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Abstract

GWAS

Background: Genotyping-by-sequencing (GBS) has been used broadly in genetic studies for several species,
especially those with agricultural importance. However, its use is still limited in autopolyploid species because
genotype calling software generally fails to properly distinguish heterozygous classes based on allele dosage.

Results: VCF2SM is a Python script that integrates sequencing depth information of polymorphisms in variant call
format (VCF) files and SUPERMASSA software for quantitative genotype calling. VCFs can be obtained from any variant
discovery software that outputs exact allele sequencing depth, such as a modified version of the TASSEL-GBS pipeline
provided here. VCF2SM was successfully applied in analyzing GBS data from diverse panels (alfalfa and potato) and
full-sib mapping populations (alfalfa and switchgrass) of polyploid species.

Conclusions: We demonstrate that our approach can help plant geneticists working with autopolyploid species to
advance their studies by distinguishing allele dosage from GBS data.
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Background

Genotyping-by-sequencing (GBS) has been applied to
several genetic studies in a range of species (see [1-3])
for discovering variants, such as single-nucleotide poly-
morphisms (SNPs) and insertion-deletion (indels), at a
relatively low-cost and with no prior genomic information
[4]. It has proven to be very useful for agriculturally impor-
tant plant species because, while genomic resources may
be scarce, short reads from next generation sequencing
(NGS) technologies can still be obtained. Standard GBS
protocols, generally based on [5], rely on reduced genome
representation libraries generated by restriction enzymes.
In the fragment ends, barcode adapters are linked for
sample multiplexing. Besides limiting the regions to be
sequenced (e.g., methylation-sensitive enzymes poten-
tially avoid repetitive regions), the restriction enzyme also
influences the read depth (e.g., 6-bp rare cutters result in
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fewer regions to compete for amplification and sequenc-
ing reagents). In addition, read counts may be increased by
sequencing the same library more than once, by reducing
the multiplexing level or by size selecting DNA fragments
to be sequenced. In general, genotype calling is based on
a binomial likelihood ratio method that leverages read
depth information, as implemented in pipelines such as
TASSEL-GBS [6]. Finally, genotype calls and read depths
are stored in variant call format (VCF) files.

For inbred diploid species, the read depth required
for accurate genotype calling is rather low, because only
homozygotes (let us say, AA and CC) have to be dis-
tinguished and thus common GBS practices (i.e., more
frequent cutters, single sequencing run, and even a 384-
plex library) are expected to perform well, especially if
imputation is facilitated by the availability of a refer-
ence genome [7]. On the other hand, for hybrids and
outbred species, the correct identification of heterozy-
gotes (e.g., AC) becomes trickier when using very lim-
ited read depths. The challenge for effective use of GBS
in autopolyploid species is even larger, because of the
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requirement to distinguish between more than one class
of heterozygotes. In an autotetraploid biallelic locus where
A and C are the respective reference and alternative alle-
les, for instance, apart from the homozygotes, AAAA
(nulliplex) and CCCC (tetraplex), we might expect three
different classes of heterozygotes: AAAC (simplex), AACC
(duplex) and ACCC (triplex). Therefore, as the ploidy level
increases, it becomes increasingly difficult to distinguish
heterozygotes.

The correct allele dosage classification should greatly
enhance genetic studies for these polyploid species.
Biparental crosses involving nulliplex-simplex loci gen-
erate only two genotypes segregating in a progeny in a
1:1 ratio. This has allowed for linkage mapping studies
using the double-pseudo testcross approach [8] of obtain-
ing two separate, parental maps. Although widely used,
this strategy generates a biased view of the recombina-
tion events among the progeny. This approach also limits
the use of higher dosage loci [9]. A better strategy would
be to build integrated maps (e.g., [10]), using additional
segregation ratios (i.e., 3:1, 1:2:1 and 1:1:1:1) based on cur-
rently available methodologies [11-13] and tools [14, 15].
Despite the limitation for polyploids, these approaches
have been successfully used to map single dosage mark-
ers (SDMs) segregating in 1:1 and 3:1 ratios in sugarcane
(e.g., [16, 17]). Ideally, linkage mapping analysis for poly-
ploids should take multiple dosage markers (MDMs) into
account. Properly modeling allele dosage instead of using
diploid-like genotypes could provide improved associa-
tion power and prediction accuracies to genome-wide
association studies and genome-based prediction.

Quantitative genotype calls can be achieved by using
any SNP-based technique that provides a preferably unbi-
ased measure of each allele amount, such as chip arrays
or mass spectometry-based technology (see [18] for
details). However, these technologies generally rely on
solid, well-established genomic resources, such as refer-
ence genomes, which may remain inaccessible for many
non-model species in a long term. Statistical models have
been implemented in an attempt to distinguish differ-
ent allele dosage classes based on the relative propor-
tion or ratio between two alleles. Although some tools
are currently available [19, 20], only SUPERMASSA [21]
addresses the dosage calling problem through genetic
models of expected class frequencies within a Bayesian
network. In addition to a classification model without any
genetic assumptions, it can use genetic models consid-
ering either F; expected segregation or Hardy-Weinberg
Equilibrium (HWE) allele frequencies to assign individ-
uals into dosage classes. More importantly, it allows for
the estimation of the most likely ploidy level when it is
unknown or varies along the genome or among individ-
uals [21]. This approach was validated for sugarcane, a
complex polyploid [9].
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Despite these advantages, SUPERMASSA was not pre-
viously available as a user-friendly tool for the analysis
of thousands of variants in the standard VCF format.
The method was originally designed for data generated
with the Sequenom iPLEX MassARRAY  platform [22],
which often yields small numbers of markers that can
be manually analyzed. It is thus still largely inaccessible
to the majority of bioinformatics end users, hampering
widespread practical application of high throughput geno-
typing of polyploids.

In this context, the software presented here, VCF2SM,
aims to integrate the use of polymorphic loci detected by
sequencing approaches and the SUPERMASSA software
for quantitative genotype calling. A modified TASSEL-GBS
software for obtaining VCF files with exact read depths
from GBS is also provided. This is necessary because
the software cannot deal with the high read depths
required for polyploids. Publicly available GBS experi-
ments in diverse populations from two autotetraploid
species, potato (Solanum tuberosum L.) [23] and alfalfa
(Medicago sativa L.) [24], were used to test the soft-
ware. In addition, F; mapping populations of alfalfa [25]
and switchgrass (Panicum virgatum L.) [26], a tetraploid
species with diploid behavior, were used for inferring
putative segregation at higher dosage loci. These datasets
were particularly important because they contain both
diverse panels and mapping populations, such that further
structure and linkage analyses could also be performed.

Results and discussion

The TASSEL-GBS pipeline modified for polyploids

Earlier implementations of TASSEL-GBS (v.3 and 4) output
truncated read counts per allele in the VCF file. The most
recent version (v.5) of the pipeline addressed this limi-
tation, but provides only approximate values for higher
read counts [7]. The read counts are then used for geno-
type calling [6], which works fine for diploid calls. How-
ever, in polyploids, GBS pipelines optimized for increasing
the read depth often generate much higher read counts.
The ratio of read counts is used to inform on the pro-
portion between the two alleles and, ultimately, on the
dosage. Thus the current approximation provided should
be avoided for quantitative genotyping purposes.

Here, we modified the TASSEL4 (v.4.3.7) software, whose
GBS pipeline originally returned depths of up to 127.
Now, the so-called TASSEL4-POLY has increased the limit
to 32,767, in order to get their exact counts. For run-
ning this modified TASSEL-GBS pipeline, one should
change the flag -y to -sh when using the FastgqToTBT
and DiscoverySNPCaller plugins. One of the main
consequences of modifying the pipeline for storing
larger read depths is a higher memory requirement.
Roughly, each TASSEL-GBS plugin that uses the -sh flag
requires twice as much memory as the original version.
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TASSEL4-POLY can be downloaded at https://github.com/
gramarga/tassel4-poly. Alternative software can be used
to identify polymorphisms and generate VCF files, such as
FREEBAYES [19] and GATK [27], as long as they provide
allele depth counts.

The VCF2SM pipeline

VCF2SM was written in Python and consists of a sin-
gle command-line function. Users can run it directly
from their operating system prompt. Its arguments
include both SUPERMASSA and VCF2SM options (please
see https://github.com/gramarga/vcf2sm for argument
details). It takes a VCF file containing exact read depths,
as input, and outputs a VCF file with polyploid geno-
type calls, i.e., depicting reference and alternative allele
dosages. For instance, if an autotetraploid individual is
ACCC, its output genotype will be 0/1/1/1, indicating
single dose for the reference allele A and triple dose for the
alternative allele C.

The path for input files should be provided after the
-input or -i flag, whereas output files are given by
-output or -o. The same + (plus sign) from TASSEL-
GBS can be used as a wildcard for file (usually, chro-
mosome) number, with starting and ending numbers
indicated by - sF and -eF, respectively. The path for the
SUPERMASSA script is required and should be indicated
through -SMscript. Additional flags indicate several
native filtering arguments as well as the values for running
SUPERMASSA, as described next. Python implementa-
tion of SUPERMASSA is available at https://bitbucket.org/
orserang/supermassa.

SUPERMASSA options

The SUPERMASSA software can implement three differ-
ent inference models. The type of inference is designed
by the -inference or -I flag and can be set to £1 for
full-sib families, hw for HWE model or ploidy for an
assumption-free model. For the first two models, SUPER-
MASSA imposes some constraints given the expected
individual genotype distribution by considering a cross
of two heterozygous parents or HWE for natural popula-
tions, for example. For the last model, no constraints on
the genotype distribution are imposed. By default, approx-
imate inference based on a greedy maximum likelihood
(ML) approach is performed. It is faster and expected
to provide similar results as exact maximum a posteriori
(MAP) inference in most cases. However, if one wants to
use exact inference, the -exact or -e flag should be set.
For details on these approaches, see [18, 21].

Besides the data to be analyzed, other expected values
include a ploidy range (-ploidy range or -M), e.g.,
2:16 for searching all even ploidies from two through
16, and a sigma range (-sigma_range or -V), e.g,
0.01:1:0.05, with the lower bound, higher bound and
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the step values separated by : (colon). These ranges
should be modified according to the species and genotyp-
ing technique being used. Another quality criterion that
one may want to adopt is to establish a naive reporting
posterior probability threshold (-naive reporting
or -n). The so-called naive reporting probabilities are
attributed to each individual after classification with no
consideration of any underlying genetic model. Very good
genotype calls are expected to have a posterior probability
of 0.90 or higher.

VCF2SM options

In addition to the required arguments for running SUPER-
MASSA, we included some options for quality filter-
ing and to speed up the analysis process. First of all,
one must choose which VCF field the read depths
should be extracted from: AD (allelic depths for the
reference and alternative alleles in the order listed),
RA/AA (reference/alternative allele depths) or RO/AO
(reference/alternative allele observation counts) are com-
monly found in VCF files produced by TASSEL-GBS,
GATK or FREEBAYES, respectively. This information is
usually found in the header of the VCF file and refers
to the number of respective reference and alternative
allele counts for each individual. Based on the expected
ploidy level(s) for a given species, one may want to define
both average minimum (-minimum depth or -d) or
maximum (-maximum_depth or -D) depths per sam-
ple per variant site (not including the parents for F;
families). From our experience, a minimum of 5, 15 and
25 reads on average should work well for di-, tetra- and
hexaploid species, respectively. Each situation should be
analyzed carefully, while taking into account the experi-
mental protocol involving enzyme choice, number of runs
and library plexing, for instance. Moreover, if duplications
are expected in the species under consideration, one may
restrict the genotype calls to loci with a certain maximum
depth. For instance, duplicated loci along the genome
might cause segregation distortion in full-sib families and
complicate subsequent linkage analysis. Again, choos-
ing a maximum depth should rely on the design of the
GBS experiment and on the biological knowledge of the
species.

When a species (or a particular polymorphism) has
unknown ploidy level, one can infer it from a range given
by the SUPERMASSA argument (-ploidy range or -M),
as indicated in the previous section. For selecting the best
ploidy level, the software uses MAP probability among
the tested ploidies. It has been noticed that it is good
practice to define a threshold as high as 0.80 for the pos-
terior (-post or -p) [9]. This is because very dispersed
marker data can yield low posteriors for multiple ploidy
levels which may lead to a compromised classification.
For the tested range of ploidies, one can filter based on
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the most likely ploidy level given biological information,
by using -ploidy filter or -£f. The proportion of
missing data can be controlled by -callrate or -c, so
that a locus will only be output if it reaches the specified
threshold.

It is common in GBS sequencing runs to include sam-
ples from different projects. A user may therefore want
to do quantitative genotyping separately for different sub-
sets of the samples. When selecting the samples to be
included, one can choose from either a sample pattern
identifier (using -geno pattern or -g) or, alterna-
tively, a numerical range of individuals (-geno_range
or -r). In a similar manner, one can specify all parent
replicates with a pattern (-parl pattern or -1 and
-par2_ pattern or -2) or ranges (-parl_ range or
-k and -par2_ range or -1) for a full-sib family.

Finally, computational time for VCF2SM is reduced by
using multithreading. For that, the flag -threads or
-t indicates the number of threads to be used. We per-
formed all the following analyses using Ubuntu 12.04 LTS
as operating system in a cluster node with 16 cores in total
(Dell R620) and 128 GB RAM. In fact, although the mod-
ified TASSEL-GBS uses more memory, we notice that 16
GB usually suffice for most applications.

Examples from GBS data

We tested VCF2SM with publicly available GBS data from
two autotetraploid species, potato (2n = 4x = 48) and
alfalfa (2n = 4« = 32). In addition, we also studied a
dataset from switchgrass (2n = 4x = 36), an outcross-
ing tetraploid species which behaves like a diploid. GBS
experiments were performed in order to increase the read
depths for two diverse panels with 84 potato cultivars [23]
and 189 alfalfa accessions [28], with average read depths
per individual of 70x and 27 x, respectively. On the other
hand, GBS experiments for two F; mapping populations
with 389 alfalfa [25] and 129 switchgrass [26] full-sibs did
not aim for higher read depths so that their averages were
less than 1x each. In the previous studies, although geno-
type calling for both diverse panels was achieved through
allele dosage, only SDM from diploid-based genotype call
software were used for linkage analyses in both full-sib
populations.

Potato diversity panel data

For the potato panel, 135,193 loci in a VCEF file were pro-
vided as supplementary material by the authors [23] and
we used it directly with VCF2SM under the HWE model
(-I hw). We specified the field to get allele depths from
using -a RA/AA as the file was obtained by GATK. Here,
we initially called the genotypes using their read counts
by fixing a ploidy level of four (-M 4) or by varying it
from four to six (-M 4 : 6) while only selecting tetraploid
loci (-£ 4). No other filtering criteria was used. The
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fixed ploidy level returned all 135,193 loci. We compared
the genotypes called by SuperMASSA with the original
calls obtained with FREEBAYES, to assess the agreement
rate between these two strategies. Results showed that
94.3% of the genotype calls were identical, indicating
that both methods agreed largely in differentiating allele
dosages. Some differences were expected because the call-
ing algorithms for SUPERMASSA and FREEBAYES differ
in principles. When we allowed the ploidy level to vary
between four or six, 70,343 tetraploid loci were returned,
after excluding 64,850 (48%) loci classified as hexaploid.
We observe this result when SUPERMASSA is confronted
with data that is too scattered. Under these conditions
SUPERMASSA has a tendency to classify some loci to the
highest ploidy level provided in order to fit more classes
of allele dosage. Most of the hexaploid loci present a low
posterior probability after all, and we should not rely on
this classification alone for selecting markers to be studied
9, 18].

We also considered further quality filtering criteria,
such as a high posterior probability for the most likely
ploidy (-p 0.80) and individual naive reporting prob-
abilities (-n 0.90). The genotype call was also limited
to an average minimum and maximum read depths of
15 and 500 per individual (thus -d 15 and -D 500),
respectively. Still, even considering a high population call
rate (-c 0.75), the analyses returned 96,078 or 52,093
tetraploid loci depending on whether the ploidy was fixed
(-M 4) or not (-M 4:6). It is worth mentioning that the
approach used in the original paper does not allow testing
different ploidy levels simultaneously. In fact, the user has
to provide a fixed ploidy level. However, for some species
the ploidy level is unknown or varies. This new function
allows one to test which ploidy better fits the data for
each polymorphism, individually. Even if the ploidy level
is known (as it is for potato), one can still try other ploi-
dies as an additional filtering criterion. Here, we discarded
those markers classified as hexaploid and continued the
analysis with the markers classified as tetraploid only.

After the VCF production, we re-coded each genotype
with integers from 0 (0/0/0/0) to4 (1/1/1/1) accord-
ing to the alternative allele dosage. Using the PCAMETH-
ODS R package [29], we ran principal component analysis
(PCA) for each set of markers [see Additional file 1: Figure
S1]. We noticed that there was no evident discrepancy
between the groups obtained using the 135,193 tetraploid
loci classified here (Fig. 1a) and the ones obtained by the
original paper [23]. The sums of the variance explained by
the first two principal components (PCs) for each set of
markers produced here differed slightly (from 10.04% to
12.06%). Some differences on the grouping pattern could
be noticed when the filtered dataset was analyzed, par-
ticularly with regards to the second PC [see Additional
file 1: Figure S1]. We observed almost identical results
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Fig. 1 Principal component analyses (PCAs) for two diverse panels of autotetraploid species. We called genotypes using VCF2SM with ploidy level of
four. PCA was carried out for 135,193 and 74,790 loci for diverse panels of 83 potato cultivars (a) and 189 alfalfa accessions (b), respectively. a There
were four groups and an additional diploidized potato (‘Phureja’) previously identified [23]. b Only genotypes from Afghanistan were somehow
grouped. Red, green and blue arrows indicate the same genotypes (‘wilson’, ‘saranac_G' and ‘rambler’, respectively) highlighted in [24]
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when using exact inference (-e) or the default approxi-
mation. We avoided the exact inference approach for the
next datasets because it is extremely time-consuming and
the benefits of using it are likely to be only minor for
GBS-based techniques.

Alfalfa diversity panel data

For the alfalfa panel, we ran the modified TASSEL-
GBS using raw sequence data for 189 individuals from
NCBI (BioProject PRJNA287263 [28]). Out of 1,906,719
tags, 52.41% were aligned against the diploid rela-
tive M. truncatula L. genome [30] (Mt4.0vl DOE-
JGL, http://phytozome.jgi.doe.gov/) using BOWTIE 2 [31].
Finally, exact allele-specific depths were recorded in VCF
files for 399,687 loci.

We ran VCF2SM under the HWE model (-I hw) with
fixed (-M 4) or a range (-M 4:6) of ploidy levels for
comparison. Initially, only the minimum and maximum
average count filters were applied as -d 15and -D 500,
to avoid very low or very high read depths. In both cases,
we just used the loci classified as ploidy level of four
(-£ 4). A total of 74,790 markers were kept in the first
case. The second set of markers contained 17,268 loci
because we excluded loci classified with a ploidy of six. As
a result of further quality filtering criteria (-p 0.80, -n
0.90 and -c¢ 0.75), the final numbers of loci retained
became 50,929 and 11,690, respectively.

Using PCAMETHODS for running PCA for each set of
markers, we noticed that the genotypes were similarly dis-
tributed along the two first PCs [see Additional file 1:
Figure S2], regardless of the filtering criteria used. This

high density genotyping approach often provides a cer-
tain amount of duplicates (redundant loci). We excluded
these (around 26%) and individuals were distributed in
the same way as before. The first two PCs accounted for
3.80% to 5.10% [see Additional file 1: Figure S2] of the total
variance. Apart from the genotypes from Afghanistan,
the remaining accessions did not show any other clear
clustering (Fig. 1b), as observed previously [24].

To compare the results obtained via VCF2SM with
alternative genotyping methods, we reanalyzed the raw
sequencing data from [28] using FREEBAYES, which is
also appropriate for diversity panel datasets. We initially
aligned the deconvoluted raw sequencing reads against
the M. truncatula genome, using BOWTIE 2 [31] with
the -very-sensitive-local argument. Next we ran
FREEBAYES with a fixed ploidy of four, requiring at least
five reads of the alternative allele, a minimum read map-
ping quality of 1 and a minimum base quality of 5. Variants
were then filtered to remove non-biallelic or monomor-
phic sites, with an assigned quality score lower than 20 or
more than 50% missing data, as well as sites with less than
15 or more than 500 read counts on average.

This strategy yielded 27,076 variants, close to the num-
ber obtained by [28] (26,163). We then applied VCF2SM
on this data set using the same four scenarios described
above: a fixed ploidy of four, with no additional fil-
ters or more stringent criteria (-p 0.80, -n 0.90 and
-c 0.75), and ploidy levels of four and six, with or
without these additional filters. When using the most per-
missive setting, all variants were retained and the geno-
typing identity between the two methods was 93.69%.
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Using more stringent filters reduced the number of sites
to 21,382, but increased concordance to 98.01%. Alter-
natively, filtering out loci with an estimated ploidy of six
and applying more stringent quality criteria reduced the
number of variants to 10,083 and 8,332, again increas-
ing the genotype agreement rate to 96.51% and 98.32%,
respectively.

Because this data set contains individuals from a diver-
sity panel, it is expected that many polymorphic sites show
low frequency of the alternative allele. In this situation,
the majority of individuals are likely to be homozygous for
the reference allele, which in turn simplifies genotype call-
ing. Interestingly, when we compared genotype calls only
for heterozygotes, the agreement rate between the two
methods dropped to 79.28% in the less stringent scenario.
Adding more stringent filters increased this rate to 87.82%
and, lastly, filtering out loci with an estimated ploidy of six
resulted in 90.20% of matching calls. Hence we note that
the additional filters provided by VCF2SM allowed the
exclusion of less reliable genotype calls, which had passed
the standard filters applied to the FREEBAYES results.

Although we used very stringent criteria for VCF2SM
parameters with the TASSEL-GBS pipeline, our method
obtained a higher number of classified markers compared
to [28] using GATK and FREEBAYES. As a probabilistic
model, the SUPERMASSA algorithm allows filtering geno-
types according to their probability of being in a class
given the data. This can still be informative even if there
is no genetic model underlying the analyzed population,
as it uses the allele ratio to inform on the more likely
genotypes.

Alfalfa F1 population data

For the alfalfa full-sib family, we ran the modified TASSEL-
GBS using raw sequence data from 389 individuals (Bio-
Project PRJNA245889 [25]) as done previously with the
diverse panel. Out of 3,889,791 tags, 57.15% were aligned
against the M. truncatula genome. Twelve replicates for
the parents ‘DM3’ and ‘DM5’ each were available and used
as a relevant input for adding more constraints to the
SUPERMASSA F; model (-I £1). A total of 474,327 loci
were recorded in VCEF files.

Following the same strategy for comparison, we ran all
the markers in VCF2SM with no filtering criteria other
than the ploidy level (-£ 4) and minimum and maxi-
mum average depths (-d 15, -D 500). The fixed ploidy
level of four (-M 4) resulted in 59,480 loci, while when
the hexaploid level was also tested (-M 4:6), 20,396
tetraploid loci were kept. However, when additional fil-
tering criteria were applied (-p 0.80,-n 0.90and -c
0.75), only 230 and 80 loci remained. This is probably
due to the non-optimized protocol for increasing the read
depths. We therefore relaxed the naive reporting prob-
abilities by letting all individuals to keep their assigned
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genotypes (-n 0.00) and a total of 58,375 and 19,837
loci were obtained.

To be more conservative, we used the 19,837 marker
dataset for further analysis. The genotypes were re-
coded from O through 4. We also filtered out 5,803
either monomorphic or redundant loci, which are non-
informative in linkage analysis. According to the type
of cross of the remaining 14,034 markers, there were
9,989 SDMs resulting from nulliplex-simplex or simplex-
simplex crosses, and 4,859 MDMs as a result of higher
dosage crosses. It is important to mention that these
MDMs do not only represent more than one third of
the loci spanning the genome, but also that they are
more informative than SDMs for linkage mapping anal-
ysis. Notice that, while keeping missing data <25%, we
increased the number of markers in comparison to the
previous study, which analyzed 8,527 markers with <50%
missing genotype calls [25].

For characterizing the linkage disequilibrium generated
by linkage in this mapping population, we simply cal-
culated the pairwise marker correlation, by using the
WGCNA R package [32] for dealing with big matrices.
Then, we plotted heatmaps with the absolute correlation
values between markers with more than two genotypic
classes (Fig. 2a). All eight diploid chromosomes of the
relative M. truncatula are represented by 7937 more infor-
mative loci (all except nulliplex-simplex crosses), with
the number of markers ranging from 211 (chromosome 6)
to 1147 (chromosome 4). A translocation between chro-
mosomes 4 and 8 is evident as previously reported
[25]. The same grouping pattern was observed under
other filtering criteria, although increasing the number of
markers reduced the correlations [see Additional file 1:
Figure S3]. Previously, the linkage maps were presented
as two parental maps with 32 linkage groups (LGs) each
and 3591 SDMs in total. Notice that, although we have
failed in using naive reporting probabilities for filtering
purposes, the genotype calls provided here were good
enough to reveal the linkage disequilibrium structure
along the genome. A GBS experiment properly optimized
for increasing read depths would allow the use of the
naive reporting probabilities because improved dosage
class assignments are expected.

Switchgrass F1 population data

We also ran the modified TASSEL-GBS using raw
sequence data for 129 full-sibs of switchgrass and
their parents ‘U518 and ‘U418’ from NCBI (BioProject
PRJNA201059 [26]). Out of 3,203,382 tags, 93.21% were
aligned against the P, virgatum genome [30] (v3.1, DOE-
JGI, http://phytozome.jgi.doe.gov/) using BOWTIE 2 [31].
Finally, exact allele-specific depths for 5,356,352 loci were
recorded in VCEF files. This amount includes all putative
polymorphic markers from the whole dataset, which is
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1 2 3 4 5 6 7 8

Fig. 2 Heatmaps of absolute pairwise correlations between markers from two mapping populations. In the heatmaps, the darker the color, the
higher is the correlation between markers. Populations were composed by 389 alfalfa (a) and 129 switchgrass (b) full-sibs. Both species are
tetraploids, but switchgrass has been thoroughly diploidized. We classified the markers under a range of ploidy levels (from four to six for alfalfa and
from two to four for switchgrass) and selected for the lowest ploidy level (four and two, respectively). See text for additional parameters.
Monomorphic and redundant markers were filtered out. Single dosage markers were also excluded to abbreviate the calculations. a Medicago sativa
is composed by eight chromosomes, as is the M. truncatula reference genome, here represented by 7,937 markers. Note a major translocation
between chromosomes 4 and 8. b Panicum virgatum genome has two sets of nine homoeologous chromosomes each (the pairs are separated by
dashed lines). All chromosomes were represented in the heatmap by 16,263 markers

composed by an additional half-sib population of 168 indi-
viduals and a diverse panel of 540 individuals from 66
populations.

Besides testing the genotype call under the ploidy level
of two (-M 2), we also searched ploidy levels ranging
from two to four (-M 2:4) and from two to six (-M
2:6). Because switchgrass is a tetraploid species thor-
oughly diploidized, in the first two cases, only diploid
genotypes were kept (-£ 2), while in the last case, both
diploid and eventual tetraploid genotypes were retained
(-f 2:4). With no filtering criteria other than the min-
imum and maximum average read depth (-d 3, -D
300), we ended up with 498,310, 79,383 and 111,551
markers, respectively. Once additional criteria were used
(-p 0.80, -c¢ 0.75), these numbers became 474,252,
74,504 and 98,409. Notice that we did not filter for the
naive reporting probability, because this yielded very few
markers.

Taking the 74,504 more stringently filtered markers, we
re-coded the genotypesas0(0/0),1(0/1)and2(1/1) for
further analysis. After excluding 23,879 monomorphic or
redundant markers, 34,361 and 16,264 markers were seg-
regating in 1:1 and 1:2:1 ratios, respectively. We computed
the pairwise correlations between the most informative
markers (1:2:1) using WGCNA, and a heatmap showed 18
LGs as expected from the reference genome (Fig. 2b). The
set of 474,252 markers resulted in 16,264 markers segre-
gating 1:2:1 and showed similar grouping pattern. From
the set of 98,409 markers, there were 74,498 classified as
diploid (mostly the same ones from the -M 2:4 search)
and 23,911 classified as tetraploid. The same pattern of

18 LGs was observed with the 16,271 most informa-
tive diploid markers. The re-codification of the remaining
13,209 tetraploid MDMs included genotypes from O to 4,
but no grouping pattern was evident [see Additional file 1:
Figure S4]. Altogether, switchgrass appears to be entirely
diploidized and additional tetraploid classification proved
to be merely artifactual due to lack of quality control of the
genotype calls.

Finally, we converted the respective 0, 1 and
2 codes to a, ab and b, following [12]’s nota-
tion as required by ONEMAP (developing version,
https://github.com/augusto-garcia/onemap), that is an R
package for building linkage maps. A very conservative
chi-squared test (p < 0.10) was carried out on the 50,625
polymorphic markers, which excluded 39,317 distorted
markers. Trying to build a de novo genetic map, we used
log of the odds (LOD) score > 12 and recombination
fraction < 0.35 for grouping the 11,308 remaining mark-
ers. A total of 6,555 (58.0%) markers were grouped in
18 major LGs with the number of markers ranging from
200 (LG 11) to 754 (LG 18). In addition, there were five
intermediate size groups (from 15 to 59 markers), 600
very small groups (from two to eight markers each) and
3187 unlinked markers. Interestingly, 860 (13.1%) mark-
ers were allocated in a different LG from the expected
chromosome. These disagreements may be related with
translocations, reference genome misassembly or geno-
typing errors. Despite having ordered markers by the
reference genome, we found it very difficult to estimate
a final map. This is likely related to the non-filtered
genotype calls (-n 0.00), which carry a lot of miscalled
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genotypes with serious implications for correct multi-
point genetic distance calculations. Therefore, optimized
GBS pipelines for increasing the number of reads is
mandatory to achieve more accurate genotype calls.

Computational requirements

The most computational demanding step of the com-
plete pipeline is initial SNP calling, regardless of whether
it is carried out with TASSEL-GBS, FREEBAYES, GATK,
or other methods. Once the allele depth counts have
been obtained, running VCF2SM requires relatively lit-
tle resources. For instance, analyzing the 27,076 loci of
the alfalfa diversity panel with a fixed ploidy level took
approximately 13 min, when using 16 parallel threads. Fit-
ting both the ploidies of four and six increased the runtime
to 17 min. As another example, analysis of the 59,480 vari-
ants of the alfalfa F; progeny with a single ploidy level
took required 50 min, because the number of samples is
larger. Testing two ploidy levels took roughly 80 min. Fit-
ting more ploidy levels increases runtime, but only a few
levels usually need to be tested for the majority of species
with known ploidy.

Memory requirement is also low and VCF2SM can be
run in personal desktop computers. Analysis of the 189
individuals of the alfalfa panel, in 16 threads, required
roughly 1 GB of RAM. More concurrent threads require
more memory, but the trade-off between runtime and
memory can easily be adjusted to match the resources
available to the researcher.

Conclusions

In the current literature, we have noticed that the applica-
tion of GBS-based technologies in polyploids is limited by
the use of diploid-like genotype calls. This is likely because
there were no bespoke bioinformatic pipelines with the
ability to enable polyploid based quantitative genotyp-
ing. This limited previous studies from pursuing higher
read depths (e.g., [25]). VCF2SM provides a simple and
useful integration between VCF files and SUPERMASSA
software for dosage genotype calling. VCF files can be
obtained by using TASSEL-GBS modified for storing true
read depths from GBS experiments.

Read depths for each variant allele were used in SUPER-
MASSA to estimate the allele dosage in two autotetraploid
species, potato and alfalfa. We showed that the outputs
are suitable for population and linkage genetics analy-
ses and the results highly agreed with those previously
obtained [23, 25, 28]. For switchgrass, a diploid-like out-
crossing species, linkage was indicated from the markers
we obtained [26]. Our approach shows that users will get
results comparable to or better than those from existing
tools for fixed ploidy levels.

In fact, other genotype calling packages for polyploids,
such as FREEBAYES and FITTETRA, are intended only for
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species with known ploidy level, limiting their usage over
a more general polyploid framework, such as some with
higher, mixed or unknown ploidy levels. Namely, FIT-
TETRA is limited to tetraploid species. Moreover, these
programs do not consider important genetic informa-
tion underlying the distribution of genotype classes in
F1 populations or in diversity panels, whereas SUPER-
MASSA does. This is specially important for providing
additional constraints on the genotype calling process,
because SUPERMASSA uses the genotype distribution a
priori in the inference procedure. Implementing a genetic
model underlying allele and genotype class frequencies
could also prove useful in the genotype calling proce-
dures for outcrossing diploid species. Finally, we showed
that testing a range of ploidies and keeping only loci that
match the expected level for a given species provides an
important quality filtering criterion.

VCF2SM was first intended for polyploid species,
but it can be used for hybrids or outcrossing diploid
species if researchers wish to get genotype calls based
on the models implemented in SUPERMASSA. Thus,
these species can potentially benefit from this integra-
tion. However, this approach should be used with caution,
because the interpretation of higher ploidy levels for a
locus may be related with not fully diploidized regions,
polysomy or even structural variations, such as copy
number variations (CNVs), rather than the genome ploidy
level itself.

The difficulty of determining the allele dosage has been
pointed out as a likely limitation for genetic studies in
polyploid species. Although most of the development in
methods and tools for studying these species relate to
autotetraploids, we believe that proper models can take
advantage of the dosage information for increasing pre-
diction accuracies in genome-based selection [33], genetic
mapping [34], performing genome-wide association stud-
ies [35] and depicting relationship among individuals in
population studies [36] for other autopolyploid species.
VCF2SM thus provides the first solution for getting geno-
type information for species with almost any even ploidy
level from GBS through SUPERMASSA models.

Partially due to the lack of methods and tools for dealing
with MDMs, they have been discarded in autopolyploid
mapping studies under the reasoning that SDMs would
primarily represent the genome of these species. Our
analyses have shown that this might not be true given
the datasets analyzed here. This is in agreement with
the findings of [9] for sugarcane. Using GBS data from
full-sib populations, we demonstrated the potential of our
method in calling genotypes for studying linkage map-
ping independently of the ploidy level of the species. For
the diploid-like species, genotype calls were useful for
grouping but not for estimating map distances. Impor-
tantly, GBS protocols need to be optimized for increasing
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the read count so that genotypes can be called more
accurately.

Availability and requirements

® Project name: VCF2SM

® Project home page: https://github.com/gramarga/
vef2sm

e Operating systems: any supporting Python 2.7 (tested
on Linux)
Programming languages: Python 2.7
Other requirements: SUPERMASSA [21] source code
available at https://bitbucket.org/orserang/
supermassa
License: GNU GPL
Any restrictions to use by non-academics: license
needed

Additional file

Additional file 1: Supplemental figures from analyses with different sets
of markers. (PDF 2515 kb)
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CNV: Copy number variation; GBS: Genotyping-by-sequencing; indel:
Insertion-deletion; LG: Linkage group; MDM: Multiple dosage marker; NGS:
Next generation sequencing; PCA: Principal component analysis; SDM: Single
dosage marker; SNP: Single-nucleotide polymorphism; VCF: Variant call format
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