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Pig-to-human xenotransplantation offers a potential bridge to the growing disparity between patients with end-stage organ failure
and graft availability. Early studies attempting to overcome cross-species barriers demonstrated robust humoral immune
responses to discordant xenoantigens. Recent advances have led to highly efficient and targeted genomic editing, drastically
altering the playing field towards rapid production of less immunogenic porcine tissues and even the discussion of human
xenotransplantation trials. However, as these humoral immune barriers to cross-species transplantation are overcome with
advanced transgenics, cellular immunity to these novel xenografts remains an outstanding issue. Therefore, understanding and
optimizing immunomodulation will be paramount for successful clinical xenotransplantation. Costimulation blockade agents
have been introduced in xenotransplantation research in 2000 with anti-CD154mAb. Most recently, prolonged survival has been
achieved in solid organ (kidney xenograft survival> 400 days with anti-CD154mAb, heart xenograft survival> 900 days, and liver
xenograft survival 29 days with anti-CD40mAb) and islet xenotransplantation (>600 days with anti-CD154mAb) with the use of
these potent experimental agents. As the development of novel genetic modifications and costimulation blocking agents
converges, we review their impact thus far on preclinical xenotransplantation and the potential for future application.

1. Introduction

Organ transplantation remains the definitive treatment for
patients suffering from end-stage organ failure. Unfortu-
nately, this treatment remains severely limited due to the
critical shortage of suitable allografts for transplantation
[1, 2]. The use of genetically engineered pigs as a supplemental
source of tissues or organs offers a promising answer to this
dilemma [3]. Pig-to-human xenotransplantation has been
pursued for more than a century; however, early studies
demonstrated substantial barriers to clinical application in
the form of hyperacute rejection, acute humoral xenograft
rejection (AHXR), and thrombosis [4, 5].

The modern era of xenotransplantation was stimulated
by the identification of the Gal α(1,3) Gal (Gal) porcine epi-
tope and its role in early rejection [6–8]. The subsequent
advent of α1,3-galactosyltransferase gene knockout (GTKO)
pigs eliminated a major barrier to xenotransplantation by

negating the role of high percentage of human xenoreactive
antibodies [9, 10]. However, residual preformed human
antibodies to GTKO pig antigens suggested additional major
barriers (i.e., anti-non-Gal antibodies), which would hinder
progress towards clinical application. Nevertheless, this
remains a major breakthrough as the identification of Gal
and production of GTKO pigs demonstrated the potential of
reducing porcine antigenicity through genetic modification.

The initial production of GTKO animals was performed
through a tedious process of homologous recombination;
however, recent advances in gene editing have dramatically
sped the pace of xenotransplantation research (Table 1)
[9, 11–13] setting the stage for highly efficient and rapid
porcine genetic modification. Recently, the role of genetically
engineered pigs has been reviewed, and this role effectively
negates the human anti-pig humoral response to the thresh-
old where hyperacute rejection and AHXR are no longer
expected [9, 12–14]. In this climate of reduced humoral
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xenoantigenicity, an appraisal of pharmacologic strategies
that will modulate the human cell-mediated response to
porcine xenografts is increasingly relevant.

The cell-mediated response in allotransplantation is
addressed with an effective pharmacologic armamentarium,
mainly with calcineurin or mTOR inhibitors [15, 16]. Today,
one of the most active frontiers in immunology and trans-
plantation research is T cell costimulation signal modifica-
tion. Much work over the past decade has defined
costimulation signals, which regulate T cell activation and
immune tolerance [17]. Although most of these agents are
still experimental and early in the development pathway, pre-
clinical studies utilizing experimental costimulation blockade
agents have demonstrated prolonged engraftment of both
solid organ and islet xenografts [18–25]. The approval of
LEA29Y (belatacept) as a CTLA4-Ig protein for use in renal
allotransplantation brought costimulation blockade to the
clinic in the early 2000s [26, 27]. This was made possible after
promising results from belatacept administration in preclin-
ical nonhuman primate studies [28, 29].

In the last decade, researchers have increasingly utilized
pig-to-nonhuman primate xenotransplantation models to
study novel xenograft modification and novel costimulatory
immunosuppression strategies in parallel. As discussions
of pig-to-human xenotransplantation trials are underway
[30, 31], we herein provide an overview of costimulation
pathways, the current standing of clinical and preclinical
development of these agents, and the preclinical data
regarding their use in xenotransplantation.

2. T Cell Regulation through
Costimulation Pathways

The adaptive immune system generates targeted responses
first through (i) T cells identifying the antigen of interest
and (ii) supplementary stimuli in the form of costimulation
to induce antigen-specific T cell proliferation. Without these
adjunct signals, T cells become anergic or undergo apoptosis
and thus the response against that antigen is abrogated [32].
In this way, costimulation pathways support the role of
T cell receptors (TCRs)—major histocompatibility complex
(MHC) interaction by providing T cell the context of the
antigen. Secondary and tertiary signals driven by cell surface
costimulation molecules and soluble cytokines, respectively,

determine the parameters of T cell activation [33]. Cytokines
produced by the antigen-presenting cell (APC) and the T cell
itself further propagate this activation cascade to induce a
robust T cell response. Conventional immunosuppression
works to abrogate the TCR and cytokine-induced signaling
pathways preventing T cell activation [15, 16]. However,
their lack of specificity to T cell mechanisms has led to
well-recognized adverse side effects.

Costimulation pathways for T cell activation occur
through a unique subset of cell surface markers, which are
highly specific for the immune system and thus provide a
target for immune modulators. Figure 1 depicts the most
commonly studied costimulation signals for potential use in
transplant applications. The interaction of CD28 with
CD80/CD86 has been the best defined. CD28 is highly
expressed on naïve T cells. During TCR engagement with
an APC, binding of CD28 to CD80/CD86 results activation
and proliferation of the T cell. A feedback mechanism occurs
at this juncture by which CD28 is then downregulated and
the T cell increases expression of CTLA4-Ig. This molecule
binds CD80/CD86 with much higher affinity than CD28
and produces an inhibitory signal as a highly evolved
feedback mechanism [34].

Another increasingly significant costimulation pathway is
the CD40/CD154 (CD40 ligand) interaction, which has been
shown to be a potent stimulator of T and B cell activation
through conventional APC interactions and also through
interactions with innate immune cells and endothelium
[35–38]. The inducible T cell costimulator (ICOS) mole-
cule (CD278) has more recently been discovered to play
an important role in T cell activation and differentiation
as well as T and B cell interactions [39].

These costimulation pathways play a significant role
during antigen recognition and T cell activation. Activated
T cells rely on a specialized repertoire of surface proteins that
assist in migration, adhesion, and interactions across the
immunologic synapse to facilitate their effector function
[40]. Lymphocyte function-associated antigen 1 (LFA1) is a
well-studied molecule known to assist in immune cell endo-
thelial attachment and migration and is recognized to play
an important role in the stabilization of the immunologic
synapse during antigen recognition and effector function
(Figure 1) [41–43]. CD2 is more constitutively expressed on
memory T cells, and interaction with LFA-3 is thought to
not only have migration functions but also act as an activator
of the potent memory T cell proliferation and response [40].

3. T Cell Costimulation in
Organ Allotransplantation

Costimulation blockade has been extensively studied in
preclinical allotransplantation models [41, 44–50]. Their rel-
evance to xenotransplantation and xenoimmunity requires a
thorough understanding of the salient findings from this
growing body of research. One of the initial costimulation
blockade agents was CTLA4-Ig, a protein that binds CD80/
CD86 thus preventing CD28 costimulation and T cell
activation. Preclinical data for CD40/CD154 blockade using
anti-CD154 mAb also emerged in parallel with promising

Table 1: Timeline for application of evolving techniques for genetic
engineering of pigs employed in xenotransplantation.

Year Technique

1992 Microinjection of randomly integrating transgenes

2000 Somatic cell nuclear transfer (SCNT)

2002 Homologous recombination

2011 Zinc finger nucleases (ZFNs)

2013 Transcription activator-like effector nucleases (TALENs)

2014 CRISPR/Cas9

CRISPR/Cas9: clustered randomly interspaced short palindromic repeats
and the associated protein 9 (table adopted from Cooper et al.) [9].
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results. For example, an earlier study utilizing CTLA4-Ig and
an anti-CD154 mAb (5C8 molecule) demonstrated
synergistic prolongation of allograft survival in a nonhuman
primate model, which continued even after withdrawal of
immunosuppression [44]. Blockade of CD40/CD154 signal-
ing pathway also was able to prolong graft survival in both
renal and islet allotransplantation in nonhuman primates
[44, 46, 51]. In these studies, the combination of both
CTLA4-Ig and CD40 blockade appeared to prevent donor-
specific antibody formation.

Memory T cells have been implicated in belatacept-
resistant rejection; therefore, adjuvant therapy targeting
memory T cell-specific features has been studied [40, 52].
An initial study of the LFA-3Ig molecule (alefacept) in vitro
demonstrated suppression of alloreactive memory T cells,
which were not suppressed by belatacept alone [45, 53]. Stud-
ies in nonhuman primates, however, demonstrated minimal
benefit with an increased incidence of infectious complica-
tions [45, 47, 48, 53]. Based on early data, clinical use of the

LFA-1 inhibitor, efalizumab, demonstrated some benefit in
islet transplantation based on early data [42]. The use of
LFA-1 inhibitor in combination with costimulation blockade
also appeared to further prolong graft survival in islet allo-
transplantation [54]. LFA-1 exists in two forms: a commonly
expressed, low-affinity form and a transient, high-affinity
form, expressed only during activation. A recent study exam-
ined the use of more specific LFA-1 inhibitors (leukotoxin A
and AL-579); targeting the high-affinity form of LFA-1 also
did not demonstrate additional benefit in a renal transplant
model [43]. Despite these data and the clinical potential, both
alefacept and efalizumab were removed from the market by
their manufacturers precluding further clinical study. A
study using ICOS blockade with belatacept did not demon-
strate any visible benefit to the combination of the two [50].

Costimulation blockade in clinical transplantation was
first successfully introduced with the use of belatacept, a
CTLA4-Ig molecule with higher affinity for B7 [26]. The
initial BENEFIT trials demonstrated similar efficacy of
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Figure 1: Costimulation pathways in T cell regulation. Upon MHC-antigen interaction with the TCR, costimulation pathways can augment
or suppress the activation of the T cell. From left to right, CD28 is activated by CD80/CD86; however, after T cell activation, CTLA-4 is
upregulated and with higher affinity than CD80/CD86 and binds to CD28 inhibiting the signal. CTLA-4Ig and belatacept work by taking
advantage of their higher affinity to CD28 over CD80/CD86 and thereby block CD80/CD86 activation of CD28. CD154 and CD40 are
other potent activators of T cells; monoclonal antibodies against either of these surface proteins have potential for application in
transplant immunosuppression. PD-1 is expressed on T cells, and interaction with PD-1 Ligand (PD-L1) produces a suppressive signal to
the T cell.
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belatacept-based regimens versus calcineurin inhibitors with
an improved side effect profile [55–58]. However, a higher
number of patients experienced an early severe rejection,
which led to hesitation by many clinicians for widespread
use [59]. Most of these rejection episodes were medically
reversible which led to similar graft survival rates. The spar-
ing of renal function demonstrated a potential benefit in
long-term graft survival. Interestingly, patients who were on
belatacept therapy also lacked significant production of
donor-specific antibodies [29]. Further investigation into
belatacept-resistant rejection demonstrated specific subsets
of memory T cells that were present in patients who were
not responsive to belatacept [40, 52, 60–62]. Alternative reg-
imens incorporating belatacept in addition to conventional
agents have shown promise [63–65], and further study to risk
stratify these patients to individualize and introduce adjuvant
therapy is ongoing.

Phase I clinical trials of a CD154 inhibitor demonstrated
increased thrombotic phenomena not identified in preclini-
cal testing and thus prevented clinical approval [66, 67] (as
was subsequently demonstrated in xenotransplantation
[68]). As preclinical data in allotransplant models appeared
promising, newer agents to inhibit the CD40/CD154 and
CD28/CD80/CD86 interaction and other costimulatory
pathways are in the pipeline [69–72] but will need to com-
plete their drug development cycle prior to consideration
for human xenotransplant trials.

4. Costimulation Blockade in
Xenotransplantation

The past two decades have been marked by great advances in
the field of xenotransplantation with unprecedented graft
survival times seen in preclinical models [1, 5, 13]. Tables 2,
3, and 4 summarize selected studies in solid organ (heart,
kidney, and liver) and islet xenotransplantation with a spe-
cific use of anti-CD154mAb (Table 2), anti-CD40mAb
(Table 3), or CTLA4-Ig (Table 4) between 2000 (the first
use of costimulation blockade in xenotransplantation) to
2017. Continued development and improvement upon
immunosuppressive regimens and the introduction of novel
experimental agents appear to have contributed to this
progress. Studies from the early part of the previous
decade showed that induction therapy followed by high-
dose conventional combination maintenance regimens was
generally (but not uniformly) sufficient to sustain life-
supporting pig grafts in nonhuman primates [73]. Conven-
tional immunosuppressive therapy included agents such
as cyclophosphamide, cyclosporine, mycophenolate mofetil,
methylprednisone, and prednisolone (Tables 2, 3, and 4).

In 2000, Buhler et al. introduced the concept of costimu-
lation blockade to the field of xenotransplantation [74].
Using a murine anti-human CD154mAb, they attempted to
induce immune tolerance in nonhuman primates to trans-
planted pig peripheral blood mononuclear cells (PBMCs).
More preclinical studies followed in both solid organ and
islet xenotransplantation (Table 2) and increased markedly
in the following decades. The most studied costimulatory
modifiers within xenotransplantation have included anti-

CD154mAb (Table 2), anti-CD40mAb (Table 3), and the
CD28/B7 pathway (including CTLA4-Ig proteins abatacept
and belatacept, as well as anti-CD28mAb, Table 4). Anti-
CD154mAb therapy significantly prolongated porcine renal
xenograft survival in nonhuman primates, with recent data
demonstrating survival up to 405 days [22, 75, 76]. Unfortu-
nately, this therapy is unlikely to be available for clinical
xenotransplantation trials in the near future due to the
agent’s known thrombogenic properties [66–68]. High avid-
ity CTLA4-Ig (belatacept) through interrupting the CD28/B7
pathway may be insufficient as monotherapy for xenograft
maintenance [77]. Anti CD40mAb-based regimens have
contributed to some of the longest reported xenograft
survivals of pig heart and livers [24, 78]. Adhesion block-
ade with LFA-1 has also been utilized in a model of
xenogenic islet transplantation, but with minimal benefit
[79]. Further study continues in preclinical models to
identify the most effective combination of costimulation
blockade for xenotransplantation.

5. Costimulation Blockade and Genetic
Modification of the Pig

Moving in parallel with this growing interest in xenotrans-
plant costimulatory modification, genome-editing strategies
aimed at costimulation pathways has also gained momen-
tum. Xenotransplantation offers the unique potential to
incorporate modifiers of the host immune response within
the graft expression profile itself. To date, genetically modi-
fied pigs have been produced that alter the expression of
endogenous porcine CTLA-4-Ig [80], or LEA29Y [81], or
express human CD39 [82], or a human dominant-negative
mutant class II transactivator [83]. Exhibiting variable suc-
cesses, these approaches incorporate inhibitory regulation
of the host costimulation interactions within the graft itself
with the goal of facilitating suppression of host immune tol-
erance to the xenograft with less pharmacologic intervention
than is required for allografts.

Regarding islet xenotransplantation, to date, five
independent groups have reported survival of pig islets
(genetically engineered or wild-type) for more than 3 months
after transplantation into the liver of a nonhuman primate
[19, 84]. Four groups utilized anti-CD154mAb-based immu-
nosuppressive therapy (Table 2). Due to the likely unavailabil-
ity of this agent, the Emory group has tried novel strategies
with other clinically applicable or potentially clinically appli-
cable medications such as basiliximab (anti-CD25mAb),
LFA-1 blockade, and anti-CD40mAb (Table 3), in combina-
tion with belatacept.

Although several of these genetic strategies have provided
promising results, the majority of gene-modification models
are aimed at xenoantigen removal, complement regulation,
or thromboregulatory properties of the xenograft. Indeed,
these advances in genome-editing techniques have catalyzed
a recent influx of novel and unique genetic backgrounds to
the field of xenotransplantation. This rapid development
raises a significant experimental issue; both novel genomic
strategies and experimental immunosuppression strategies
warrant individual appraisals. In the absence of a unified
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Table 2: Selected studies using anti-CD154mAb in pig-to-nonhuman primate xenotransplantation.

First author (year) Donor pig
Recipient
NHP

Immunosuppressive regimen
Longest survival

(days)

Heart xenotransplantation, heterotopic

Buhler (2000) [86] WT Baboon
TBI, TI, splenectomy, IA, ATG, CVF, CSA,
or anti-CD154mAb, MMF +/− pig stem cells

N.A

Houser (2004) [87] CD55 Baboon
ATG, anti-CD2mAb, TI, CVF, anti-CD154mAb,

MMF, CS
139

Dor (2005) [88] GTKO Baboon ATG, anti-CD154mAb, MMF, CS 179

Kuwaki (2005) [89] GTKO Baboon ATG, anti-CD2mAb, TI, CVF, anti-CD154mAb 179

Wu (2005) [90] CD46 Baboon
ATG, anti-CD154mAb, +/− anti-CD20mAb

+/− CTLA4-Fc
11

Wu (2007) [91] CD46 Baboon ATG, anti-CD154mAb, GAS194 or TPC, +/− IA 36

Ezzelarab (2009) [92] GTKO Baboon ATG, CVF, anti-CD154mAb, MMF, CS 56

Mohiuddin (2012) [93] GTKO.CD46 Baboon ATG, anti-CD20mAb, anti-CD154mAb, MMF, CS 236

Kim (2013) [94] GTKO Cynomolgus
ATG, anti-CD20mAb, anti-CD154mAb,

tacrolimus, CS
24

Ezzelarab (2015) [95] GTKO Baboon ATG, anti-CD154mAb, MMF 56

Iwase (2015) [96] GTKO.CD46.TBM Baboon
ATG, anti-CD20mAb, anti-CD154mAb,

MMF, CS
52

Kidney xenotransplantation

Buhler (2000) [86] WT Baboon
TBI, TI, splenectomy, IA, ATG, CVF, CSA,
or anti-CD154mAb, MMF +/− pig stem cells

N.A

Buhler (2001) [97] CD55 Baboon
TBI, TI, splenectomy, IA, ATG, CVF, anti-CD154mAb,

MMF, CS
29

Barth (2003) [98] CD55 Baboon
Thymokidneys, anti-CD2mAb, ATG, anti-CD154mAb,

CyP, CVF, MMF, CS
229

Gollackner (2003) [99] CD55 Baboon
TI, splenectomy, IA, ATG, anti-CD154mAb, CyP, CVF,

MMF, CS
13

Knosalla (2003) [100] CD55 Baboon
TI, splenectomy, IA, ATG, anti-CD154mAb, CyP, CVF,

MMF, CS
29

Yamada (2005) [75] GTKO Baboon
Vascularized thymic lobe, WBI, anti-CD2mAb,

anti-CD154mAb, MMF, CS, CVF
68

Shimizu (2005) [101] CD55 Baboon
Thymokidneys, splenectomy, IA, anti-CD3mAb,

ATG, anti-CD154mAb, CyP, CVF, MMF
30

Griesemer (2009) [102] GTKO Baboon
Thymectomy, splenectomy, TBI, ATG, anti-CD2mAb,
anti-CD154mAb, tacrolimus, MMF, anti-CD20mAb

83

Lin (2010) [103] GTKO.CD46 Baboon ATG, antiCD154mAb, MMF, CVF, CS 16

Nishimura (2011) [104] GTKO Baboon
Thymokidney, thymectomy, splenectomy,

anti-CD3, antiCD2mAb, ATG, anti-CD20mAb,
tacrolimus, MMF, anti-CD154mAb

15

Ezzelarab (2015) [95] GTKO Baboon ATG, anti-CD154mAb, MMF 10

Higginbotham
(2015) [22]

GTKO.CD55 Rhesus Anti-CD4, anti-CD8, anti-CD154mAb, MMF, CS 310

Kim (2017) [76] GTKO.CD55 Rhesus Anti-CD4, anti-CD8, anti-CD154mAb, MMF, CS 405

Liver xenotransplantation

Kim (2002) [105] GTKO Baboon
ATG, LoCD2b, CVF, anti-CD154mAb, azathioprine,

tacrolimus, CS
9

Navarro-Alvarez
(2016) [106]

GTKO Baboon ATG, LoCD2b, CVF, anti-CD154mAb, tacrolimus, CS 6
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approach to gene modification within xenotransplantation, a
cohesive appraisal of costimulatory intervention is challeng-
ing. The heterogeneity of genetic background thus prevents
an effective stratification of costimulation blockade strategies
for xenotransplantation. At present, a combination of graft
modifications and exogenous immunosuppressive therapy
to the host will be necessary to promote clinical application
of xenotransplantation [1, 3, 13, 84, 85]. A standardized
approach to testing genetic modification in combination with
novel immunosuppressive agents will ideally bring clarity to
the optimal combinations.

6. Conclusions

Currently published preclinical data demonstrate that immu-
nosuppressive therapy, typically incorporating costimulation
blockade agents, is required for successful engraftment of
porcine tissues, even those with considerable genetic modifi-
cation [9]. This convergence of experimental therapies in the
preclinical setting presents a predicament when considering
clinical xenotransplantation trials [31]. It is as yet uncertain
whether conventional immunosuppressive agents may be
effective enough to facilitate engraftment and maintenance

Table 2: Continued.

First author (year) Donor pig
Recipient
NHP

Immunosuppressive regimen
Longest survival

(days)

Islet xenotransplantation

Buhler (2002) [18] WT Baboon
Splenectomy, IA, TBI, ATG, CVF, anti-CD154mAb,

CSA, MMF, CS
28

Hering (2006) [107] WT Cynomolgus
Anti-CD25mAb, FTY720, rapamycin,

anti-CD154mAb
187

Cardona (2006) [108] WT Rhesus Anti-CD25mAb, anti-CD154mAb, CTLA4-Ig >260
Rood (2007) [109] GTKO Cynomolgus ATG, CVF, anti-CD154mAb, MMF, tacrolimus >58
Casu (2008) [110] WT Cynomolgus ATG, anti-CD154mAb, MMF >60
van der Windt
(2009) [19]

CD46 Cynomolgus ATG, anti-CD154mAb, MMF 396

Thompson (2011) [20] GTKO Rhesus
Anti-CD154mAb, anti-LFA1mAb, MMF,

belatacept
249

Bottino (2014) [111]
GTKO.CD46.

TFPI.CTLA4Ig.CD39
Cynomolgus ATG, MMF, anti-CD154mAb, CS 365

Shin (2015) [112] WT Rhesus
Anti-CD154mAb, ATG, rapamycin, CVF,

adalimumab
>603

ATG: antithymocyte globulin; CS: corticosteroids; CSA: cyclosporine A; CVF: cobra venom factor; CyP: cyclophosphamide; NHP: nonhuman primate;
TBI: total body irradiation; TI: thymus irradiation; mAb: monoclonal antibody; MMF: mycophenolate mofetil; mAb: monoclonal antibody; GTKO:
α1,3-galactosyltransferase gene knockout; GAS914: a soluble glycoconjugate comprising Gal on poly-L-lysine backbone; N.A: not applicable; TBM:
thrombomodulin; TPC: an aGal-polyethylene glycol polymer conjugate; WT: wild-type.

Table 3: Selected studies using anti-CD40mAb in pig-to-nonhuman primate xenotransplantation.

First author (year) Donor pig
Recipient
NHP

Immunosuppressive regimen
Longest survival

(days)

Heart xenotransplantation, heterotopic

Iwase (2015) [96] GTKO.CD46.TBM Baboon
ATG, belatacept, anti-CD40mAb, tacrolimus,

MMF, CS
130

Mohiuddin (2016) [78] GTKO.CD46.TBM Baboon ATG, anti-CD20mAb, anti-CD40mAb, CS >900
Kidney xenotransplantation

Iwase (2015) [23]
GTKO.CD46.CD55
TBM.EPCR.CD39

Baboon
ATG, anti-CD20mAb, anti-CD40mAb,
rapamycin, tocilizumab, etanercept

136

Liver xenotransplantation

Shah (2017) [24] GTKO Baboon
ATG, anti-CD40mAb, tacrolimus,

CVF, CS
29

Islet xenotransplantation

Thompson (2011) [21] WT Rhesus
Anti-CD25mAb, anti-CD40mAb,

rapamycin, belatacept
203

NHP: nonhuman primate; WT: wild-type; ATG: antithymocyte globulin; CVF: cobra venom factor; MMF: mycophenolate mofetil; mAb: monoclonal antibody;
CS: corticosteroids; GTKO: α1,3-galactosyltransferase gene knockout; TBM: thrombomodulin; EPCR: endothelial cell protein C receptor.
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of genetically modified (“humanized”) porcine organs or
tissues. Furthermore, many of the immunosuppressive
agents currently being tested in nonhuman primate models
are not yet approved for clinical use. More rigorous testing
of novel genetically modified pigs with minimal and/or more
clinically relevant immunosuppression is warranted. How-
ever, the potential of costimulation blockade in xenotrans-
plantation holds great promise for future use. Although
genome-edited pig xenografts will certainly minimize the
need for novel immunosuppressive agents, the increasing
depth of our costimulation blockade library will benefit the
future of allotransplantation and xenotransplantation alike.
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ATG, belatacept, anti-CD40mAb, tacrolimus,

MMF, CS
130

Liver xenotransplantation

Shah (2017) [24] GTKO Baboon ATG, belatacept, tacrolimus, CVF, CS 25

Islet xenotransplantation

Cordona (2006) [108] WT Rhesus Anti-CD25mAb, anti-CD154mAb, CTLA4-Ig >260

Hecht (2009) [113] Fetal pancreatic fragments Cynomolgus
Anti-CD25mAb, anti-CD154mAb, FTY720,

rapamycin, CTLA4-Ig
380

Thompson (2011) [21] WT Rhesus
Anti-CD25mAb, anti-CD40mAb, rapamycin,

belatacept
203

Thompson (2011) [20] GTKO Rhesus
Anti-CD154mAb, anti-LFA1mAb, MMF,

belatacept
249

Thompson (2012) [79] WT Rhesus
MMF, belatacept, alefacept, anti-LFA1mAb,

tacrolimus
114

Graham (2013) [114] WT Cynomolgus
Anti-CD25mAb, abatacept, tacrolimus,

rapamycin
>180

NHP: nonhuman primate; WT: wild-type; ATG: anti-thymocyte globulin; CVF: cobra venom factor; MMF: mycophenolate mofetil; mAb: monoclonal
antibody; CS: corticosteroids; GTKO: α1,3-galactosyltransferase gene knockout; TBM: thrombomodulin.
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