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Introduction
Ancestral reconstruction is the extrapolation back in time from measured characteristics of
individuals (or populations) to their common ancestors. It is an important application of
phylogenetics, the reconstruction and study of the evolutionary relationships among individu-
als, populations, or species to their ancestors. In the context of biology, ancestral reconstruction
can be used to recover different kinds of ancestral character states, including the genetic
sequence (ancestral sequence reconstruction), the amino acid sequence of a protein, the com-
position of a genome (e.g., gene order), a measurable characteristic of an organism (pheno-
type), and the geographic range of an ancestral population or species (ancestral range
reconstruction). Nonbiological applications include the reconstruction of the vocabulary or
phonemes of ancient languages [1] and cultural characteristics of ancient societies such as oral
traditions [2] or marriage practices [3].

Ancestral reconstruction relies on a sufficiently realistic model of evolution to accurately
recover ancestral states. No matter how well the model approximates the actual evolutionary
history, however, one's ability to accurately reconstruct an ancestor deteriorates with increasing
evolutionary time between that ancestor and its observed descendants. Additionally, more real-
istic models of evolution are inevitably more complex and difficult to calculate. Progress in the
field of ancestral reconstruction has relied heavily on the exponential growth of computing
power and the concomitant development of efficient computational algorithms (e.g., a
dynamic programming algorithm for the joint maximum likelihood [ML] reconstruction of
ancestral sequences [4]). Methods of ancestral reconstruction are often applied to a given
phylogenetic tree that has already been inferred from the same data. While convenient, this
approach has the disadvantage that its results are contingent on the accuracy of a single phylo-
genetic tree. In contrast, some researchers advocate a more computationally intensive Bayesian
approach that accounts for uncertainty in tree reconstruction by evaluating ancestral recon-
structions over many trees [5].

History
The concept of ancestral reconstruction is often credited to Emile Zuckerkandl and Linus
Pauling. Motivated by the development of techniques for determining the primary (amino
acid) sequence of proteins by Frederick Sanger in 1955 [6], Pauling and Zuckerkandl postu-
lated [7] that such sequences could be used to infer not only the phylogeny relating the
observed protein sequences but also the ancestral protein sequence at the earliest point (root)
of this tree. However, the idea of reconstructing ancestors from measurable biological charac-
teristics had already been developing in the field of cladistics, one of the precursors of modern
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phylogenetics. Cladistic methods, which appeared as early as 1901, infer the evolutionary rela-
tionships of species on the basis of the distribution of shared characteristics, of which some are
inferred to be descended from common ancestors. Furthermore, Theodoseus Dobzhansky and
Alfred Sturtevant articulated the principles of ancestral reconstruction in a phylogenetic con-
text in 1938, when inferring the evolutionary history of chromosomal inversions in Drosophila
pseudoobscura [8]. Thus, ancestral reconstruction has its roots in several disciplines. Today,
computational methods for ancestral reconstruction continue to be extended and applied in a
diversity of settings so that ancestral states are being inferred not only for biological character-
istics and the molecular sequences but also for the structure of folded proteins [9,10], the geo-
graphic location of populations and species (phylogeography) [11,12], and the higher-order
structure of genomes [13].

Methods and Algorithms
Any attempt at ancestral reconstruction begins with a phylogeny. In general, a phylogeny is a
tree-based hypothesis about the order in which populations (referred to as taxa) are related by
descent from common ancestors. Observed taxa are represented by the tips or terminal nodes
of the tree that are progressively connected by branches to their common ancestors, which are
represented by the branching points of the tree that are usually referred to as the ancestral or
internal nodes. Eventually, all lineages converge to the most recent common ancestor of the
entire sample of taxa. In the context of ancestral reconstruction, a phylogeny is often treated as
though it were a known quantity (with Bayesian approaches being an important exception).
Because there can be an enormous number of phylogenies that are nearly equally effective at
explaining the data, reducing the subset of phylogenies supported by the data to a single repre-
sentative, or point estimate, can be a convenient and sometimes necessary simplifying assump-
tion. Ancestral reconstruction can be thought of as the direct result of applying a hypothetical
model of evolution to a given phylogeny. When the model contains one or more free parame-
ters, the overall objective is to estimate these parameters on the basis of measured characteris-
tics among the observed taxa (sequences) that descended from common ancestors. Parsimony
is an important exception to this paradigm: though it has been shown that there are mathemat-
ical models for which it is the ML estimator [14], at its core, it is simply based on the heuristic
that changes in character state are rare, without attempting to quantify that rarity.

Maximum Parsimony
Parsimony, known colloquially as "Occam's razor," refers to the principle of selecting the sim-
plest of competing hypotheses. In the context of ancestral reconstruction, parsimony endeavors
to find the distribution of ancestral states within a given tree that minimizes the total number
of character state changes that would be necessary to explain the states observed at the tips of
the tree. This method of maximum parsimony) [15] is one of the earliest formalized algorithms
for reconstructing ancestral states. Maximum parsimony can be implemented by one of several
algorithms. One of the earliest examples is Fitch's method [16], which assigns ancestral charac-
ter states by parsimony via two traversals of a rooted binary tree. The first stage is a postorder
traversal that proceeds from the tips toward the root of a tree by visiting descendant (child)
nodes before their parents. Initially, we are determining the set of possible character states Si
for the i-th ancestor based on the observed character states of its descendants. Each assignment
is the set intersection) of the character states of the ancestor's descendants; if the intersection is
the empty set, then it is the set union). In the latter case, it is implied that a character state
change has occurred between the ancestor and one of its two immediate descendants. Each
such event counts towards the algorithm's cost function, which may be used to discriminate
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among alternative trees on the basis of maximum parsimony. Next, a preorder traversal of the
tree is performed, proceeding from the root towards the tips. Character states are then assigned
to each descendant based on which character states it shares with its parent. Since the root has
no parent node, one may be required to select a character state arbitrarily, specifically when
more than one possible state has been reconstructed at the root. For example, consider a phy-
logeny recovered for a genus of plants containing six species, A–F (Fig 1), where each plant is
pollinated by either a "bee," "hummingbird," or "wind." One obvious question is what the polli-
nators at deeper nodes were in the phylogeny of this genus of plants. Under maximum parsi-
mony, an ancestral state reconstruction for this clade reveals that "hummingbird" is the most
parsimonious ancestral state for the lower clade (plants D, E, F), that the ancestral states for the
nodes in the top clade (plants A, B, C) are equivocal, and that both "hummingbird" or "bee"
pollinators are equally plausible for the pollination state at the root of the phylogeny, supposing
we have strong evidence from the fossil record that the root state is "hummingbird." Resolution
of the root to "hummingbird" would yield the pattern of ancestral state reconstruction depicted
by the symbols at the nodes (Fig 1) with the state requiring the fewest number of changes cir-
cled. Parsimony methods are intuitively appealing and highly efficient, such that they are still
used in some cases to seed ML optimization algorithms with an initial phylogeny [17]. How-
ever, they suffer from several issues:

Fig 1. Phylogeny of a hypothetical genus of plants with pollination states of either “bees”,
“hummingbirds”, or “wind” denoted by pictues at the tips. Pollination state nodes in the phylogenetic
tree inferred under maximum parsimony are coloured on the branches leading into them (yellow represents
“bee” pollination, red representing “hummingbird” pollination, and black representing “wind” pollination, dual
coloured branches are equally parsimonious for the two states coloured). Assignment of “hummingbird” as
the root state (because of prior knowledge from the fossil record) leads to the pattern of ancestral states
represented by symbols at the nodes of the phylogeny, the state requiring the fewest number of changes to
give rise to the pattern observed at the tips is circled at each node.

doi:10.1371/journal.pcbi.1004763.g001
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1. Variation in rates of evolution. Fitch's method assumes that changes between all character
states are equally likely to occur; thus, any change incurs the same cost for a given tree. This
assumption is often unrealistic and can limit the accuracy of such methods. For example,
transitions) tend to occur more often than transversions in the evolution of nucleic acids.
This assumption can be relaxed by assigning differential costs to specific character state
changes, resulting in a weighted parsimony algorithm [18].

2. Rapid evolution. The upshot of the "minimum evolution" heuristic underlying such meth-
ods is that such methods assume that changes are rare and thus are inappropriate in cases
where change is the norm rather than the exception [19,20].

3. Variation in time among lineages. Parsimony methods implicitly assume that the same
amount of evolutionary time has passed along every branch of the tree. Thus, they do not
account for variation in branch lengths in the tree, which are often used to quantify the pas-
sage of evolutionary or chronological time. This limitation makes the technique liable to
infer that one change occurred on a very short branch rather than multiple changes occur-
ring on a very long branch, for example [21]. This shortcoming is addressed by model-
based methods (both ML and Bayesian methods) that infer the stochastic process of evolu-
tion as it unfolds along each branch of a tree [22].

4. Statistical justification. Without a statistical model underlying the method, its estimates do
not have well-defined uncertainties [19,21,23].

ML
MLmethods of ancestral state reconstruction treat the character states at internal nodes of the
tree as parameters and attempt to find the parameter values that maximize the probability of
the data (the observed character states) given the hypothesis (a model of evolution and a phy-
logeny relating the observed sequences or taxa). Some of the earliest ML approaches to ances-
tral reconstruction were developed in the context of genetic sequence evolution [24,25]; similar
models were also developed for the analogous case of discrete character evolution [26].

These approaches employ the same probabilistic framework as used to infer the phylogenetic
tree [27]. In brief, the evolution of a genetic sequence is modelled by a time-reversible continuous
timeMarkov process. In the simplest of these, all characters undergo independent state transitions
(such as nucleotide substitutions) at a constant rate over time. This basic model is frequently
extended to allow different rates on each branch of the tree. In reality, mutation rates may also vary
over time (due, for example, to environmental changes); this can be modelled by allowing the rate
parameters to evolve along the tree, at the expense of having an increased number of parameters. A
model defines transition probabilities from states i to j along a branch of length t (in units of evolu-
tionary time). The likelihood of a phylogeny is computed from a nested sum of transition probabili-
ties that corresponds to the hierarchical structure of the proposed tree. At each node, the likelihood
of its descendants is summed over all possible ancestral character states at that node:

Lx ¼
X
Sx2O

PðSxÞ
X
Sy2O

PðSyjSx; txyÞ Ly

X
Sz2O

PðSzjSx; txzÞ Lz

� �

where we are computing the likelihood of the subtree rooted at node x with direct descendants y
and z, Si denotes the character state of the i-th node, tij is the branch length (evolutionary time)
between nodes i and j, andO is the set of all possible character states (for example, the nucleotides
A, C, G, and T). Thus, the objective of ancestral reconstruction is to find the assignment to Sx for
all x internal nodes that maximizes the likelihood of the observed data for a given tree.
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Marginal and joint likelihood
Rather than compute the overall likelihood for alternative trees, the problem for ancestral
reconstruction is to find the combination of character states at each ancestral node with the
highest marginal ML. Generally speaking, there are two approaches to this problem. First, one
may work upwards from the descendants of a tree to progressively assign the most likely char-
acter state to each ancestor taking into consideration only its immediate descendants. This
approach is referred to as marginal reconstruction. It is akin to a greedy algorithm that makes
the locally optimal choice at each stage of the optimization problem. While it can be highly effi-
cient, it is not guaranteed to attain a globally optimal solution to the problem. Second, one may
instead attempt to find the joint combination of ancestral character states throughout the tree
that jointly maximizes the likelihood of the data. Thus, this approach is referred to as joint
reconstruction. While it is not as rapid as marginal reconstruction, it is also less likely to be
caught in the local optima in nonconvex objective functions that modern optimization
methods and heuristics are designed to avoid. In the context of ancestral reconstruction, this
means that a marginal reconstruction may assign a character state to the immediate ancestor
that is locally optimal but deflects the joint distribution of ancestral character states away from
the global optimum (for examples, see Pupko and colleagues [4]). Not surprisingly, joint recon-
struction is more computationally complex than marginal reconstruction. Nevertheless, effi-
cient algorithms for joint reconstruction have been developed with a time complexity that is
generally linear with the number of observed taxa or sequences.

ML-based methods of ancestral reconstruction tend to provide greater accuracy than MP
methods in the presence of variation in rates of evolution among characters (or across sites in a
genome) [28,29]. However, these methods are not yet able to accommodate variation in rates
of evolution over time, otherwise known as heterotachy. If the rate of evolution for a specific
character accelerates on a branch of the phylogeny, then the amount of evolution that has
occurred on that branch will be underestimated for a given length of the branch and assuming
a constant rate of evolution for that character. In addition to that, it is difficult to distinguish
heterotachy from variation among characters in rates of evolution [30].

Since ML (unlike maximum parsimony) requires the investigator to specify a model of evo-
lution, its accuracy may be affected by the use of a grossly incorrect model (model misspecifica-
tion). Furthermore, ML can only provide a single reconstruction of character states (what is
often referred to as a "point estimate")—when the likelihood surface is highly nonconvex, com-
prising multiple peaks (local optima), then a single point estimate cannot provide an adequate
representation, and a Bayesian approach may be more suitable.

Bayesian Inference
Bayesian inference uses the likelihood of observed data to update the investigator's belief, or
prior distribution, to yield the posterior distribution. In the context of ancestral reconstruction,
the objective is to infer the posterior probabilities of ancestral character states at each internal
node of a given tree. Moreover, one can integrate these probabilities over the posterior distribu-
tions over the parameters of the evolutionary model and the space of all possible trees. This can
be expressed as an application of Bayes' theorem:

P SjD; yð Þ ¼ PðDjS; yÞ PðSjyÞ
PðDjyÞ

/ PðDjS; yÞ PðSjyÞ PðyÞ;
where S represents the ancestral states, D corresponds to the observed data, and θ represents
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both the evolutionary model and the phylogenetic tree. P(D|S,θ) is the likelihood of the
observed data that can be computed by Felsenstein's pruning algorithm as given above. P(S|θ)
is the prior probability of the ancestral states for a given model and tree. Finally, P(D|θ) is the
probability of the data for a given model and tree, integrated over all possible ancestral states.
We have given two formulations to emphasize the two different applications of Bayes' theorem,
which we discuss in the following section.

Empirical and hierarchical Bayes
One of the first implementations of a Bayesian approach to ancestral sequence reconstruction
was developed by Yang and colleagues, where the ML estimates of the evolutionary model and
tree, respectively, were used to define the prior distributions. Thus, their approach is an exam-
ple of an empirical Bayes method to compute the posterior probabilities of ancestral character
states; this method was first implemented in the software package PAML [31]. In terms of the
above Bayesian rule formulation, the empirical Bayes method fixes to the empirical estimates
of the model and tree obtained from the data, effectively dropping from the posterior likelihood
and prior terms of the formula. Moreover, Yang and colleagues [24] used the empirical distri-
bution of site patterns (i.e., assignments of nucleotides to tips of the tree) in their alignment of
observed nucleotide sequences in the denominator in place of exhaustively computing P(D)
over all possible values of S, given θ. Computationally, the empirical Bayes method is akin to
the ML reconstruction of ancestral states except that, rather than searching for the ML assign-
ment of states based on their respective probability distributions at each internal node, the
probability distributions themselves are reported directly.

Empirical Bayes methods for ancestral reconstruction require the investigator to assume
that the evolutionary model parameters and tree are known without error. When the size or
complexity of the data makes this an unrealistic assumption, it may be more prudent to adopt
the fully hierarchical Bayesian approach and infer the joint posterior distribution over the
ancestral character states, model, and tree [32]. Huelsenbeck and Bollback [32] first proposed a
hierarchical Bayes method to ancestral reconstruction by using Markov chain Monte Carlo
(MCMC) methods to sample ancestral sequences from this joint posterior distribution. A simi-
lar approach was also used to reconstruct the evolution of symbiosis with algae in fungal spe-
cies (lichenization) [33]. For example, the Metropolis-Hastings algorithm for MCMC explores
the joint posterior distribution by accepting or rejecting parameter assignments on the basis of
the ratio of posterior probabilities.

Put simply, the empirical Bayes approach calculates the probabilities of various ancestral
states for a specific tree and model of evolution. By expressing the reconstruction of ancestral
states as a set of probabilities, one can directly quantify the uncertainty for assigning any partic-
ular state to an ancestor. On the other hand, the hierarchical Bayes approach averages these
probabilities over all possible trees and models of evolution, in proportion to how likely these
trees and models are, given the data that has been observed.

However, whether the hierarchical Bayes method confers a substantial advantage in practice
remains controversial [34]. Moreover, this fully Bayesian approach is limited to analyzing rela-
tively small numbers of sequences or taxa because the space of all possible trees rapidly
becomes too vast, making it computationally infeasible for chain samples to converge in a rea-
sonable amount of time.

Calibration
Ancestral reconstruction can be informed by the observed states in historical samples of
known age, such as fossils or archival specimens. Since the accuracy of ancestral reconstruction
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generally decays with increasing time, the use of such specimens provides data that are closer
to the ancestors being reconstructed and will most likely improve the analysis, especially when
rates of character change vary through time. This concept has been validated by an experimen-
tal evolutionary study in which replicate populations of bacteriophage T7 were propagated to
generate an artificial phylogeny [35]. In revisiting these experimental data, Oakley and Cun-
ningham [36] found that maximum parsimony methods were unable to accurately reconstruct
the known ancestral state of a continuous character (plaque size); these results were verified by
computer simulation. This failure of ancestral reconstruction was attributed to a directional
bias in the evolution of plaque size (from large to small plaque diameters) that required the
inclusion of "fossilized" samples to address.

Studies of both mammalian carnivores [37] and fishes [38] have demonstrated that, without
incorporating fossil data, the reconstructed estimates of ancestral body sizes are unrealistically
large. Moreover, Graham Slater and colleagues showed using Caniform carnivorans that incor-
porating fossil data into prior distributions improved both the Bayesian inference of ancestral
states and evolutionary model selection, relative to analyses using only contemporaneous data
[39].

Models
Many models have been developed to estimate ancestral states of discrete and continuous char-
acters from extant descendants [40]. Such models assume that the evolution of a trait through
time may be modelled as a stochastic process. For discrete-valued traits (such as "pollinator
type"), this process is typically taken to be a Markov chain; for continuous-valued traits (such
as "brain size"), the process is frequently taken to be a Brownian motion or an Ornstein–
Uhlenbeck process. Using this model as the basis for statistical inference, one can now use ML
methods or Bayesian inference to estimate the ancestral states.

Discrete-state models
Suppose the trait in question may fall into one of k states, labeled 1,. . .,k. The typical means of
modelling evolution of this trait is via a continuous-time Markov chain, which may be briefly
described as follows (cf. Fig 2). Each state has associated to it rates of transition to all of the
other states. The trait is modelled as stepping between the k states; when it reaches a given
state, it starts an exponential "clock" for each of the other states that it can step to. It then
"races" the clocks against each other, and it takes a step towards the state whose clock is the
first to ring. In such a model, the parameters are the transition rates q = {qij: 1� i,j� k, i 6¼ j},
which can be estimated using, for example, ML methods, where one maximizes over the set of
all possible configurations of states of the ancestral nodes.

In order to recover the state of a given ancestral node in the phylogeny (call this node α) by
ML, the procedure is: find the ML estimate q̂ of q; then compute the likelihood of each possible

Fig 2. A general two-state Markov chain representing the rate of jumps from allele a to allele A. The
different types of jumps are allowed to have different rates.

doi:10.1371/journal.pcbi.1004763.g002
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state for α conditioning on q ¼ q̂; finally, choose the ancestral state that maximizes this [19].
One may also use this substitution model as the basis for a Bayesian inference procedure,
which would consider the posterior belief in the state of an ancestral node given some user-
chosen prior.

Because such models may have as many as k(k − 1) parameters, overfitting may be an issue.
Some common choices that reduce the parameter space are:

• Markov k-state 1 parameter model (Fig 3): this model is the reverse-in-time k-state counter-
part of the Jukes–Cantor model. In this model, all transitions have the same rate q, regardless
of their start and end states. Some transitions may be disallowed by declaring that their rates
are simply 0; this may be the case, for example, if certain states cannot be reached from other
states in a single transition.

• Asymmetrical Markov k-state 2 parameter model (Fig 4): in this model, the state space is
ordered (so that, for example, state 1 is smaller than state 2, which is smaller than state 3, and
transitions may only occur between adjacent states). This model contains two parameters
qinc and qdec: one for the rate of increase of state (e.g., 0 to 1, 1 to 2, etc.) and one for the rate
of decrease in state (e.g., from 2 to 1, 1 to 0, etc.).

Example: Binary state speciation and extinction model
The binary state speciation and extinction model [41] (BiSSE) is a discrete-space model that
does not directly follow the framework of those mentioned above. It allows estimation of

Fig 3. Example of a four-state 1 parameter Markov chain model. Note that in this diagram, transitions
between states A and D have been disallowed; it is conventional to not draw the arrow rather than to draw it
with a rate of 0.

doi:10.1371/journal.pcbi.1004763.g003

Fig 4. Graphical representation of an asymmetrical five-state 2-parameter Markov chain model.

doi:10.1371/journal.pcbi.1004763.g004
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ancestral binary character states jointly with diversification rates associated with different char-
acter states; it may also be straightforwardly extended to a more general multiple-discrete-state
model. In its most basic form, this model involves six parameters: two speciation rates (one
each for lineages in states 0 and 1); similarly, two extinction rates; and two rates of character
change. This model allows for hypothesis testing on the rates of speciation/extinction/character
change, at the cost of increasing the number of parameters.

Continuous-state models
In the case where the trait instead takes nondiscrete values, one must instead turn to a model
where the trait evolves as some continuous process. Inference of ancestral states by ML (or by
Bayesian methods) would proceed as above but with the likelihoods of transitions in state
between adjacent nodes given by some other continuous probability distribution.

• Brownian motion: in this case, if nodes U and V are adjacent in the phylogeny (say U is the
ancestor of V) and separated by a branch of length t, the likelihood of a transition from U
being in state x to V being in state y is given by a Gaussian density with mean 0 and variance
σ2t. In this case, there is only one parameter (σ2), and the model assumes that the trait evolves
freely without a bias toward increase or decrease, and that the rate of change is constant
throughout the branches of the phylogenetic tree [42].

• Ornstein–Uhlenbeck process: in brief, an Ornstein–Uhlenbeck process is a continuous sto-
chastic process that behaves like a Brownian motion, but attracted toward some central
value, where the strength of the attraction increases with the distance from that value. This is
useful for modelling scenarios where the trait is subject to stabilizing selection around a cer-
tain value (say 0). Under this model, the above-described transition of U being in state x to V
being in state y would have a likelihood defined by the transition density of an Ornstein–
Uhlenbeck process with two parameters: σ2, which describes the variance of the driving
Brownian motion, and α, which describes the strength of its attraction to 0. As α tends to 0,
the process is less and less constrained by its attraction to 0 and the process becomes a
Brownian motion (Fig 5). Because of this, the models may be nested, and log-likelihood ratio
tests discerning which of the two models is appropriate may be carried out.

Fig 5. Plots of 200 trajectories of each of: Brownianmotion with drift 0 and σ2 = 1 (black); Ornstein–
Uhlenbeck with σ2 = 1 and α = −4 (green); and Ornstein–Uhlenbeck with σ2 = 1 and α = −40 (orange).

doi:10.1371/journal.pcbi.1004763.g005
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• Stable models of continuous character evolution [43]: though Brownian motion is appealing
and tractable as a model of continuous evolution, it does not permit non-neutrality in its
basic form, nor does it provide for any variation in the rate of evolution over time. Instead,
one may use a stable process, one whose values at fixed times are distributed as stable
distributions, to model the evolution of traits. Stable processes, roughly speaking, behave as
Brownian motions that also incorporate discontinuous jumps. This allows us to appropri-
ately model scenarios in which short bursts of fast trait evolution are expected. In this setting,
ML methods are poorly suited because of a rugged likelihood surface and because the likeli-
hood may be made arbitrarily large, so Bayesian methods are more appropriate.

Applications

Character evolution
Behaviour and life history evolution. Diet reconstruction in Galapagos finches: Both phy-

logenetic and character data are available for the radiation of finches inhabiting the Galapagos
Islands. These data allow testing of hypotheses concerning the timing and ordering of character
state changes through time via ancestral state reconstruction. During the dry season, the diets
of the 13 species of Galapagos finches may be assorted into three broad diet categories, first
those that consume grain-like foods are considered “granivores,” those that ingest arthropods
are termed “insectivores,” and those that consume vegetation are classified as “folivores” [19].
Dietary ancestral state reconstruction under maximum parsimony recovers two major shifts
from an insectivorous state: one to granivory and one to folivory. Maximum-likelihood ances-
tral state reconstruction recovers broadly similar results, with one significant difference: the
common ancestor of the tree finch (Camarhynchus) and ground finch (Geospiza) clades is
most likely granivorous rather than insectivorous (as judged by parsimony). In this case, this
difference between ancestral states returned by maximum parsimony and ML likely occurs as a
result of the fact that ML estimates consider branch lengths of the phylogenetic tree [19].

Morphological character evolution mammalian body mass. In an analysis of the body
mass of 1,679 placental mammal species comparing stable models of continuous character evo-
lution to Brownian motion models, Elliot and Mooers [43] showed that the evolutionary pro-
cess describing mammalian body mass evolution is best characterized by a stable model of
continuous character evolution, which accommodates rare changes of large magnitude. Under
a stable model, ancestral mammals retained a low body mass through early diversification,
with large increases in body mass coincident with the origin of several orders of large body
massed species (e.g., ungulates). By contrast, simulation under a Brownian motion model
recovered a less realistic, order of magnitude larger body mass among ancestral mammals,
requiring significant reductions in body size prior to the evolution of orders exhibiting small
body size (e.g., Rodentia). Thus, stable models recover a more realistic picture of mammalian
body mass evolution by permitting large transformations to occur on a small subset of
branches [43].

Correlated character evolution. Comparative methods (inferences drawn through com-
parison of related taxa) are often used to identify biological characteristics that do not evolve
independently, which can reveal an underlying dependence. For example, the evolution of the
shape of a finch's beak may be associated with its foraging behaviour. However, it is not advis-
able to search for these associations by the direct comparison of measurements or genetic
sequences, as these observations are not independent because of their descent from common
ancestors. For discrete characters, this problem was first addressed in the framework of
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maximum parsimony by evaluating whether two characters tended to undergo a change on the
same branches of the tree [44,45]. Felsenstein identified this problem for continuous character
evolution and proposed a solution similar to ancestral reconstruction, in which the phyloge-
netic structure of the data was accommodated by directing the analysis on "independent con-
trasts" between nodes of the tree related by nonoverlapping branches [23].

Molecular evolution. On a molecular level, amino acid residues at different locations of a
protein may evolve nonindependently, because they have a direct physicochemical interaction,
or indirectly by their interactions with a common substrate, or through long-range interactions
in the protein structure. Conversely, the folded structure of a protein could potentially be
inferred from the distribution of residue interactions [46]. One of the earliest applications of
ancestral reconstruction, to predict the three-dimensional structure of a protein through resi-
due contacts, was published by Shindyalov and colleagues [47]. Phylogenies relating 67 differ-
ent protein families were generated by a distance-based clustering method (unweighted pair
group method with arithmetic mean, UPGMA), and ancestral sequences were reconstructed
by parsimony. The authors reported a weak but significant tendency for coevolving pairs of res-
idues to be colocated in the known three-dimensional structure of the proteins.

More recently, this concept has been applied to identify coevolving residues in protein
sequences using more advanced methods for the reconstruction of phylogenies and ancestral
sequences. For example, ancestral reconstruction has been used to identify coevolving residues
in proteins encoded by RNA virus genomes, particularly in the human immunodeficiency
virus (HIV) [48–50].

Vaccine design. RNA viruses such as HIV evolve at an extremely rapid rate, orders of
magnitude faster than mammals or birds. For these organisms, ancestral reconstruction can be
applied on a much shorter time scale; for example, in order to reconstruct the global or regional
progenitor of an epidemic that has spanned decades rather than millions of years. A team
around Brian Gaschen [51] proposed that such reconstructed strains be used as targets for
vaccine design efforts as opposed to sequences isolated from patients in the present day.
Because HIV is extremely diverse, a vaccine designed to work on one patient's viral population
might not work for a different patient, because the evolutionary distance between these two
viruses may be large. However, their most recent common ancestor is closer to each of the two
viruses than they are to each other. Thus, a vaccine designed for a common ancestor could
have a better chance of being effective for a larger proportion of circulating strains. Another
team took this idea further by developing a center-of-tree (COT) reconstruction method to
produce a sequence whose total evolutionary distance to contemporary strains is as small as
possible [52]. Strictly speaking, this method was not ancestral reconstruction, as the COT
sequence does not necessarily represent a sequence that has ever existed in the evolutionary
history of the virus. However, Rolland and colleagues did find that, in the case of HIV, the
COT virus was functional when synthesized. Similar experiments with synthetic ancestral
sequences obtained by ML reconstruction have likewise shown that these ancestors are both
functional and immunogenic, lending some credibility to these methods [53,54]. Furthermore,
ancestral reconstruction can potentially be used to infer the genetic sequence of the transmitted
HIV variants that have gone on to establish the next infection, with the objective of identifying
distinguishing characteristics of these variants (as a nonrandom selection of the transmitted
population of viruses) that may be targeted for vaccine design [55].

Genome rearrangements. Rather than inferring the ancestral DNA sequence, one may be
interested in the larger-scale molecular structure of an ancestral genome. This problem is often
approached in a combinatorial framework, by modelling genomes as permutations of genes or
homologous regions. Various operations are allowed on these permutations, such as an inver-
sion (a segment of the permutation is reversed in-place), deletion) (a segment is removed), or
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transposition (a segment is removed from one part of the permutation and spliced in some-
where else). The "genome rearrangement problem," first posed by Watterson and colleagues
[13], asks: given two genomes (permutations) and a set of allowable operations, what is the
shortest sequence of operations that will transform one genome into the other? A generaliza-
tion of this problem applicable to ancestral reconstruction is the "multiple genome rearrange-
ment problem" [56]: given a set of genomes and a set of allowable operations, find (i) a binary
tree with the given genomes as its leaves, and (ii) an assignment of genomes to the internal
nodes of the tree, such that the total number of operations across the whole tree is minimized.
This approach is similar to parsimony, except that the tree is inferred along with the ancestral
sequences. Unfortunately, even the single genome rearrangement problem is NP-hard [57],
although it has received much attention in mathematics and computer science (for a review,
see Fertin and colleagues [58]).

Spatial applications migration. Ancestral reconstruction is not limited to biological traits.
Spatial location is also a trait, and ancestral reconstruction methods can infer the locations of
ancestors of the individuals under consideration. Such techniques were used by Lemey and col-
leagues to geographically trace the ancestors of 192 Avian influenza A-H5N1 strains sampled
from 20 localities in Europe and Asia and of 101 rabies virus sequences sampled across 12 Afri-
can countries [12].

Treating locations as discrete states (countries, cities, etc.) allows for the application of the
discrete-state models described above. However, unlike in a model where the state space for
the trait is small, there may be many locations, and transitions between certain pairs of states
may rarely or never occur; for example, migration between distant locales may never happen
directly if air travel between the two places does not exist, so such migrations must pass
through intermediate locales first. This means that there could be many parameters in the
model which are zero or close to zero. To this end, Lemey and colleagues used a Bayesian pro-
cedure to not only estimate the parameters and ancestral states but also to select which migra-
tion parameters are not zero; their work suggests that this procedure does lead to more
efficient use of the data. They also explore the use of prior distributions that incorporate geo-
graphical structure or hypotheses about migration dynamics, finding that those they consid-
ered had little effect on the findings.

Using this analysis, the team around Lemey found that the most likely hub of diffusion of
A-H5N1 is Guangdong, with Hong Kong also receiving posterior support. Further, their results
support the hypothesis of long-standing presence of African rabies in West Africa [12].

Species ranges. Inferring historical biogeographic patterns often requires reconstructing
ancestral ranges of species on phylogenetic trees [59]. For instance, a well-resolved phylogeny
of plant species in the genus Cyrtandra [59] was used together with information of their geo-
graphic ranges to compare four methods of ancestral range reconstruction. The team com-
pared Fitch parsimony [16] (FP; parsimony), stochastic mapping (SM; ML) [60], dispersal-
vicariance analysis [61] (DIVA; parsimony), and dispersal-extinction-cladogenesis (DEC; max-
imum-likelihood) [11,62]. Results indicated that both parsimony methods performed poorly,
which was likely due to the fact that parsimony methods do not consider branch lengths. Both
maximum-likelihood methods performed better; however, DEC analyses that additionally
allow incorporation of geological priors gave more realistic inferences about range evolution in
Cyrtandra relative to other methods [59].

Another ML method recovers the phylogeographic history of a gene by reconstructing the
ancestral locations of the sampled taxa [63]. This method assumes a spatially explicit random
walk model of migration to reconstruct ancestral locations given the geographic coordinates of
the individuals represented by the tips of the phylogenetic tree. When applied to a phylogenetic
tree of chorus frogs Pseudacris feriarum, this method recovered recent northward expansion,
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higher per-generation dispersal distance in the recently colonized region, a noncentral ances-
tral location, and directional migration.

The first consideration of the multiple genome rearrangement problem, long before its for-
malization in terms of permutations, was presented by Sturtevant and Dobzhansky in 1936
(Fig 6) [64]. They examined genomes of several strains of fruit fly from different geographic
locations, and observed that one configuration, which they called "standard," was the most
common throughout all the studied areas. Remarkably, they also noticed that four different
strains could be obtained from the standard sequence by a single inversion, and two others
could be related by a second inversion. This allowed them to hypothesize a phylogeny for the
sequences and to infer that the standard sequence was probably also the ancestral one.

Linguistic evolution. Reconstructions of the words and phenomes of ancient
protolanguages such as Proto-Indo-European have been performed based on the observed ana-
logues in present-day languages. Typically, these analyses are carried out manually using the
"comparative method" [65]. First, words from different languages with a common etymology
(cognates) are identified in the contemporary languages under study, analogous to the identifica-
tion of orthologous biological sequences. Second, correspondences between individual sounds in
the cognates are identified, a step similar to biological sequence alignment, although performed
manually. Finally, likely ancestral sounds are hypothesized by manual inspection and various
heuristics (such as the fact that most languages have both nasal and non-nasal vowels) [65].

Software
There are many software packages available that perform ancestral state reconstruction. Gener-
ally, these software packages have been developed and maintained through the efforts of scien-
tists in related fields and released under free software licenses. The following table is not meant
to be a comprehensive itemization of all available packages, but provides a representative sam-
ple of the extensive variety of packages that implement methods of ancestral reconstruction
with different strengths and features (Table 1).

Package Descriptions

Molecular evolution
The majority of these software packages are designed for analyzing genetic sequence data. For
example, PAML [31] is a collection of programs for the phylogenetic analysis of DNA and

Fig 6. Phylogeny of seven regional strains ofDrosophila pseudoobscura, as inferred by Sturtevant and Dobzhansky [64]. Displayed
sequences do not correspond to the original paper, but were derived from the notation in the authors' companion paper [8] as follows: A (63A–
65B), B (65C–68D), C (69A–70A), D (70B–70D), E (71A–71B), F (71A–73C), G (74A–74C), H (75A–75C), I (76A–76B), J (76C–77B), K (78A–
79D), L (80A–81D). Inversions inferred by the authors are highlighted in blue along branches.

doi:10.1371/journal.pcbi.1004763.g006
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Table 1. List of software for ancestral reconstruction.

Name Methods Platform Supported Input Formats Character Types Continuous (C) or
Discrete (D)
Characters

Software Licence

PAML ML Unix, Mac,
Win

PHYLIP, NEXUS, FASTA Nucleotide, Protein D Proprietary

BEAST2 Bayesian Unix, Mac,
Win

NEXUS, BEAST XML Nucleotide, Protein,
Geographic

C, D GNU Lesser General
Public License

APE ML Unix, Mac,
Win

NEXUS, FASTA, CLUSTAL Nucleotide, Protein C, D GNU General Public
License

Diversitree ML Unix, Mac,
Win

NEXUS Qualitative and
quantitative traits,
Geographic

C, D GNU General Public
License, version 2

HyPhy ML Unix, Mac,
Win

MEGA, NEXUS, FASTA,
PHYLIP

Nucleotide, Protein
(customizable)

D GNU Free Documentation
License 1.3

BayesTraits Bayesian Unix, Mac,
Win

TSV or space delimited table.
Rows are species, columns
are traits.

Qualitative and
quantitative traits

C, D Creative Commons
Attribution License

Lagrange ML Linux, Mac,
Win

TSV/CSV of species regions.
Rows are species and
columns are geographic
regions

Geographic - GNU General Public
License, version 2

Mesquite Parsimony, ML Unix, Mac,
Win

Fasta, NBRF, Genbank,
PHYLIP, CLUSTAL, TSV

Nucleotide, Protein,
Geographic

C, D Creative Commons
Attribution 3.0 License

Phylomapper ML, Bayesian
(version 2)

Unix, Mac,
Win

NEXUS Geographic,
Ecological niche

C, D -

Ancestors ML Web Fasta Nucleotide (indels) D -

Phyrex Maximum
Parsimony

Linux Fasta Gene expression C, D Proprietary

SIMMAP SM Mac XML-like format Nucleotide,
qualitative traits

D Proprietary

MrBayes Bayesian Unix, Mac,
Win

NEXUS Nucleotide, Protein D GNU General Public
License

PARANA Maximum
Parsimony

Unix, Mac,
Win

Newick Biological networks D Apache License

PHAST
(PREQUEL)

ML Unix, Mac,
Win

Multiple Alignment Nucleotide D BSD License

RASP ML, Bayesian Unix, Mac,
Win

Newick Geographic D -

VIP Maximum
Parsimony

Linux, Win Newick Geographic D (grid) GPL Creative Commons

FastML ML Web, Unix Fasta Nucleotide, Protein D Copyright

MLGO ML Web Custom Gene order
permutation

D GNU

BADGER Bayesian Unix, Mac,
Win

Custom Gene order
permutation

D GNU GPL version 2

COUNT Maximum
Parsimony

Unix, Mac,
Win

Tab-delimited text file of rows
for taxa and count data in
columns

Count data (homolog
family size)

D BSD

MEGA Maximum
parsimony, ML

Mac, Win MEGA Nucleotide, Protein D Proprietary

ANGES Local
Parsimony

Unix Custom Genome maps D GNU General Public
License, version 3

EREM ML Win, Unix,
Matlab
module

Custom text format for model
parameters, tree, observed
character values

Binary D None specified, although
site indicates software is
freely available

doi:10.1371/journal.pcbi.1004763.t001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004763 July 12, 2016 14 / 20



protein sequence alignments by ML. Ancestral reconstruction can be performed using the
codeml program. HyPhy, Mesquite, and MEGA are also software packages for the phylogenetic
analysis of sequence data, but are designed to be more modular and customizable. HyPhy [66]
implements a joint ML method of ancestral sequence reconstruction [4] that can be readily
adapted to reconstructing a more generalized range of discrete ancestral character states such
as geographic locations by specifying a customized model in its batch language. Mesquite [67]
provides ancestral state reconstruction methods for both discrete and continuous characters
using both maximum parsimony and ML methods. It also provides several visualization tools
for interpreting the results of ancestral reconstruction. MEGA [68] is a modular system, too,
but places greater emphasis on ease-of-use than customization of analyses. As of version 5,
MEGA allows the user to reconstruct ancestral states using maximum parsimony, ML, and
empirical Bayes methods [68].

The Bayesian analysis of genetic sequences may confer greater robustness to model misspe-
cification. MrBayes [69] allows inference of ancestral states at ancestral nodes using the full
hierarchical Bayesian approach. The PREQUEL program distributed in the PHAST package
performs comparative evolutionary genomics using ancestral sequence reconstruction [70].
SIMMAP stochastically maps mutations on phylogenies [71]. BayesTraits [26] analyses dis-
crete or continuous characters in a Bayesian framework to evaluate models of evolution, recon-
struct ancestral states, and detect correlated evolution between pairs of traits.

Other character types. Other software packages are more oriented towards the analysis of
qualitative and quantitative traits (phenotypes). For example, the ape package [72] in the statis-
tical computing environment R also provides methods for ancestral state reconstruction for
both discrete and continuous characters through the ace function, including ML. Note that ace
performs reconstruction by computing scaled conditional likelihoods instead of the marginal
or joint likelihoods used by other ML-based methods for ancestral reconstruction, which may
adversely affect the accuracy of reconstruction at nodes other than the root. Phyrex implements
a maximum parsimony-based algorithm to reconstruct ancestral gene expression profiles in
addition to a ML method for reconstructing ancestral genetic sequences (by wrapping around
the baseml function in PAML) [73].

Several software packages also reconstruct phylogeography. BEAST (Bayesian Evolutionary
Analysis by Sampling Trees [74]) provides tools for reconstructing ancestral geographic loca-
tions from observed sequences annotated with location data using Bayesian MCMC sampling
methods. Diversitree [75] is an R package providing methods for ancestral state reconstruction
under Mk2 (a continuous time Markov model of binary character evolution [76]) and BiSSE
models. Lagrange performs analyses on reconstruction of geographic range evolution on phy-
logenetic trees [11]. Phylomapper [63] is a statistical framework for estimating historical pat-
terns of gene flow and ancestral geographic locations. RASP [77] infers ancestral state using
statistical DIVA, Lagrange, Bayes-Lagrange, BayArea, and BBMmethods. VIP [78] infers his-
torical biogeography by examining disjunct geographic distributions.

Genome rearrangements provide valuable information in comparative genomics between
species. ANGES [79] compares extant-related genomes through ancestral reconstruction of
genetic markers. BADGER [80] uses a Bayesian approach to examining the history of gene
rearrangement. Count [81] reconstructs the evolution of the size of gene families. EREM [82]
analyses the gain and loss of genetic features encoded by binary characters. PARANA [83] per-
forms parsimony-based inference of ancestral biological networks that represent gene loss and
duplication.

Web applications. Finally, there are several web server-based applications that allow
investigators to use ML methods for ancestral reconstruction of different character types with-
out having to install any software. For example, Ancestors [84] is a web server for ancestral
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genome reconstruction by the identification and arrangement of syntenic regions. FastML [85]
is a web server for probabilistic reconstruction of ancestral sequences by ML that uses a gap
character model for reconstructing indel variation. MLGO [86] is a web server for ML gene
order analysis.

Future Directions
The development and application of computational algorithms for ancestral reconstruction
continues to be an active area of research across disciplines. For example, the reconstruction of
sequence insertions and deletions (indels) has lagged behind the more straightforward applica-
tion of substitution models. Bouchard-Côté and Jordan recently described a new model (the
Poisson Indel Process [87]) that represents an important advance on the archetypal Thorne-
Kishino-Felsenstein model of indel evolution [88]. In addition, the field is being driven forward
by rapid advances in the area of next-generation sequencing technology, where sequences are
generated from millions of nucleic acid templates by extensive parallelization of sequencing
reactions in a custom apparatus. These advances have made it possible to generate a "deep"
snapshot of the genetic composition of a rapidly-evolving population, such as RNA viruses
[89] or tumour cells [90], in a relatively short amount of time. At the same time, the massive
amount of data and platform-specific sequencing error profiles has created new bioinformatic
challenges for processing these data for ancestral sequence reconstruction.
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able as supporting information in S1 and S2 Texts.
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