al., 2022). Large-scale 
real-world q-MRI data sets would support clinical decision-making, 
not only in the diagnosis but also in treatment monitoring. This is 
well-evidenced in MS, where increasingly effective immunomodu-
latory treatments that virtually completely block new focal lesion 
formation; the next boundary is to develop novel therapies to re-
duce residual innate inflammation and/or facilitate remyelination 
(Piehl, 2021). This observation is comparably echoed by the recent 
successive introduction of disease modulatory therapies in AQP4-
IgG+ NMOSD (Cree et al.,  2019; Pittock et al.,  2019; Traboulsee 
et al., 2020; Zhang et al., 2020). The subsequent analysis of where/
how these therapies modulate specific disease processes using in 
vivo q-MRI can allow for a more individualized approach for patients 
with neuroinflammatory diseases, as well as providing a crucial eval-
uation tool for novel drug development. This is well demonstrated 
for those with seronegative (AQP4−) NMOSD, where there still 
needs to be further therapeutic development. However, developing 
therapeutic target-specific ex vivo q-MRI validation pipelines is a key 
aspect to bridge q-MRI and gold-standard ex vivo histopathological 
observations. Cataloging of an extensive well-curated library of in 
vivo, post-mortem in situ, and ex vivo multimodal q-MRI alongside 
expansive gold-standard histological inquiry would provide the vol-
ume of data necessary to disentangle some of the significant patho-
genic contributors of these neuroinflammatory disorders.

There is a significant need to investigate the applicability of ad-
vanced brain and spinal cord q-MRI in neuroinflammatory disorders 
to better understand the radiological presentation and pathophysi-
ological dynamics and to develop tools that could potentially help 
facilitate the development and benchmarking of neuroprotective 
therapies. Therefore, I implore those who have substantial rich unique 
data sets to seek out others with complementary strengths and who 
share common goals to help those in need with these neurological 
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disorders. The answers to many of these debilitating pathologies lie 
across the bridges of expansive multicenter collaborational efforts.
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