CORRECTION Open Access

Correction to: SLR: a scaffolding algorithm based on long reads and contig classification

Junwei Luo^{1*}, Mengna Lyu¹, Ranran Chen¹, Xiaohong Zhang¹, Huimin Luo² and Chaokun Yan²

Correction to: BMC Bioinformatics (2019) 20:539 https://doi.org/10.1186/s12859-019-3114-9

Following publication of the original article [1], the author reported that there is an error in the original article;

1. The figures' order in HTML and PDF are incorrect. In the original article incorrect Fig. 1 is the correct Fig. 4.

In the original article incorrect Fig. 2 is the correct Fig. 5.

In the original article incorrect Fig. 3 is the correct Fig. 6.

In the original article incorrect Fig. 4 is the correct Fig. 1.

In the original article incorrect Fig. 5 is the correct Fig. 2.

In the original article incorrect Fig. 6 is the correct Fig. 3.

In this correction article the figures are shown correct.

Author details

¹College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China. ²School of Computer and Information Engineering, Henan University, Kaifeng 475001, China.

Published online: 10 February 2020

Reference

 Luo J, et al. SLR: a scaffolding algorithm based on long reads and contig classification. BMC Bioinformatics. 2019;20:539. https://doi.org/10.1186/ s12859-019-3114-9.

The original article can be found online at https://doi.org/10.1186/s12859-019-3114-9

Full list of author information is available at the end of the article

^{*} Correspondence: luojunwei@hpu.edu.cn

¹College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China

Luo et al. BMC Bioinformatics (2020) 21:50 Page 2 of 4

Fig. 1 Nine figures plotting NGA50 vs Misassemblies. The results of SLR usually can be found in the top-left corner, which can illustrate the advantage of SLR

Luo et al. BMC Bioinformatics (2020) 21:50 Page 3 of 4

Fig. 4 An example of alignment position revision. For an alignment given by the alignment tool, the region $[sr_{11}, er_{11}]$ $(region_3)$ in the long read Ir_1 is aligned with the region $[sc_{11}, ec_{11}]$ $(region_1)$ in the contig c_1 . Because $sr_{11} < sc_{11}$ and $LEN(Ir_1) - er_{11} > LEN(c_1) - ec_{11}$, it means the region $[0, sr_{11}]$ $(region_4)$ in Ir_1 is not aligned with c_1 , and the region $[ec_{11}, LEN(c_1) - 1]$ $(region_2)$ is not aligned with Ir_1 . However, when Ir_1 is truely aligned with c_1 and the alignment is reliable, $region_4$ should be aligned with the region $[sc_{11} - sr_{11}, sc_{11}]$ in c_1 , and $region_2$ should be aligned with the region $[er_{11}, er_{11} + LEN(c_1) - ec_{11}]$. Because of the high sequencing error rate in long reads, the alignment tool usually does not provide accurate alignment start and end positions. Then, SLR sets $sc_11' = sc_{11} - sr_{11}$, $sr_11' = 0$, $ec_11' = LEN(c_1) - 1$ and $er_11' = er_{11} + LEN(c_1) - ec_{11}$. When the alignment is reliable, the region $[sc_11', ec_11']$ in c_1 is aligned with the region $[sr_11', er_11']$ in Ir_1

Fig. 5 There are six contigs $(c_1,c_2,c_3,c_4,c_5,andc_6)$ that can be aligned with the long read Ir_1 . Because c_1 and c_2 are simultaneously aligned with the left end of Ir_1 , SLR retains only contig c_1 which has the greatest alignment length, and deletes the alignment information between c_2 and Ir_1 . Because c_5 and c_6 have been simultaneously aligned with the right end of Ir_1 , we keep only c_5 , and delete the alignment information between c_6 and Ir_1 . Finally, SLR determines the orders and orientations of c_1 , c_3 , c_4 and c_5 , which form a local scaffold

Luo et al. BMC Bioinformatics (2020) 21:50 Page 4 of 4

Fig. 6 (a) There are six long reads: Ir_1 , Ir_2 , Ir_3 , Ir_4 , Ir_5 , and Ir_6 . The contigs c_1 and c_2 are aligned with Ir_1 . c_3 , c_4 and c_5 are aligned with Ir_2 . c_6 , c_4 and c_7 are aligned with Ir_3 . c_7 , c_8 and c_9 are aligned with Ir_4 . c_{10} , c_{11} and c_{12} are aligned with Ir_5 . c_9 , c_{11} , c_{13} and c_2 are aligned with Ir_6 . We assume that all these alignments are forward, and all contigs are longer than L_{cc} . (b) Based on the alignment result described in (a), SLR obtains six local scaffolds: Is_1 , Is_2 , Is_3 , Is_4 , Is_5 , and Is_6 . (c) The scaffold graph G_1 is built using all contigs. We find that G_1 is complicated. (d) Based on the contig classification method described in Section 2.2, the contigs can be divided into two categories. Because c_4 is located in the middle position of Is_2 and Is_3 and has two distinct 3'-end neighbours and two distinct 5'-end neighbour contigs, it is identified as an ambiguous contig. c_{11} is also an ambiguous contig. The remaining contigs are identified as unique contigs. The scaffold graph G_2 is built based on unique contigs and is thus less complicated than G_1