
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Xiangwei Xiao,
Children’s Hospital of Pittsburgh,
University of Pittsburgh, United States

REVIEWED BY

Yumi Imai,
The University of Iowa, United States
Michael A Kalwat,
Indiana Biosciences Research Institute,
United States

*CORRESPONDENCE

Junji Kozawa
kjunji@endmet.med.osaka-u.ac.jp

SPECIALTY SECTION

This article was submitted to
Diabetes: Molecular Mechanisms,
a section of the journal
Frontiers in Endocrinology

RECEIVED 19 July 2022

ACCEPTED 05 September 2022
PUBLISHED 20 September 2022

CITATION

Horii T, Kozawa J, Fujita Y, Kawata S,
Ozawa H, Ishibashi C, Yoneda S,
Nammo T, Miyagawa J-i, Eguchi H
and Shimomura I (2022) Lipid droplet
accumulation in b cells in patients with
type 2 diabetes is associated with
insulin resistance, hyperglycemia and b
cell dysfunction involving decreased
insulin granules.
Front. Endocrinol. 13:996716.
doi: 10.3389/fendo.2022.996716

COPYRIGHT

© 2022 Horii, Kozawa, Fujita, Kawata,
Ozawa, Ishibashi, Yoneda, Nammo,
Miyagawa, Eguchi and Shimomura. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) and the
copyright owner(s) are credited and
that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 20 September 2022

DOI 10.3389/fendo.2022.996716
Lipid droplet accumulation in
b cells in patients with type 2
diabetes is associated with
insulin resistance,
hyperglycemia and b cell
dysfunction involving decreased
insulin granules
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Background and objective: Pancreatic fat is a form of ectopic fat. Lipid

droplets (LDs) are also observed in b cells; however, the pathophysiological

significance, especially for b cell function, has not been elucidated. Our aim

was to assess LD accumulation in b cells in various stages of glucose

intolerance and to clarify its relationship with clinical and histological

parameters.

Methods: We examined 42 Japanese pat ients who underwent

pancreatectomy. The BODIPY493/503-positive (BODIPY-positive) area in b
cells was measured in pancreatic sections from 32 patients. The insulin granule

numbers were counted in an additional 10 patients using electron microscopy.

Results: The BODIPY-positive area in b cells in preexisting type 2 diabetes

patients was higher than that in normal glucose tolerance patients (p = 0.031).

The BODIPY-positive area in b cells was positively correlated with age (r = 0.45,

p = 0.0097), HbA1c (r = 0.38, p = 0.0302), fasting plasma glucose (r = 0.37, p =

0.045), and homeostasis model assessment insulin resistance (r = 0.41, p =

0.049) and negatively correlated with an increase in the C-peptide

immunoreactivity level by the glucagon test (r = -0.59, p = 0.018). The ratio

of mature insulin granule number to total insulin granule number was reduced

in the patients with rich LD accumulation in b cells (p = 0.039).
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Conclusions: Type 2 diabetes patients had high LD accumulation in b cells,

which was associated with insulin resistance, hyperglycemia, aging and b cell

dysfunction involving decreased mature insulin granules.
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Introduction

Type 2 diabetes mellitus is a metabolic disease characterized

by hyperglycemia resulting from decreased insulin sensitivity

and insulin secretion (1). Chronic glucotoxicity and lipotoxicity

are thought to be involved in b cell dysfunction in type 2 diabetes

mellitus in rodent models (2) and human patients (3, 4).

Ectopic fat, which results from the deposition of excess lipids

in organs such as the liver, heart and skeletal muscle where lipid

deposition is normally not found, has attracted attention.

Pancreatic fat is another form of ectopic fat that is associated

with aging and obesity (5). Pancreatic fat is divided into two

main components: adipocyte infiltration (fatty infiltration) and

intracellular lipid accumulation in both acinar and islet cells (6,

7). We recently reported that fatty infiltration was associated

with obesity, insulin resistance, and islet-associated macrophage

infiltration (8), which is regarded as islet inflammation (9). We

also reported that pancreatic fatty infiltration was associated

with postoperative glucose intolerance after pancreatectomy

(10). Considering this information, fatty infiltration may have

a pathophysiological role in glucose intolerance. Pancreatic fat

can also be evaluated by imaging techniques such as computed

tomography (CT) (7, 11) and 1H-magnetic resonance

spectroscopy (MRS) (7, 12). These imaging modalities can

indirectly evaluate pancreatic triglyceride content, and some

previous studies have reported pathophysiological roles of this

fat accumulation in glucose intolerance (11, 12). However, these

modalities cannot distinguish between fatty infiltration and

intracellular lipid accumulation. This limitation makes it

difficult to understand the pathophysiological significance of

each fat component.

Lipids are also deposited as lipid droplets (LDs) within cells,

which have a hydrophobic core of neutral lipids covered with a

phospholipid monolayer and are found ubiquitously in cells (13,

14). Pancreatic acinar and islet cells also have LDs, and

triglyceride accumulation in the islets precedes the onset of

overt diabetes in obese Zucker diabetic fatty rats (15). In human

pancreatic b cells, age-dependent accumulation of LDs was

previously reported (16, 17). LDs are enriched in islet cell

areas compared with acinar cell areas in donors with type 2

diabetes (17, 18). However, it has not been elucidated whether
02
LD accumulation, especially in human b cells, is related to islet

function and glucose tolerance. The aim of this study was to

assess the association of LD accumulation in b cells with clinical

and histological parameters, including b cell function, using

fresh pancreatic tissue samples from humans with various stages

of glucose intolerance.
Methods

Patients

We enrolled 32 Japanese patients (21 males and 11 females)

who had undergone pancreatic resection from 2008 to 2013 and

10 patients from 2020 to 2021 at the Department of

Gastroenterological Surgery, Osaka University Hospital, and

agreed to participate in this study. Patients with renal failure

(estimated glomerular filtration rate < 30 mL/min/1.73 m2) and

patients with pancreatic endocrine tumors were excluded from

this study. Patients enrolled from 2008 to 2013 underwent a 75-g

oral glucose tolerance test (OGTT) 1-60 days before pancreatic

resection, and the results of the test were used to classify the

patients into three groups according to diagnostic criteria:

normal glucose tolerance (NGT), impaired glucose tolerance

(IGT), and newly diagnosed type 2 diabetes mellitus (new

T2DM) (19). The classification into a group with preexisting

type 2 diabetes mellitus (preexisting T2DM) was based on the

clinical history. The patients enrolled after 2020 were classified

as non-DM and T2DM based on their medical history, fasting

plasma glucose and HbA1c (19).
Laboratory tests

We evaluated HbA1c (%, mmol/mol), fasting plasma glucose

(FPG) (mmol/L), fasting C-peptide immunoreactivity (F-CPR)

(nmol/L), fasting immunoreactive insulin (F-IRI) (pmol/L), the

C-peptide index (CPI) (nmol/mmol), the insulinogenic index

(I.I.) (pmol/mmol), homeostasis model assessment insulin

resistance (HOMA-IR), total cholesterol (mg/dl), triglycerides

(mg/dl) and DC-peptide (DCPR) (nmol/L). The CPI, which is an
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indicator of the basal insulin secretory capacity, was calculated

by F-CPR (nmol/L)/FPG (mmol/L). The insulinogenic index,

which is an indicator of bolus insulin capacity, was defined as the

ratio of the increment in plasma insulin level to that of the

plasma glucose level at 30 min during the 75 g-OGTT [Dserum
insulin 0-30 (pmol/L)/Dplasma glucose 0-30 min (mmol/L)].

The value of DC-peptide was defined as the increment in serum

C-peptide level (nmol/L) at 6 min after intravenous injection of 1

mg of glucagon after an overnight fast.
Pancreatic tissue processing

We obtained 32 normal pancreatic frozen and paraffin tissue

samples from patients who had undergone pancreatic resection

from 2008 to 2013. The tissues were isolated near the resected

margins after intraoperative consultation and were divided into

frozen and paraffin samples. The tissues were frozen

immediately in liquid nitrogen after being embedded in

optimal cutting temperature compound (Sakura Finetek USA,

Torrance, California). Sequential 5-µm-thick sections were cut

on a cryostat, confirmed to be noncancerous by hematoxylin and

eosin (HE) staining, and then stored at -80°C until use. Other

tissues were also fixed immediately in formaldehyde and

embedded in paraffin, and 5-mm-thick sections were cut for

subsequent analysis. Paraffin-embedded tissue was stained with

HE and confirmed to be noncancerous. Sections with a >30%

fibrous area estimated by Azan staining using paraffin samples

were excluded from this study.
Electron microscopic evaluation

We obtained 10 normal pancreatic tissue samples from

patients who underwent pancreatic resection from 2020 to

2021 for electron microscopic evaluation. Pancreatic tissues

were fixed with 2.5% glutaraldehyde for 2 hours. After fixation

with 1% osmium tetroxide for 90 min, the cells were dehydrated

through a graded series of ethanol (50%-100%) and propylene

oxide. Finally, they were embedded in epoxy resin. Ultrathin

sections were cut on an ultramicrotome (Ultracut E; Reichert-

Jung, Vienna, Austria), stained with uranyl acetate and lead

citrate and observed by transmission electron microscopy

(Hitachi HT7800, Hitachi High-Tech Corporation, Tokyo,

Japan). We counted LD numbers in b cells and evaluated

them as LD numbers per unit b cell. We also manually

counted the total insulin granule numbers per unit b cell area

(/mm2), the mature insulin granule numbers per unit b cell area

(/mm2) and the ratio of the mature insulin granule numbers to

the total insulin granule numbers (%). The b cell area was

calculated by excluding the nuclear area. Mature insulin granules

were defined by the presence of a halo and core density (20). We
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also counted the number of autophagic vacuoles per unit b cell.

Autophagic vacuoles were identified by an intracellular double

membrane structure containing cytoplasmic material and/or

massive vacuolization (21). We examined 10 randomly

selected b cells per patient.
Immunohistochemistry

The primary and secondary antibodies are listed in Table S1

in Supplementary Material. To evaluate LDs in b cells, we used

double immunofluorescence staining of frozen samples. b cells

were labeled with C-peptide, and LDs were labeled with

BODIPY 493/503. First, the sections were incubated with

mouse anti-C-peptide antibody and goat anti-mouse Alexa

Fluor 594-conjugated secondary antibody. The same section

was then incubated with 10 mmol/L BODIPY. The ratio of the

sum of the BODIPY-positive area to the entire b cell area was

defined as the “BODIPY-positive area in b cells” (%), and LD

area was assessed by BODIPY-positive area. We observed 18.5 ±

19.1 islets per section. A mean section area of 9.4 ± 6.6 mm2 was

examined for each section. Images were acquired on a confocal

laser scanning microscope (FV1200 IX81 OLYMPUS, Tokyo,

Japan) and measured using WinROOF software (Mitani

Corporation, Fukui, Japan).

To evaluate intra- and peripheral islet macrophages, we

performed double immunofluorescent staining for insulin and

CD68, which is a marker of macrophages, in the same way as in a

previous report with paraffin samples (8). We counted the

number of CD68-positive (CD68+) cells per islet, which was

defined as CD68+ cells around the periphery and/or within islets

of more than 100 mm in diameter and expressed in units of the

number per islet. We observed 76.7 ± 70.5 islets per section.

Images were acquired on a fluorescence microscope (BX53;

Olympus, Tokyo, Japan).

To evaluate the relative b cell area compared with the entire

pancreatic section, we performed the indirect immunoperoxidase

technique in the same way as in previous reports with paraffin

samples (22, 23). Images were acquired on a fluorescence

microscope (BX53; Olympus, Tokyo, Japan).
Assessment of pancreatic
fatty infiltration

Pancreatic fatty infiltration was evaluated using paraffin-

embedded tissue stained with HE. The ratio of the sum of the

interlobular and intralobular fat-cell area to the entire pancreatic

section was defined as the “fat-cell area” (%) (24). A mean

section area of 63.1 ± 41.2 mm2 was examined for each section.

Images were acquired on an optical microscope and quantified

using the WinROOF software program (10).
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Statistical analysis

Normally distributed data are presented as the means ±

SDs, and nonnormally distributed data are presented as the

medians and interquartile ranges (IQRs). Groups of data with a

normal distribution were compared using one-way analysis of

variance followed by a post hoc Tukey–Kramer analysis. For

data that were not normally distributed, the Kruskal–Wallis

test followed by a post hoc Steel-Dwass analysis was used.

Significance was set at p < 0.05. All statistical analyses were

performed with JMP Pro 14 software (Statistical Analysis

System Inc. Cary, NC, USA).
Frontiers in Endocrinology 04
Results

Clinical characteristics and laboratory
data

Table 1 shows a comparison of the clinical characteristics

among the groups of 32 patients whose LDs in b cells were

examined by BODIPY staining. Patients were classified into the

NGT (n = 9), IGT (n = 8), new T2DM (n = 6), or preexisting

T2DM (n = 9) groups. Primary diseases were mainly cystic lesions

of the pancreas (n = 11) and pancreatic cancer (n = 12). The

surgical procedures were pancreatoduodenectomy (PD) (n = 21),
TABLE 1 Clinical Characteristics of 32 Subjects.

Total NGT IGT New T2DM Preexisting T2DM

N 32 9 8 6 9

Male/female 21/11 7/2 4/4 4/2 6/3

Age, y 67.3 ± 10.6 59.3 ± 12.3 69.8 ± 8.3 65.3 ± 8.3 74.2 ± 6.8*

BMI, kg/m2 21.4 ± 2.8 21.0 ± 2.4 22.6 ± 3.4 22.8 ± 1.9 19.9 ± 2.7

HbA1c
(%, mmol/mol)

6.1 ± 1.1,43.6 ± 12.6 5.2 ± 0.6,33.7 ± 6.6 5.5 ± 0.3,36.3
± 3.8

6.3 ± 0.5*,45.3 ±
5.3

7.5 ± 1.0**††‡58.6 ± 11.0

FPG, mmol/L 5.8 ± 1.1 (n=30) 5.3 ± 0.3 5.2 ± 0.4 5.9 ± 1.1 7.2 ± 1.2**††‡ (n=7)

F-IRI, pmol/L 36.2 ± 18.8 (n=24) 33.4 ± 13.8 33.7 ± 17.5 46.8 ± 25.9 18.2 (n=1)

F-CPR, nmol/L 0.5 ± 0.2 (n=27) 0.5 ± 0.1 0.5 ± 0.2 0.6 ± 0.3 0.2 ± 0.05‡ (n=4)

CPI, nmol/
mmol

9.1 ± 4.2 (n=27) 10.3 ± 2.2 9.2 ± 4.2 10.6 ± 5.4 3.6 ± 0.9‡ (n=4)

Insulinogenic
index, pmol/
mmol

92.3 ± 95.7 (n=23) 108.7 ± 61.9 125.2 ± 136.3 27.3 ± 15.8 (n=5) 6.6 (n=1)

DCPR, nmol/L 0.9 ± 0.4 (n=15) 1.2 ± 0.2 (n=6) 1.0 ± 0.3
(n=4)

0.7 ± 0.1 (n=2) 0.3 ± 0.1**†† (n=3)

HOMA-IR 0.5 ± 0.3 (n=24) 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.4 0.3 (n=1)

Total
cholesterol,mg/
dL

196.5 ± 32.1 (n=27) 183.0 ± 41.7 (n=7) 210.7 ± 21.4
(n=7)

197.2 ± 25.8 (n=5) 195.4 ± 34.6 (n=8)

Triglycerides,
mg/dl

113.3 ± 45.5 (n=29) 138.9 ± 56.6 (n=8) 117.3 ± 39.9 103.4 ± 46.3 (n=5) 90.1 ± 28.1 (n=8)

Fat-cell area, % 2.2 ± 2.6 2.0 ± 2.3 2.6 ± 2.7 1.9 ± 3.7 2.4 ± 2.5

Relative b cell
area, %

0.9 ± 0.4 1.0 ± 0.5 1.0 ± 0.5 0.8 ± 0.5 0.8 ± 0.3

CD68+ cells/
islet

0.04 ± 0.06 0.01 ± 0.02 0.01 ± 0.01 0.07 ± 0.09 0.08 ± 0.06

Medication for
diabetes

– – None: 1 SU: 5, aGI: 2, Insulin: 3

Underlying
disease

Pancreatic cancer: 12IPMN: 11Serous cystic adenoma:
1 Bile duct cancer: 5 Carcinoma of the papilla of
Vater: 1 Pseudocyst of pancreas: 1 Pancreatic
metastasis from renal cell carcinoma: 1

Pancreatic cancer: 3
IPMN: 2 Bile duct
cancer: 3 Pseudocyst
of pancreas: 1

Pancreatic
cancer: 5
IPMN: 2 Bile
duct cancer:
1

Pancreatic cancer:
1 IPMN: 4
Carcinoma of the
papilla of Vater: 1

Pancreatic cancer: 3 IPMN: 3
Serous cystic adenoma: 1 Bile duct
cancer: 1 Pancreatic metastasis
from renal cell carcinoma: 1
Data are expressed as the mean ± SD. *p<0.05 vs. NGT, **p<0.01 vs. NGT, †p<0.05 vs. IGT, ††p<0.01 vs. IGT, ‡p<0.05 vs. New T2DM, ‡‡p<0.01 vs. New T2DM. Abbreviations: BMI, body
mass index; FPG, fasting plasma glucose; F-IRI, fasting immunoreactive insulin; F-CPR, fasting C-peptide; CPI (C-peptide index), fasting C-peptide/fasting plasma glucose;
Insulinogenic index, DIRI [IRI 30 minutes-IRI 0 minutes]/DPG [PG 30 minutes-PG 0 minutes]; DCPR (DC-peptide), the increment in serum C-peptide level at 6 min after
intravenous injection of 1 mg of glucagon after an overnight fast; HOMA-IR, homeostasis model assessment of insulin resistance; IPMN, intraductal papillary mucinous neoplasm;
SU, sulfonylurea; aGI, alpha-glucosidase inhibitor.
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distal pancreatectomy (DP) (n = 10) or total pancreatectomy (n =

1). There were no differences among the groups with respect to

BMI, F-IRI, I.I., total cholesterol or triglycerides. Age was higher in

the preexisting T2DM group than in the NGT group (p < 0.05).

HbA1c levels were higher in the new T2DM group than in the

NGT group (p < 0.05) and were higher in the preexisting T2DM

group than in the NGT (p < 0.01), IGT (p < 0.01) and new T2DM

(p < 0.05) groups. The FPG level in the preexisting T2DM group

was higher than that in the NGT (p < 0.01), IGT (p < 0.01) and

new T2DM (p < 0.05) groups. The F-CPR level was lower in the

preexisting T2DM group than in the new T2DM group (p < 0.05).

The CPI was lower in the preexisting T2DM group than in the

new T2DM group (p < 0.05).
Relationships between lipid
droplet accumulation in b cells and
glucose tolerance

Figure 1 shows a representative image of double

immunofluorescence staining for C-peptide and BODIPY. The

BODIPY-positive areas in the b cells of patients with new T2DM

(Figure 1A (d-f)) and preexisting T2DM (Figure 1A (g-i)) were

larger than those of a patient with NGT (Figure 1A (a-c)).

Figure 1B shows a comparison of BODIPY-positive areas in b
cells among the patients with NGT, IGT, new T2DM and

preexisting T2DM. The median BODIPY-positive area in b
cells was 1.4% (IQR, 0.97%), 1.9% (IQR, 1.5%), 2.4% (IQR,

1.4%) and 3.2% (IQR, 2.0%) in the NGT, IGT, new T2DM and

preexisting T2DM groups, respectively. The BODIPY-positive

area in b cells in the preexisting T2DM group was higher than

that in the NGT group (p = 0.031). The median BODIPY-

positive area in b cells in the preexisting T2DM group still

tended to be higher than that in the NGT group even after age

adjustment (p = 0.057).
Relationships between lipid droplet
accumulation in b cells or acinar cells
and surgical procedures

We examined BODIPY-positive areas of the two groups; the

PD group and the DP group. The BODIPY-positive area in the

PD group represents that in head or uncus of the pancreas, while

the BODIPY-positive area in the DP group represents that in

body or tail of the pancreas. There were no significant differences

in BODIPY-positive areas in b cells between the groups (the PD

group; 2.43 ± 0.24% vs the DP group; 2.23 ± 0.35%, p = 0.64). It

seems that the BODIPY-positive area in the acinar area was low

compared to that in the islet area both in the PD group and the

DP group.
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Correlations between lipid
droplet accumulation in b cells and
various parameters

Figure 2A shows the correlation between the BODIPY-

positive area in b cells and clinical parameters. BODIPY-positive area

in b cells was associated with age (r = 0.45, p = 0.0097), HbA1c (r = 0.38,
p = 0.0302), FPG (r = 0.37, p = 0.045), F-IRI (r = 0.43, p = 0.035),

HOMA-IR (r = 0.41, p = 0.049) andDCPR (r = -0.59, p = 0.018) but not

with BMI (r = 0.13, p = 0.48), F-CPR (r = 0.19, p = 0.36), CPI (r = 0.19,

p = 0.33), I.I. (r = -0.099, p = 0.65), total cholesterol (r = -0.055, p = 0.79)

or triglycerides (r = -0.047, p=0.81). Since themaximumsample sizewas

32, multiple regression analyses were performed using the two

explanatory variables; the age and the other clinical parameters. IRI

(p = 0.0020) andHOMA-IR (p = 0.0027)were independently associated,

and FPG (p = 0.066) tended to be associated with BODIPY-positive area

in b cells. Due to the strong correlation (multicollinearity) between age

and DCPR (r = -0.75 p = 0.0012), the multiple regression analysis could

not be done.

Figure 2B shows the correlation between the BODIPY-

positive area in b cells and histological evaluation. The

BODIPY-positive area in b cells was not associated with the

relative b cell area (r = -0.087, p = 0.64), fat-cell area (r = 0.12,

p = 0.53) or the number of CD68+ cells per islet (r = 0.34,

p = 0.054).
Lipid droplet accumulation in b cells by
electron microscopy

To investigate the association between LD accumulation in b
cells and the endogenous insulin secretory capacity, we

investigated the ultrastructural changes in b cells by electron

microscopy. Table S2 in Supplementary Material shows the

clinical characteristics of the groups. Patients were classified as

non-DM (n = 6) and T2DM (n = 4). There were no differences

between the groups with respect to age, BMI or FPG. HbA1c

levels were higher in the T2DM group than in the non-DM

group (p < 0.05).

Figure 3A shows representative electron microscopic images

of b cells. Different kinds of insulin granules are seen in both

patients with non-DM and T2DM, and lipid droplets and

autophagic vacuoles are especially common in patients with

T2DM (Figure 3A (d, e)).

There was no difference between the non-DM and T2DM

groups with respect to the LD numbers/b cell (Figure 3B). The

number of autophagic vacuoles was significantly increased in the

T2DM groups (p = 0.035) (Figure 3C). Next, we divided 10

patients into the high autophagic vacuole number group and the

low autophagic vacuole number group by the median autophagic

vacuole numbers/b cell (2.6/b cell) and compared the LD

numbers/b cell between the groups (Figure 3D). There was no
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A

B

FIGURE 1

Lipid droplets (LDs) in b cells (A) Representative immunofluorescence staining for C-peptide (red), BODIPY (green) and DAPI (blue) from patients
with NGT (a-c), newly diagnosed T2DM (d-f) and preexisting T2DM (g-i). Bars, 50 mm. (B): Comparisons of BODIPY-positive areas in b cells
among the NGT (n= 9), IGT (n= 8), newly diagnosed T2DM (n= 6) and preexisting T2DM groups (n= 9).
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difference between them, while the median value of the LD

numbers/b cell in the high autophagic vacuole number group

was higher than that in the low autophagic vacuole

number group.

Figure 3E shows the comparison of the insulin granule

numbers between the two groups of patients whose LD

numbers/b cell were more or less than the median of 1.3.

There were no differences between the groups with respect to

the total number of insulin granules and the number of mature

insulin granules/b cell area (Figure 3E (a, b)). However, the ratio

of mature insulin granule number to total insulin granule

number was reduced in the high LD group (Figure 3E (c)).

The median ratio of mature insulin granule number to total

insulin granule number in the low LD group was 82.5% (IQR,
Frontiers in Endocrinology 07
5.1%) and that of the high LD group was 75.8% (IQR, 6.0%) (p =

0.039) (Figure 3E (c)).
Discussion

The present study demonstrated that LDs in b cells

accumulated more in patients with type 2 diabetes than in

normal glucose-tolerant subjects and that LD accumulation

was associated with insulin resistance, hyperglycemia and

decreased insulin secretion. We also revealed that LD

accumulation was associated with decreased mature insulin

granules in an ultrastructural analysis. LDs in b cells have

been known to be associated only with aging until now. This
A

B

FIGURE 2

Correlation coefficients between lipid droplets (LDs) in b cells and clinical and histological parameters A: Correlation coefficients between the
BODIPY-positive area in b cells and the parameters of age, BMI, HbA1c, FPG, F-IRI, F-CPR, C-peptide index, insulinogenic index, HOMA-IR, total
cholesterol, triglycerides and DCPR. B: Correlation coefficients between the BODIPY-positive area in b cells and the relative b cell area, fat-cell
area and CD68+ cells per islet. Open circles (○), the NGT group (n= 9); closed circles (●), the IGT group (n= 8); open triangles (Δ), the newly
diagnosed T2DM group (n= 6); closed triangles (▲), the preexisting T2DM group (n= 9).
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A

B D

E

C

FIGURE 3

Analysis of b cells by electron microscopy. (A) Representative electron microscopy images of b cells from patients with non-DM (a, b) and
T2DM (c–e). (b, d): Magnification of the white squares in (a, c), respectively. (e): Autophagic vacuoles. Magnification of the smaller white square
in (c). Black circle, mature insulin granule; white circle, immature insulin granule; asterisk, lipid droplet. Bars: a and c, 5 mm; b and d, 2 mm; e,
500 nm. (B) The LD numbers per b cell. (C) Autophagic vacuole numbers per b cell. (D) Comparison of LD numbers per b cell between the two
groups of patients whose autophagic vacuole numbers per b cell were equal to or more than 2.6/b cell or less than 2.6/b cell. (E) Comparison
of the total number of insulin granules (a), the number of mature insulin granules (b) and the ratio of mature insulin granule number to total
insulin granule number (c) between the two groups of patients whose LD numbers per b cell were equal to or more than 1.3/b cell or less than
1.3/b cell. Open circles (○), the Non-DM group (n=6); closed circles (●), the T2DM group (n=4).
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is the first study that clearly showed, using fresh tissue samples

from humans, that LD accumulation in b cells was associated

with diabetic pathophysiological conditions as well as type

2 diabetes.

Type 2 diabetes is characterized by insulin resistance (25),

which could lead to an increase in free fatty acids (FFAs) derived

from triglyceride degradation (26), and FFAs may flow into b
cells. In addition, the BODIPY-positive area in b cells was

associated with HbA1c and FPG in this study. It was reported

that primary human islets treated with FFAs and hyperglycemia

showed the increases of the size and the number of intracellular

LDs in time- and concentration-dependent manner (27). Lipid

deposition in b cells was also increased in response to high-fat

diet in animal model transplanted human islets (28). The

metabolisms of both FFAs and glucose in b cells are linked

through the glycerolipid/FFA cycle, and LDs are produced in

that process (29), suggesting that hyperglycemia in addition to

excess FFAs in a state of insulin resistance are related to LD

accumulation, especially in type 2 diabetes patients.

Both neutral lipase including adipose triglyceride lipase

(ATGL) and lysosomal acid lipase (lipophagy) mediate LD

degradation (30), while the extent of contribution of lipophagy

to LD degradation is still unclear (31, 32). ATGL-mediated

lipolysis is important in lipid homeostasis and insulin

secretion (29). In fact, downregulation of ATGL increased LD

in human b cell and impaired insulin secretion (33). In contrast,

it is reported that the role of autophagy is to prompt lipid

buildup in LDs by replenishing LDs with new FFAs (34). Thus,

LD formation is closely associated with autophagy which has

been shown to be markedly increased in type 2 diabetes patients

(35, 36). In fact, autophagic vacuoles were significantly increased

in type 2 diabetes patients in this study, though it is inconclusive

whether these data indicate enhanced autophagic activity or

blockade of autophagy (37). It may be postulated that LDs also

accumulate at least due to the alteration of autophagy.

LD accumulation in b cells was associated with decreased

insulin secretory capacity and decreased mature insulin

granules. Downregulation of perilipin 2 (PLIN2), which is a

key scaffold protein and resides on the surface of LDs,

ameliorates the effects of fatty acid- and chemical-induced ER

stress, whereas PLIN2 overexpression exacerbates them (38).

Contrary to that report, the other studies showed that

downregulation of PLIN2 reduced the levels of FFAs

incorporated into LD and resulted in mitochondrial

dysfunction (39) and endoplasmic reticulum (ER) stress (40),

as LD formation protects cells against toxic effects of FFA (41).

In any case, excess LD accumulation may reflect inappropriate

lipid metabolism beyond FFA homeostasis, which causes

lipotoxicity-induced endoplasmic reticulum stress, resulting in

impaired insulin granule maturation and decreased insulin

secretory capacity (42, 43). In addition, considering the

association of LD formation and autophagy as mentioned

previously, LD accumulation may be accelerated by altered
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autophagy of immature or old insulin granules in type 2

diabetes (35), probably resulting in decreased mature

insulin granules.

There are several limitations that should be considered when

interpreting the results of this study. First, BODIPY493/503

represents the mixture of LDs and lipofuscins (31), which are

known to increase with aging and quite abundant in adult b cells

(44). This might be a reason that LDs detected by electron

microscopy did not show a difference between the non-DM and

T2DM groups, though BODIPY-positive area was increased in

T2DM patients who were older and expected to have more

lipofuscins in beta cells. Second, there are no data about serum

FFA levels. Although data about total cholesterol and

triglycerides exist, these lipid profiles did not correlate with

BODIPY-positive area in b cells, which may be primarily

because some patients received antihyperlipidemic drugs, and

the lipid profile may not directly reflect intracellular lipid

metabolism. Third, the patients had pancreatic diseases,

mainly malignant diseases, which might affect lipid deposition

in b cells. However, there were no significant differences in

BODIPY-positive area in b cells between patients with

malignant diseases and those without (data not shown).

Finally, the numbers of patients were relatively small,

especially in the new T2DM group. Importantly, despite these

limitations, we were able to clarify the pathophysiological

significance of LDs in b cells based on detailed clinical

parameters in conjunction with pancreatic histological analyses

using fresh tissue samples from humans.

In conclusion, the present study demonstrated that LDs in b
cells were associated with insulin resistance, hyperglycemia and

b cell dysfunction involving decreased mature insulin granules

in type 2 diabetes.
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