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Abstract

An inverse relationship between biodiversity and human health has been termed the ‘dilution 

effect’ paradigm. In the case of tick-borne infections such as Lyme disease, the key assumption 

is that Borrelia burgdorferi sensu lato abundance is increased by the loss of less competent 

(dilution) hosts as biodiversity declines. White-tailed deer play a dual role in the pathogen 

cycle, as key reproductive hosts for adult ticks and incompetent hosts for the pathogen. While 

the role of deer as hosts of adult ticks is well established, the extent to which deer also feed 

immature ticks and reduce the proportion infected is unknown because of logistic constraints 

in measuring this empirically. We estimated the proportion of larvae that fed on deer in an 

extremely species-poor community on Block Island, RI, where tick nymphal infection prevalence 

was found to be lower than expected. In 2014, we measured the density, larval tick burdens, 

and realized reservoir competence of small mammal and bird hosts on Block Island, RI. In 

2015, we measured the infection prevalence of host-seeking Ixodes scapularis nymphs resulting 

from larvae fed on available hosts in 2014. We back-estimated the proportion of larvae expected 

to have fed on deer in 2014 (the only unknown parameter) to result in the nymphal infection 

prevalence observed in 2015. Back-estimation predicted that 29% of larval ticks must have fed 

on deer to yield the observed 30% nymphal infection prevalence. In comparison, the proportion 

of larvae feeding on mice was 44% and 27% on birds. Our study identified an influential role 

of deer in reducing nymphal tick infection prevalence and a potential role as dilution hosts if the 

reduction in nymphal infection prevalence outweighs the role of deer as tick population amplifiers. 

Because both deer and competent hosts may increase in anthropogenic, fragmented habitats, the 

links between fragmentation, biodiversity, and Lyme disease risk may be complex and difficult 
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to predict. Furthermore, a nonlinear relationship between deer abundance and Lyme disease risk 

would reduce the efficacy of deer population reduction efforts to control Lyme disease.
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1. Introduction

The majority of pathogens infect multiple hosts that vary in their ability to acquire and 

transmit the various pathogens (reservoir host competence). For these multi-host pathogens, 

the addition of one or more host species to a community can make the pathogen less 

abundant and less likely to persist than in the presence of reservoir host competent species 

alone (Begon, 2008). When reduced pathogen abundance results in reduced human disease 

risk, this effect has been termed the ‘dilution effect’ (Norman et al., 1999; Schmidt and 

Ostfeld, 2001) or the ‘biodiversity-buffers-disease’ hypothesis (Randolph and Dobson, 

2012; McCallum, 2015). The concept of buffering against disease as an ecosystem service 

of biodiversity has garnered considerable attention, both favorable (Allan et al., 2003; 

LoGiudice et al., 2003; Keesing et al., 2010; Johnson et al., 2013; Turney et al., 2014; 

Werden et al., 2014; Civitello et al., 2015) and unfavorable (Randolph and Dobson, 2012; 

Lafferty and Wood, 2013; Salkeld and Jones, 2013). There is, however, general agreement 

that the dilution effect may not just be an effect of species diversity per se, but rather be 

driven by the association between diversity, the specific identity, and relative abundance of 

competent or incompetent hosts in a community (Keesing et al., 2006).

In the case of tick-borne pathogens, the relationship between pathogen persistence/

abundance and host density is complex. Lyme disease is the most commonly reported 

vector-borne disease in the United States (Centers for Disease Control and Prevention, 

2015) and has been the focus of many studies linking host community diversity and human 

risk (Ostfeld and Keesing, 2000; LoGiudice et al., 2003, 2008). The etiologic agent of 

Lyme disease in the United States, Borrelia burgdorferi sensu stricto, is transmitted by 

the blacklegged tick, Ixodes scapularis Say (Acari:Ixodidae) and the Western blacklegged 

tick, I. pacificus Cooley and Kohls (Acari:Ixodidae) on the West Coast, to a wide range of 

vertebrate hosts (Donahue et al., 1987; Castro and Wright, 2007; Brinkerhoff et al., 2011). 

Ixodes scapularis ticks feed once per life stage; the immature stages (larva and nymph) 

feed on mammalian and avian reservoir hosts of varying levels of competence, as well 

as white-tailed deer, Odocoileus virginianus (hereafter ‘deer’) which are mostly reservoir 

incompetent (Telford et al., 1988; Luttrell et al., 1994). Most ticks acquire the pathogen as 

larvae and transmit it to new hosts as nymphs. Adult I. scapularis, however, depend mostly 

on deer to mate and for females to obtain a final blood meal (Piesman, 1979; Kilpatrick et 

al., 2014).

Deer thus play a dual role in the B. burgdorferi sensu lato (hereafter B. burgdorferi) life 

cycle, they are the reproductive hosts for adult ticks – thus contributing to transmission 

through increasing tick populations, but they are incompetent hosts for B. burgdorferi – 

Huang et al. Page 2

Ticks Tick Borne Dis. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thus reducing infection in the immature ticks. This dual role has been theoretically and 

empirically explored in European studies of other deer species role in tick-borne encephalitis 

virus (TBEV) (Bolzoni et al., 2012; Cagnacci et al., 2012) and louping ill virus (LIV) 

(Norman et al., 1999), which are transmitted by I. ricinus, the vector of B. burgdorferi 
in Europe (Tälleklint and Jaenson, 1994; Kurtenbach et al., 1995). Using an experimental 

exclosure, Perkins et al. (2006) inferred the role of deer (roe deer, Capreolus capreolus, 

and red deer, Cervus elaphus) as dilution hosts because they observed higher infection 

prevalence within deer exclosures, presumably due to increased larval feeding on mice 

where deer were removed. A similar phenomenon was observed with exclusion of fallow 

deer (Dama dama) in Ireland (Gray et al., 1992). Consistent with a dual role of deer, 

pathogen persistence and the density of infected nymphs were found, both theoretically 

and empirically, to have humped–shaped relationships with deer density (Norman et al., 

1999; Perkins et al., 2006; Rosà and Pugliese, 2007; Bolzoni et al., 2012; Cagnacci et 

al., 2012). This nonlinear relationship is thought to arise because increases in deer density 

initially contribute to pathogen amplification by increasing tick abundance up to a critical 

point. After this threshold, the role of deer in diverting larval tick bites from competent 

small vertebrate hosts becomes dominant and thus pathogen infection/persistence decreases 

(Hudson et al., 1995; Dobson and Foufopoulos, 2001). Rosa and Pugliese (2007) referred to 

this reduction in infection at high deer densities as the ‘dilution effect’. Limited theoretical 

work has proposed this humped-shaped relationship may also apply to the eco-epidemiology 

of B. burgdorferi s.s. in the United States (Johnson et al., 2015), but this has not been 

examined empirically.

We investigated the potential role of deer in feeding larval ticks and reducing nymphal 

infection prevalence (i.e. the right-hand side of the humped-shaped relationship) on Block 

Island, Rhode Island, which features a species-poor vertebrate host community strongly 

dominated by white-footed mice, Peromyscus leucopus, and a low number of bird species 

(States et al., 2014). In such a host community, the nymphal infection prevalence (NIP), 

a measure of infection risk, was predicted by modeling studies to be significantly higher 

than in more biodiverse host communities (LoGiudice et al., 2003; Brisson and Dykhuizen, 

2006). Instead, studies from Block Island found a NIP of 28% in 2010 and 24% in 

2011 (States et al., 2014), which is similar or lower than most other studies on mainland 

communities with higher species diversity (Allan et al., 2003; Diuk-Wasser et al., 2012). To 

assess whether the high deer densities on Block Island contribute to the lower than expected 

NIP, we conducted a two-year study where we measured host density, larval burdens, and 

reservoir competence in year 1 (2014) for all relevant small mammal and bird hosts, as well 

as the density of deer. Larval ticks that fed in year 1 (2014) emerged as nymphs in year 2 

(2015) of the study and were sampled to estimate year 2 NIP. We then back-estimated the 

proportion of larvae expected to have fed on whitetailed deer in year 1 to produce the NIP 

observed in year 2.
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2. Methods

2.1. Field sampling

2.1.1. Study Area—The study was conducted on Block Island, a small island (25.9 km2) 

located 23 km off the southern coast of Rhode Island, where B. burgdorferi is endemic 

(Krause et al., 2003). Vegetation is characterized by tall coastal scrub species, deciduous 

natives, and exotic shrubs, such as Bayberry (Myrica cerifera), Red Maple (Acer rubrum), 

Black cherry (Prunus serotina), and Multiflora rose (Rosa multiflora) (The Rhode Island 

Natural History Survey, 2002). Small mammal and bird sampling was conducted in 2014 

and host-seeking I. scapularis nymphs – which fed as larvae on hosts sampled in 2014, 

were sampled in 2015. Small-mammal sampling and collection of host-seeking nymphs 

occurred at three different locations across the island: the north plot (NP: 41°21′ N, 71°57′ 
W), south plot (SP: 41°15′ N, 71°58′ W), and midland plot (ML: 41°16′ N 71°58′ W). 

Birds were mist-netted in two representative habitat types on Block Island: Bayrose (BR: 

41°12′ N, 71°33′ W) which is characterized by dense vegetation and relative isolation from 

human disturbance, and Ocean View Pavilion (OVP: 41°10′ N, 71°33′ W) which is an open, 

peridomestic habitat characterized by grasses and invasive plant species.

2.1.2. Small-Mammal Sampling—Block Island is characterized by low mammalian 

diversity, comprised exclusively of the house mouse (Mus musculus), muskrat (Ondatra 
zibethicus), meadow vole (Microtus pennsylvanicus), Norway rat (Rattus norvegicus), 

white-footed mouse (P. leucopus), and white-tailed deer (O. virginianus) (Comings, 2006). 

Only 0.6% of the small animals trapped in our surveys comprised non-P. leucopus species; 

these species were excluded from our analyses. In 2014, mark-recapture of small mammals 

occurred at three study plots (NP, SP, ML) and was conducted for three consecutive nights, 

with each plot visited every other week, totaling seven trapping sessions from late May 

to late August. Sherman live traps (7.62 × 8.89 × 22.86 cm, H.B. Sherman Traps, Inc. 

Tallahassee, FL) were positioned 10 m apart in a grid formation at NP (n = 58), SP (n 
= 110), and ML (n = 60), each trap was baited with peanut butter, oats, and sunflower 

seeds. Traps were set at dusk and checked the following morning at dawn. All captured 

white-footed mice were ear-tagged, morphometric data (sex, age, weight, breeding status) 

were collected, and each individual was checked for ticks across the entire body. Attached 

ticks were removed with forceps, placed in live collection tubes, and later frozen at −80 

°C. A maximum of 10 engorged I. scapularis larva were collected per ear and body 

when available, the remaining body burden was determined through visual examination. All 

animal experiments comply with the National Institutes of Health guide for the care and use 

of laboratory animals (NIH publications No. 8023). All trapping and handling procedures 

were approved by the Yale University Institutional Animal Care and Use Committee (permit 

#07596) and Columbia University Institutional Animal Care and Use Committee (permit 

#AC-AAAL3656).

2.1.3. Bird Sampling—Bird sampling focused on resident species, rather than migratory 

species, by concentrating sampling between mid-June to late August, when limited 

migration occurs. At each sampling site (BR and OVP) 4–10 mist-nets (12 × 2.5 m) were 

located adjacent to one another. Mist netting and all procedures were performed under 
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permit #09636 from the federal Bird Banding Laboratory. Bird sampling was conducted 

weekly during peak morning activity (0600–1000 h). For each individual captured: species, 

body mass, sex, age, weight, tail length, and wing length were recorded. Birds were banded 

with a federally issued band and systematically checked for ticks on the head and body 

before release, with the head and neck prioritized (Marsot et al., 2012). All attached ticks 

were removed with forceps and placed in 100% ethanol. Bird species abundance was 

estimated using distance sampling via point transect surveys (Buckland et al., 2009; Thomas 

et al., 2010). The surveys were conducted at 10 randomly selected sites located greater than 

200 m apart across the island, following recommended practices (Huff et al., 2000). To 

perform the count, a stationary observer recorded the distance of all avian individuals seen 

or heard within a 100 m radius for a fixed 3 min interval. To adjust the counts for species 

detectability, the distribution of detection distances was used to estimate the number of birds 

present but not detected (see Host Density Estimation section) (Fewster et al., 2008; Thomas 

et al., 2010). Each site was visited three times in 2014, from early June to early August 

(Sauer et al., 2013), with approximately four weeks between each visit. The surveys were 

conducted in hours of peak activity from 0630 h to 1000 h.

2.1.4. White-tailed Deer Sampling—An aerial survey was conducted on 19 February 

2015, when conditions provided for 100% snow cover to aid in the detection of white­

tailed deer. The aerial survey was accomplished by flying a helicopter at low altitude 

(approximately 60 m) and at low speed (approximately 40 knots or 46 mph) to allow for 

good visual identification of deer. Transects of 16 km by 0.2 km wide were plotted on 

topographic and aerial photographic maps to permit visual identification of features during 

flights. The pilot was guided by compass and GPS to begin and end survey transects.

2.1.5. Host-Seeking I. scapularis Nymphal Density Sampling—In 2015, host­

seeking I. scapularis nymphs were collected at the same three mammal trapping sites (NP, 

SP, and ML). These collected host-seeking nymphs in 2015 were mostly derived from larvae 

that fed on the local host community in 2014. Nymphs were collected by dragging a 1 m2 

white corduroy sheet between each 10 m section of the entire grid (Daniels et al., 2000; 

Tälleklint-Eisen and Lane, 2000). Nymphs were collected from the cloth, counted, and 

preserved in 100% ethanol. For both years, each trapping location was sampled once every 

other week from late May to late August.

2.2. Borrelia burgdorferi Infection Estimation

All collected host-derived larvae were identified morphologically to species using taxonomic 

keys (Clifford et al., 1961; Durden and Keirans, 1996). Larvae identified as I. scapularis 
and determined to be fully or near fully engorged were used for estimation of transmission 

probabilities. Genomic DNA was extracted from both host-derived l. scapularis larvae and 

host-seeking I. scapularis nymphs using the QIAamp 96 DNA QIAcube HT robot and 

kits (Qiagen, Valencia, CA) following manufacturer’s protocols. Prior to DNA extraction, 

each tick was individually frozen in liquid nitrogen and homogenized using a sterile pestle 

in lysis buffer and proteinase K. The tick DNA extracts were screened for the presence 

of B. burgdorferi s.l. DNA by real-time quantitative PCR using an Applied Biosystems 

7500 Real-Time PCR System (Applied Biosystems, Foster City, CA). A primer (16S­
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F: 5′−GGCGGC ACACTTAACACGTTAG−3′, 16S-R: 5′−GGCGGCACACTTAACACGT 

TAG−3′) and probe (6FAM-TTCGGTACTAACTTTTAGTTAA-MGBNFQ) combination 

that targeted the 16S rRNA region of the bacteria was used following a slightly modified 

protocol from (Barbour et al., 2009) (we added bovine serum albumin to the PCR master 

mix). This primer-probe combination distinguished the non tick-borne relapsing fever B. 
burgdorferi sensu lato spirochetes from B. miyamotoi. We expect most or all samples will 

be B. burgdorferi s.s. because other B. burgdorferi s.l. species are rarely reported from the 

Northeast U.S., but see (Margos et al., 2014).

2.3. Data analyses

2.3.1. Host Density Estimation—We assessed all host-associated parameters in 2014 

and estimated the infection prevalence of I. scapularis nymphs in 2015. Mouse densities 

per hectare at each site for 2014 were estimated using the R package “Spatially Explicit 

Capture-Recapture” (SECR). This package estimates animal population density with 

trapping history data by fitting a spatial detection model by numerically maximizing 

the log likelihood (minimize the negative log likelihood) using the Nelder-Mead method 

(McKinnon, 1999; Powell, 1999). A Poisson distribution for mouse density was assumed 

because of the random nature of the spatial distribution of home range centers of mice. A 

trapping buffer was introduced to balance the edge effects and the computational expense. 

The detection probability is assumed to be zero when the distance between detector and 

mouse home range center is larger than the buffer size. Thus, a finite buffer size could 

introduce bias in density estimates. To ensure this bias was acceptable, we calculated the 

relative bias (defined as the ratio of bias of density estimate using the given buffer to the 

estimate with infinite buffer) for the default buffer (100 m) and confirmed the bias is less 

than 0.01% for all models considered.

Mouse density estimates were based on data from seven trapping sessions conducted every 

two weeks, each comprising three consecutive nights of trapping. To accurately estimate 

mouse capture probability; several covariates such as learned responses (recaptures of 

specific individuals throughout a season due to bait awareness) and trapping session were 

incorporated in the half-normal detection function parameterized by g0 (the probability of 

capture when the trap and center of the home range coincide) and (the spatial scale of the 

detection function). For each site, models were compared using AICc (corrected Akaike’s 

Information Criterion with small sample adjustment) values and the model with the lowest 

AICc was selected as the best fit model.

To fully capture the spatial variability in mouse densities across the island, we defined a 

uniform distribution for mouse density with the upper limit of the range being the maximum 

estimated density (among the three sites) and the lower limit being the minimum estimated 

mouse density (among the three sites). A random sample from this uniform distribution was 

used as the input parameter for a Poisson distribution to generate the possible values of 

mouse density in the numerical simulation.

Bird densities per hectare were estimated for all resident passerine species. These were 

estimated from the survey data using DISTANCE Software 6.2 Release 3.10 (Thomas et 

al., 2010). For all analyses, Conventional Distance Sampling (CDS) analysis engine was 
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used and a log-normal distribution was assumed for density estimates to account for data 

including zeros or positive values. The single-observer surveys were filtered to include only 

the first 3-minutes of observation and were stratified by species (Alldredge et al., 2007); 

recorded observations were categorized into three categories (0 m–25 m, 25 m–50 m, 50 

m–75 m). The CDS engine assumes all objects at zero distance are detected and applies 

the same detection function where the detection probability is a function of the distance 

from transects to all objects. The detection function and encounter rate were fitted for each 

estimation of density and abundance per species using various combinations of detection 

probability distributions (Uniform, Half-normal, Hazard rate, Negative binomial, Negative 

exponential) and model adjustments (cosine, simple polynomial, hermite polynomial) 

(Buckland et al., 2009; Thomas et al., 2010). The model with the lowest AICc was chosen 

as the most parsimonious model. Note that no model averaging was considered because no 

competing models, AIC < 2, were obtained (Anderson and Burnham, 2002). The resulting 

point estimate and standard error of avian density for each species were used to calculate 

the inputs of the log-normal distribution used in the numerical simulation. We omitted from 

the analyses bird species that were not observed frequently enough during survey counts 

to generate reliable density estimates (Buckland et al., 2009; Thomas et al., 2010) and/or 

were infested with ≤1 engorged larva, which did not allow estimation of realized reservoir 

competence.

The island-wide abundance of white-tailed deer in the summer of 2014 (pre-harvest) was 

estimated by adding the number of deer harvested during the 2014–2015 hunting season 

(assumed measured without error) to estimates of the deer population size derived from 

the aerial survey conducted post-harvest in 2015 (Tefft, 2016). The latter was obtained by 

multiplying the deer density estimated in the aerial census by the total habitable land area, 

excluding open freshwater and saltwater ponds (2386 ha) (Clough and Fulk, 1969). Based 

on Kilpatrick et al. (2001), a visual correction factor between 1.8 and 2.2 was applied 

to the observed census data to generate the maximum and minimum values in a uniform 

distribution.

2.3.2. Larval Burden Estimation on Reservoir Hosts—For white-footed mice and 

each avian host species, larval burden was estimated by collecting and counting larval 

ticks from captured individuals. This estimate was restricted to the peak larval period (July 

15-August 28), when 96% of all the larvae were counted.

2.3.3. Back-estimation of Larval Burdens on White-tailed Deer—For deer, larval 

burden could not be directly estimated because of the lack of overlap between the questing 

larval peak in July and August and white-tailed deer hunting season, which starts in 

September. Larval burden was thus estimated from back-calculations of the proportion of 

larvae that needed to have fed on deer in 2014 to explain the NIP observed in 2015. With 

a value for the proportion of larvae feeding on deer, the average larval burden for deer was 

then calculated by dividing the estimated total larval abundance on deer to the estimated 

deer count. The general framework for the back-calculation is illustrated in Fig. 1; detailed 

procedures and equations are provided in the Supplementary Information.
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2.3.4. Realized Reservoir Competence Estimation—Realized reservoir 

competence was calculated for each species as the probability of a host transmitting the 

pathogen to a feeding vector (LoGiudice et al., 2003). This is an integrated measure of the 

infection prevalence of the host population and the probability of transmitting the infection 

to a feeding larva, if the host is infected. Realized reservoir competence for each host 

individual was calculated as the percentage of B. burgdorferi positive larvae compared to 

all larvae collected from hosts during the peak larval period (July 15-August 28). Realized 

reservoir competence for deer was assumed to be zero based on Luttrell et al. (1994) and 

Telford et al. (1988) (see local sensitivity analysis to evaluate this assumption). To account 

for the uncertainty in the estimates of larval burdens, densities, and realized reservoir 

competencies of the mouse and avian hosts, all of which contributed to the calculation 

of larval burden on deer, we randomly sampled from their distributions to generate a 

distribution for larval burden on white-tailed deer (see Supplementary Information).

2.3.5. Molting Success Parameter—Molting success parameters were derived from 

LoGiudice et al. (2003), which is the most detailed assessment available. In this study, 

LoGiudice et al. (2003) collected engorged larvae as they dropped off hosts during a 72 

h period and counted the number of larvae that molted into nymphs. They then defined 

molting successes as the ratio of the number of nymphs to the number of engorged larvae.

2.3.6. Host-Seeking I. scapularis Nymphal Infection Prevalence (NIP) with B. 
burgdorferi Estimation—We obtained an island-wide estimate of B. burgdorferi NIP as 

the proportion of B. burgdorferi positive nymphs out of 570 randomly selected nymphs 

screened in 2015 (190 nymphs from each of the three trapping sites across the island). We 

used bootstrapping (10,000 samples with replacement) to estimate the standard deviation 

and minimum and maximum values for NIP.

2.3.7. Alternative NIP Scenarios—To illustrate how NIP varies under all possible 

larval feeding apportionments over mouse, avian, and white-tailed deer hosts, we expressed 

NIP as a function of the proportion of ticks feeding on mice, on avian hosts (combined), and 

on white-tailed deer (see Supplementary Information). These three proportions sum to 1 and 

the results are presented as a ternary plot (Fig. 2).

2.3.8. Sensitivity Analysis—We calculated elasticities as a simple measure of (local) 

sensitivity of model output (average larval burden on deer) to changes in each input variable. 

We estimated elasticity as the percentage change in the proportion of larvae feeding on 

white-tailed deer in response to a 1% change in an input variable. The definition of elasticity 

assumes a linear relationship between the input and the output changes. Thus, the results 

were used to assess the relative importance of any potential biases in the input variables that 

may have been introduced by methodological limitations (Fig. 3).

3. Results

3.1. Host Sampling

Small mammal sampling in 2014 resulted in 328 captures of 91 individuals from late May 

to late August. Of the 328 captures, 99.4% were white-footed mice (P. leucopus); the other 
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0.6% included a meadow vole (M. pennsylvanicus) and a Norway rat (R. norvegicus). The 

average larval burden of the mice caught during a trapping session (first occurrence if mouse 

was recaptured) between July 15 and August 28 was 39.7 larvae per individual.

Bird sampling resulted in 176 captures of 173 unique individuals including 18 different 

species. Of the 18 avian species caught, seven were included in this study: American Robin 

(Turdus migratorius), Carolina Wren (Thryothorus ludovicianus), Common Yellowthroat 

(Geothlypis trichas), Eastern Towhee (Pipilo erythrophthalmus), Gray Catbird (Dumetella 
carolinensis), Song Sparrow (Melospiza melodia), and Yellow Warbler (Setophaga petechia). 

The mean larval burden for the captured avian species between July 15 and August 28 

ranged from 0 to 31.7 (Supplementary Table 1).

3.2. Host Density Estimates

White-footed mouse density estimates varied across the three study sites: 11.99 mice/ha 

(NP), 14.73 mice/ha (SP), and 7.99 mice/ha (ML), with an average density across the 

three sites of 11.57 mice/ha (Supplementary Table 2). Bird density estimates varied 

from11.60 birds/ha for Gray Catbirds (GRCA) to 0.59 birds/ha for Yellow Warblers 

(YEWA) (Supplementary Table 1). Parameter estimates of the best fit models for mouse 

and bird density are summarized in Supplementary Table 3. Aerial surveys estimated a 

total abundance of 460 white-tailed deer on the island (Tefft, 2016). This abundance was 

multiplied by a 1.8–2.2 correction factor, resulting in an estimated 828–1012 white-tailed 

deer across Block Island. To estimate pre-harvest deer abundance, we added the 387 deer 

harvested during the 2014–2015 hunting season (assumed measured without error) for a total 

abundance of 1215–1399 white-tailed deer. We divided deer total abundance by the 2386 ha 

of habitable land area to yield a density of 0.51–0.59 white-tailed deer ha−1.

3.3. Nymphal Infection Prevalence Estimate

The island-wide estimate for NIP was 30% ± 2% (SD), calculated by pooling all nymphs 

collected from three study sites and using boot-strapping to estimate the SD.

3.4. Distributions for the Proportion of Larvae Feeding on Mice, Birds, and White-tailed 
deer

The largest proportion (mean ± SD) of larvae determined by back calculation fed on mice 

(pmice, 0.44 ± 0.10), followed by white-tailed deer (pdeer, 0.29 ± 0.07), and then birds which 

in order of contribution included: Carolina Wren (pwren, 0.17 ± 0.08), Gray Catbird (pcatbird, 

0.05 ± 0.03), Common Yellowthroat (pyellowthroat, 0.02 ± 0.02), American Robin (probin, 

0.01 ± 0.01), Eastern Towhee (ptowhee, 0.01 ± 0.01), House Sparrow (psparrow, 0.01 ± 0.01), 

and Yellow Warbler (pwarbler, 0.00 ± 0.00) (Table 1). The variance of the distribution (note 

differences in x-axis scale) was highest for white-footed mice, Carolina Wrens, and white­

tailed deer and was lowest for American Robins, Eastern Towhees, Song Sparrows, and 

Yellow Warblers. Intermediate distributions were observed for Common Yellowthroats and 

Gray Catbirds. The average estimated larval burden on deer - calculated from a fixed-point 

estimate of deer density for each run of the numerical simulation was determined to be 

555.24 ± 258.82 (mean ± SD) larvae (Fig. 1). Of the 10,005 samples, there were 5 cases (< 

0.1%) where the total infection prevalence in non-deer hosts was less than the bootstrapped 
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NIP. Those cases were excluded from the analyses because the estimated values of Ndeer 

were negative and violated the biological reasonable constraint that Ndeer ⩾ 0.

3.5. Alternative NIP Scenarios

The variable NIP scenarios were visualized within the ternary plot; the observed scenario on 

Block Island in this study is denoted by the black circle (Fig. 2). The remainder of the plot 

represents hypothetical scenarios with varying proportion of larva feeding on the three hosts. 

The corners of the triangle represent extremes where the community consists of only one 

host species, while the edges of the triangle represent hypothetical communities consisting 

of just two out of the three species (Fig. 2). Therefore, if there were only mice, or only birds, 

or a combination of mice and birds, the predicted NIP would be similar; birds and mice 

play similar roles with respect to the determination of NIP. The upper corner of the triangle 

represents a community consisting only of white-tailed deer (with NIP equal to 0), which 

emphasizes the strong influence of deer in reducing nymphal infection within this simplified 

three-host community.

3.6. Sensitivity Analysis

Local sensitivity analysis demonstrates that the proportion of larvae feeding on deer is 

sensitive to changes in realized reservoir competence of white-footed mice and the observed 

island-wide NIP. The proportion of larvae feeding on deer was moderately sensitive to 

changes in molting success and the realized reservoir competence of Carolina These 

are therefore highly influential parameters that should be carefully measured Wrens; the 

remaining parameters had little influence on the proportion of larvae feeding on deer 

when their uncertainties were considered in the numerical simulations (Table 2). Using 

elasticity analysis, we assessed the relative importance of potential biases introduced by 

some methodological limitations of the study. There were three potential biases in our 

study: (1) avian density may have been underestimated by including a point count survey 

in August, when male songbirds reduce singing frequency (Ralph et al., 1995); (2) larval 

burdens on all hosts may have been underestimated by counting engorged larvae while still 

attached to the host (Schmidt et al., 1999; Brunner and Ostfeld, 2008); and (3) limited 

studies indicate measuring infection in engorged larvae rather than molted nymphs may 

have resulted in an underestimation of realized reservoir competence because the molted 

nymphs have higher infection prevalence than the engorged larvae (Jacquet et al., 2017). 

Sensitivity analyses indicated that the first two factors had a relatively small impact on the 

estimation of the proportion of larvae feeding on deer, 0.0346% and 0.0001% respectively. 

An underestimation of realized reservoir competence would however lead to a larger change 

in the calculated proportion of larvae feeding on deer. For example, if the actual realized 

reservoir competence were 10% higher for each species, the proportion of larvae feeding on 

white-tailed deer would increase to 35% (i.e. a 6% increase).

4. Discussion

We aimed to investigate whether reduced infection in I. scapularis nymphs due to larval 

feeding on incompetent white-tailed deer and other hosts, could account for the lower 

than expected I. scapularis infection prevalence of B. burgdorferi in a species-poor host 
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community. The reduced diversity of this island community allowed us to measure most key 

host parameters (i.e. density, tick burden, realized reservoir competence) - only assuming 

molting success from the literature, in order to estimate the parameter of interest, the larval 

burden on whitetailed deer. We back-estimated that about a third (29%) of larval ticks must 

have fed on deer to yield the observed 30% NIP, which is similar to our previous NIP 

estimates of 28% in 2010 and 24% in 2011 (States et al., 2014), and similar or lower 

than most other studies on mainland communities with higher species diversity (Allan et 

al., 2003; DiukWasser et al., 2012). These findings illustrate the potential dual role of 

white-tailed deer in the eco-epidemiology of B. burgdorferi. At high densities, deer may 

switch from an amplifying to a dilution host if their role in reducing tick infection overrides 

their role as amplifiers of the tick population, as the latter can become limited by other 

abiotic or biotic factors affecting tick survival (Lindsay et al., 1995, Lindsay et al., 1998). 

This study provides a proof of concept of the potential role of deer as dilution host, which 

needs to be further investigated in other ecological settings.

While the role of white-tailed deer as the key host for adult ticks has been widely 

recognized, their role as hosts for larval ticks has been poorly studied empirically. Only 

two studies obtained such data in the United States using special deer harvest permits around 

peak larval season (Telford et al., 1988; LoGiudice et al., 2003). These studies estimated 

larval burdens of 239 ± 99 larvae per white-tailed deer (LoGiudice et al., 2003) and 341.9 

± 115.5 larvae per white-tailed deer (Telford et al., 1988). Similarly we identified only two 

studies in Europe reporting larval burdens collected throughout the body from roe deer shot 

around the peak larval season in Sweden, reporting an average of 276 (range, 84–658) larval 

I. ricinus (n = 12 deer) (Jaenson and Tälleklint-Eisen, 1992) and an average of 265 larvae (n 
= 37 deer) (Tälleklint and Jaenson, 1997). The higher average larval tick estimate obtained 

in the current study (555.24 ± 258.82) is within the range of previous studies. Our higher 

value is consistent with potential underestimation in published studies due to their sampling 

partially off-season or not capturing the entire body burden.

An important assumption of the dilution effect hypothesis is that the most competent hosts 

are also the most resilient to extirpation under anthropogenic habitat modification (Ostfeld 

and Keesing, 2000; McCallum, 2015). This does not apply in the case of white-tailed 

deer, which are both reservoir incompetent and highly abundant (or aggregated) in human­

modified habitats because of reduced vulnerability to hunter harvest and increased amounts 

of accessibility to forage (McAninch et al., 1993; Woolf and Roseberry, 1998; Williams 

et al., 2008, 2013). The dual role of deer in human-modified landscapes may explain the 

lack of consistent findings in studies of the association between habitat fragmentation and 

entomological risk with both positive (Allan et al., 2003; Brownstein et al., 2005) and 

non-significant (LoGiudice et al., 2008; Zolnik et al., 2015) findings. Because the density 

of white-footed mice and white-tailed deer both increase in more fragmented landscapes 

(McAninch et al., 1993; Nupp and Swihart, 1998), we caution against the use of forest 

fragmentation as a ‘proxy’ for biodiversity in studies of the association between biodiversity 

and human infection risk.

The small mammal community on Block Island, RI is markedly less diverse than those 

in comparable mainland settings (States et al., 2014), which facilitated estimation of the 
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most relevant host parameters. White-footed mice, the most competent B. burgdorferi host 

in this setting, dominates the small mammal community on Block Island with a mean 

density of 11.57 mice per hectare in 2014 and contributing to 44% of fed larvae to the tick 

community; a similar contribution to that reported in more biodiverse mainland communities 

(LoGiudice et al., 2003; Tsao et al., 2004; Brisson and Dykhuizen, 2006). The similar 

NIP in this study (30% ± SD 2%) and in a previous study in this community (24% ± 

SE 27%) (States et al., 2014) compared to mainland communities (Allan et al., 2003; 

Diuk-Wasser et al., 2012) suggests that additional dilution hosts contribute to the lower than 

expected infection prevalence. Using comparable approaches, previous studies implicated 

flying squirrels (LoGiudice et al., 2008) or shrews (Brisson and Dykhuizen, 2006) as 

‘missing’ dilution hosts. The absence of these mammalian hosts on Block Island allowed 

for the assessment of the (neglected) role of white-tailed deer in reducing nymphal infection 

prevalence. Deer density on Block Island was estimated to be 0.51–0.59 deer ha−1, which 

is similar to other intermediate density communities on the mainland (Adams et al., 2009), 

emphasizing the potential importance of deer as a larval host on the mainland as well as on 

island settings.

The extremely low mammalian community diversity also permitted the assessment of the 

role birds play as B. burgdorferi hosts, which is less emphasized than the role of mammals in 

other studies. It has been suggested that birds play a significant role in dispersal of infected 

larval ticks but are not considered as relevant amplification or dilution hosts (Brinkerhoff 

et al., 2011). However, limited studies have identified specific avian species as reservoir 

hosts for B. burgdorferi (LoGiudice et al., 2003, 2008; Hamer et al., 2011; Newman et 

al., 2015). We estimated birds contributed a combined total of 27% of fed larvae to the 

environment. In particular Carolina Wrens (CARW) contributed the most B. burgdorferi 
infected ticks (5 infected ticks per individual from field data; 79% of the avian-infected 

larvae in numerical simulations) and showed the highest mean larval burden (31.7 ticks per 

individual) compared to the other six avian species.

The methods used to collect data in this study may have caused inaccuracies in the 

estimations of avian density, larval burdens on mammals and birds, and the realized 

reservoir competence of hosts. Local sensitivity analysis showed that the proportion of 

larvae feeding on deer is highly sensitive to the change in realized reservoir competence 

of white-footed mice and NIP. These are therefore highly influential parameters that should 

be carefully measured. Moderately sensitive – or less influential parameters, are changes in 

molting success and the realized reservoir competence of Carolina Wrens. Limited literature 

indicates a potential underestimation of the calculated realized reservoir competence of 

white-footed mice, while there is no reason to assume any systematic biases in NIP. 

Therefore, our numerical results indicating that 29% of larval ticks should have fed on 

white-tailed deer would be the lower bound when these corrections are considered. An 

additional limitation of this study was that some avian species were sampled in point 

transect surveys but were not captured, therefore they were not included in the analyses. 

Many of these omitted species are not commonly associated with tick-borne pathogens 

because of the limited time they spend foraging on the ground. However, the Blue Jay 

(Cyanocitta cristata), Northern Cardinal (Cardinalis cardinalis), and Ring-necked Pheasant 

have shown moderate burdens and reservoir competence in previous studies (Anderson 
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and Magnarelli, 1984; Kurtenbach et al., 1998; Hoodless et al., 2002; Hamer et al., 2012; 

Ginsberg et al., 2005). The impact of the absence of these species from our analyses cannot 

be directly estimated. Finally, our study did not account for heterogeneities across the 

island in the various estimates because of the limited availability of island-wide estimates 

of deer density. The multiple scales relevant to the various I. scapularis hosts is one 

of the challenges in testing hypotheses about community-wide effects on B. burgdorferi 
entomological risk (Killilea et al., 2008).

While our study has identified a potentially important role of white-tailed deer in reducing 

infection of immature ticks, an integrated, empirically-informed, assessment of the dual role 

of deer as a vector amplifying and pathogen dilution host is still pending. A modeling study 

concluded that either amplification or dilution may occur with the outcome depending on 

the precise mechanisms of competition, host contact rates with ticks, and acquired host 

resistance to ticks (Ogden and Tsao, 2009). Levi et al. (2016) analyzed long-term data from 

the Cary Institute to quantify dilution and amplification by various host species. However, 

parameters for white-tailed deer density and their immature tick burdens were based on a 

single fixed estimate for tick burden, therefore the effect of spatial and temporal variation 

in deer abundance and aggregation on pathogen transmission was not assessed. Empirical 

measurements of deer density or aggregation and larval burdens are essential to fully 

characterize the dual role of white-tailed deer in Lyme disease epidemiology (Kilpatrick 

et al., 2017).

5. Conclusions

Our study identified an influential role of white-tailed deer in reducing nymphal tick 

infection prevalence (NIP) and a potential role as dilution hosts if the reduction in NIP 

outweighs the role of deer as tick population amplifiers. We emphasized the importance of 

assessing larval feeding on deer, which has only been measured in two previous studies in 

the United States to a very limited extent (Telford et al., 1988; LoGiudice et al., 2003). 

Reduction of unfed nymphal infection by white-tailed deer at high deer densities could 

reverse the negative relationship between biodiversity and Lyme disease risk. Importantly, 

it would also reduce the efficacy of white-tailed deer population reduction efforts and thus 

should be considered in models predicting effective deer target densities for disease risk 

reduction.
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Fig. 1. 
Algorithm used to back-estimate the proportion of larvae fed by each host group and the 

average larval burden on white-tailed deer. We considered a simplified host community with 

white-footed mice, birds (seven species combined), and white-tailed deer. We simulated 

N = 100,000 engorged larvae sampled from mice and birds with probability rmice and 

rbird, which is proportional to the product of their densities ds and average larval burdens 

bs (Equation 1 in Supplementary materials). Larvae (Ls) acquire infection according to 

the measured realized reservoir competence (red tick symbols represent infected larvae) 

and molt to nymphs (Ns) according to a fixed probability derived from estimated molting 
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success in LoGiudice et al. (2003). We estimated how many (uninfected) nymphs would 

have to be derived from deer (Ndeer) to result in the observed nymphal infection prevalence 

(NIP; Equation 2 in Supplementary information). The number of engorged larvae feeding 

on white-tailed deer Ldeer and the proportion of larvae feeding on different hosts ps were 

calculated after applying the inverse processes of molting and infection (Equations 3 and 

4 in Supplementary information). Finally, the number of deer present in an area producing 

100,000 engorged larvae was applied to calculate the average larval burden on white-tailed 

deer (Equation 5 in Supplementary information). These steps were for 10,000 iterations to 

derive the distributions of density, average larval burden, and proportion of larvae feeding on 

different hosts, shown in Fig. 2. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article).
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Fig. 2. 
Distribution for observed and modeled parameters. Value distributions for observed 

parameters (Columns A, B and C), fixed values for molting success according to LoGiudice 

et al. (2003) (Column D) and modeled proportions of larvae on Block Island feeding 

on white-footed mice, seven avian hosts, and white-tailed deer in 2014 (Column E). The 

average larval burden on deer was not observed in this study, the distribution shown was 

inferred from the results of the numerical simulation.
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Fig. 3. 
Predicted nymphal infection prevalence of Borrelia burgdorferi under different larval feeding 

scenarios on Block Island, RI (varying the quantities pmice, pbird, and pdeer). The corners 

of the ternary plot represent hypothetical scenarios wherein all larvae feed on a single host 

type (i.e. either exclusively deer, mice, or birds) while the edges of the ternary plot represent 

scenarios where larvae feed on only two of the three host types; points inside the triangle 

represent some combination of all three. The white dot (values indicated in black box) 

indicates the proportions of larvae estimated to have fed on birds, mice and deer to result in 

the observed nymphal infection prevalence (NIP) of 30%.
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Table 1

Sampling results of nymphal infection prevalence (NIP), host densities, mean larval burdens on hosts, and 

realized reservoir competences of hosts from fitted distributions and bootstrapping are summarized. Point 

values of molting success percentage for white-footed mice (Peromyscus leucopus), all avian species (Turdus 
migratorius, Thryothorus ludovicianus, Geothlypis trichas, Pipilo erythrophthalmus, Dumetella carolinensis, 

Melospiza melodia, Melospiza melodia), and white-tailed deer (Odocoileus virginianus) were used in the 

back-estimating simulation of the proportion of larvae feeding on white-tailed deer. Back-estimated results of 

mean larval burden on deer and proportion of larvae feeding on different hosts are calculated from 10,000 

samples.

Mean Minimum Maximum SD

NIP 0.30 0.23 0.38 0.02

Density

Peromyscus leucopus 11.37 1.00 28.00 3.86

Turdus migratorius 0.71 0.11 3.08 0.32

Thryothorus ludovicianus 5.60 0.94 26.68 2.58

Geothlypis trichas 1.56 0.03 30.63 1.87

Pipilo erythrophthalmus 4.14 0.96 14.23 1.59

Dumetella carolinensis 11.64 2.45 42.23 4.68

Melospiza melodia 1.70 0.38 5.44 0.61

Setophaga petechia 0.60 0.03 7.13 0.51

Odocoileus virginianus 0.55 0.51 0.59 0.02

Burden

Peromyscus leucopus 39.67 23.68 60.07 4.94

Turdus migratorius 8.49 0.08 44.00 6.69

Thryothorus ludovicianus 31.65 8.43 92.71 12.68

Geothlypis trichas 9.91 3.21 21.21 2.62

Pipilo erythrophthalmus 2.34 0.17 6.33 0.94

Dumetella carolinensis 3.90 1.42 7.31 0.79

Melospiza melodia 4.87 0.80 13.27 1.64

Setophaga petechia 0.33 0 1.00 0.16

Odocoileus virginianus 555.24 0.35 3904.76 258.82

Realized reservoir competence

Peromyscus leucopus 0.49 0.3 0.65 0.05

Turdus migratorius 0.64 0 1.00 0.20

Thryothorus ludovicianus 0.59 0.10 0.87 0.13

Geothlypis trichas 0.35 0.08 0.64 0.09

Pipilo erythrophthalmus 0.38 0 1.00 0.21

Dumetella carolinensis 0.06 0 0.24 0.04

Melospiza melodia 0.58 0.05 1.00 0.16

Setophaga petechia 0.08 0 0.17 0.06

Odocoileus virginianus 0 0 0 0

Molting success

Ticks Tick Borne Dis. Author manuscript; available in PMC 2019 February 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huang et al. Page 24

Mean Minimum Maximum SD

Peromyscus leucopus 0.42 0.42 0.42 0

Turdus migratorius 0.34 0.34 0.34 0

Thryothorus ludovicianus 0.34 0.34 0.34 0

Geothlypis trichas 0.34 0.34 0.34 0

Pipilo erythrophthalmus 0.34 0.34 0.34 0

Dumetella carolinensis 0.34 0.34 0.34 0

Melospiza melodia 0.34 0.34 0.34 0

Setophaga petechia 0.34 0.34 0.34 0

Odocoileus virginianus 0.56 0.56 0.56 0

Proportion (fed larvae)

Peromyscus leucopus 0.44 0.05 0.79 0.10

Turdus migratorius 0.01 0 0.09 0.01

Thryothorus ludovicianus 0.17 0.02 0.61 0.08

Geothlypis trichas 0.02 0 0.27 0.02

Pipilo erythrophthalmus 0.01 0 0.08 0.01

Dumetella carolinensis 0.05 0.01 0.34 0.03

Melospiza melodia 0.01 0 0.07 0.01

Setophaga petechia 0 0 0 0

Odocoileus virginianus 0.29 0 0.51 0.07
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