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evidence that growth factor-stimulated macropinocytosis is 
essential for amino acid-dependent activation of mTORC1, 
and that increased solute accumulation by macropinocytosis 
in transformed cells supports unchecked cell growth.
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Introduction

Macropinocytosis is an endocytic process by which cells 
engulf relatively large volumes of extracellular fluid sol-
utes, including nutrients, through movements of the plasma 
membrane [1, 2]. Subsequent organelle fusion reactions 
deliver internalized solutes into endolysosomal compart-
ments, where macromolecules may be degraded by lyso-
somal hydrolases into constituent subunits for anabolic 
metabolism. Macropinocytosis was originally called pino-
cytosis [3, 4], but was later renamed to distinguish it from 
smaller endocytic vesicles such as clathrin-coated vesicles. 
Growth factors, cytokines, chemokines, pathogens, and the 
tumor promoter phorbol myristate acetate (PMA) can induce 
macropinocytosis. Macrophages and dendritic cells consti-
tutively exhibit macropinocytosis, as do cells transformed 
by oncogenic mutations of K-Ras and v-Src [5, 6]. Aberrant 
activation of macropinocytosis has been implicated in cancer 
progression [7, 8], neurodegenerative diseases [9], athero-
sclerosis [10], and renal dysfunction [11].

Extracellular nutrients and growth factors can regulate 
cell growth, quiescence, and survival. In response to nutri-
ent availability and growth factor stimulation, cells grow 
and proliferate by increasing anabolic metabolism. Mech-
anistic target of rapamycin (mTOR) is an evolutionarily 
conserved serine/threonine kinase that plays key roles in 
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tiate biochemical signals that increase anabolic metabolism 
and macropinocytosis, an actin-dependent endocytic process 
in which relatively large volumes of extracellular solutes 
and nutrients are internalized and delivered efficiently into 
lysosomes. Macropinocytosis is prominent in many kinds of 
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by oncogenic K-Ras. Growth factor receptor signaling and 
the overall metabolic status of the cell are coordinated in 
the cytoplasm by the mechanistic target-of-rapamycin com-
plex-1 (mTORC1), which positively regulates protein syn-
thesis and negatively regulates molecular salvage pathways 
such as autophagy. mTORC1 is activated by two distinct 
Ras-related small GTPases, Rag and Rheb, which associ-
ate with lysosomal membranes inside the cell. Rag recruits 
mTORC1 to the lysosomal surface where Rheb directly 
binds to and activates mTORC1. Rag is activated by both 
lysosomal luminal and cytosolic amino acids; Rheb activa-
tion requires phosphoinositide 3-kinase, Akt, and the tuber-
ous sclerosis complex-1/2. Signals for activation of Rag and 
Rheb converge at the lysosomal membrane, and several lines 
of evidence support the idea that growth factor-dependent 
endocytosis facilitates amino acid transfer into the lysosome 
leading to the activation of Rag. This review summarizes 
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stimulating cellular anabolic processes and inhibiting cata-
bolic processes such as autophagy in response to growth 
factors and nutrient availability. TOR was originally identi-
fied in yeast as a target protein of rapamycin, a macrolide 
compound that is now widely used in clinical settings as 
an immunosuppressant, anti-restenotic, and anti-cancer 
agent [12–15]. mTOR forms at least two distinct multi-
protein complexes termed mTOR complex 1 (mTORC1) 
and mTORC2 [16–20]. Both complexes contain mTOR as a 
core kinase and the common subunits mLST8 (also known 
as GβL) [20] and DEPTOR [21]. mTORC1 [15] contains 
the specific subunits, raptor [18, 19] and PRAS40 [22–24], 
while mTORC2 contains rictor [17], mSIN1 [25, 26], and 
PROTOR [27]. While mTORC2 plays important roles in 
actin cytoskeleton reorganization, cell migration, survival, 
and glucose metabolism, mTORC1 has been shown to be 
essential in cell growth and a wide array of cellular meta-
bolic processes [28–30]. In response to a variety of stimuli, 
including amino acids, glucose, growth factors, cytokines, 
and PMA [31–33], mTORC1 stimulates cell growth and pro-
liferation by enhancing the rate of cellular protein synthesis, 
and lipid and pyrimidine/purine biogenesis [34]. Aberrant 
activation of mTORC1 plays key pathological roles in the 
development of diseases such as cancer, type 2 diabetes, ath-
erosclerosis, and neurodegeneration [28, 29, 34–37]. Thus, 
the mechanism of mTORC1 activation and its roles in meta-
bolic regulation have attracted intense interest in basic and 
clinical sciences.

Macropinocytosis and mTORC1 activation share many 
common mechanisms for their induction, and recent studies 
have demonstrated that macropinocytosis contributes to cell 
growth by stimulating mTORC1 activity [2, 7, 8, 38–42]. 
This review compares the molecular mechanisms underly-
ing the induction of macropinocytosis and mTORC1 activ-
ity, and discusses crucial roles of macropinocytosis in the 
assimilation of nutrients for cell growth.

mTORC1 activity is regulated by Rag and Rheb

The small GTPases Rag and Rheb coordinately stimulate the 
activity of mTORC1 on the surface of the lysosome [43–45] 
(Fig. 1a). Mammalian cells contain four isoforms of Rag, 
Rag A, B, C, and D, which form heterodimers comprised of 
RagA or B with RagC or D in a functional conformation, 
and which are activated by amino acids such as leucine and 
arginine. The Rag heterodimer interacts with a pentameric 
protein complex called Ragulator, which consists of the 
proteins p18 (LAMTOR1), p14 (LAMTOR2), MP1 (LAM-
TOR3), C7ORF59 (LAMTOR4), and HBXIP (LAMTOR5), 
and associates with the lysosomal membrane [44]. Ragulator 
functions as a scaffold for the Rag heterodimer to localize 
on the lysosomal membrane and to stimulate GTP-binding 

by RagA or RagB through its guanine nucleotide exchange 
factor (GEF) activity. Amino acids in the lysosomal lumen 
play a key role in triggering a conformational change of the 
transmembrane vacuolar H+-ATPase (v-ATPase), which 
activates the RagA/B GEF activity of Ragulator [46, 47]. 
In addition, SLC38A9, a lysosomal transmembrane pro-
tein, interacts with the v-ATPase and activates Ragulator 
by sensing luminal arginine [48–50]. Upon binding argi-
nine, SLC38A9 transports leucine and other amino acids 
from the lysosomal lumen into cytoplasm [51]. Cytosolic 
arginine and leucine can activate the Rag heterodimer by 
inhibiting the inhibitory activity of a GTPase-activating pro-
tein (GAP) for RagA/B [52] (Fig. 1a). GATOR1, a trimeric 
protein complex consisting of DEPDC5, Nprl2, and Nprl3, 
is expressed on the lysosomal membrane and functions as 
a GAP for RagA/B. Furthermore, GATOR1 is inhibited 
by another pentametric protein complex, GATOR2 [53]. 
Thus, GATOR2 activates the Rag heterodimer by inacti-
vating GATOR1. Sestrin1 and/or Sestrin 2 directly inter-
act with and inhibit GATOR2, and suppress mTORC1 
function [54, 55]. Sestrin bears a leucine-binding pocket 
in close proximity to its GATOR2 binding site, and the 
binding of leucine to Sestrin relieves its inhibitory effect 
on GATOR2. Thus, cytosolic leucine activates mTORC1 
by inhibiting GATOR1 through its binding to Sestrin1/2. 
Similarly, cytosolic arginine activates mTORC1 by inhibit-
ing GATOR1 through its binding to CASTOR1. CASTOR1 
forms a homodimer or a heterodimer with CASTOR2 and 
inhibits GATOR2. Similar to the mode of Sestrins, arginine 
binding to CASTOR1 blocks its interaction with GATOR2 
and relieves the CASTOR1 inhibitory effect on GATOR2, 
thereby activating RagA/B signaling [54–57]. Glutamine 
also stimulates mTORC1 [58]. However, it remains unclear 
whether glutamine itself functions as a signaling molecule 
for activating mTORC1. Rather, either glutamine stimulates 
the influx of leucine by acting as an efflux solute through 
a SLC7A5–SLC3A2 heterodimeric antiporter, or the glu-
tamine metabolite α-ketoglutarate stimulates mTORC1 by 
activating the Rag heterodimer [59, 60]. It has also been 
reported that glutamine can activate mTORC1 in a manner 
dependent on Arf1 but not Rag small GTPase [58]. Thus, 
RagA/B-dependent activation of mTORC1 occurs by amino 
acids detected in the cytosol but reaching mTORC1 from 
within lysosomes or endolysosomes.

Activated Rag recruits mTORC1 to the lysosomal mem-
brane through its interaction with Raptor [44, 61]. There, 
Rheb directly activates mTORC1 [15, 62, 63] (Fig.  1). 
Rheb itself is activated by signals from growth factor recep-
tors [64] (Fig. 1b). Upon growth factor stimulation, active 
phosphoinositide 3-kinase (PI3K) synthesizes PIP3, which 
recruits PDK1 and Akt to the plasma membrane where Akt 
is phosphorylated and activated by PDK1 and mTORC2. 
Subsequently, active Akt on the lysosomal membrane 
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phosphorylates and inhibits tuberous sclerosis complex 
2 (TSC2), a GAP for Rheb in a larger complex com-
prised of TSC1, TSC2 and TBC1D7 [Tre2–Bub2–Cdc16 
(TBC)1 domain family number 7] [65–67]. Alternatively, 
the RAS–MEK–ERK–RSK pathway phosphorylates and 

inactivates the TSC complex in response to growth factors, 
cytokines, and PMA [31, 32, 68–72]. The phosphorylation 
of TSC2 by Akt induces the dissociation of the TSC com-
plex from the lysosomal membrane, consequently permitting 
GTP-loading of Rheb and subsequent mTORC1 activation 
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Fig. 1   Amino acid- and growth factor-induced mTORC1 activa-
tion. a The mechanism of amino acid-induced mTORC1 activa-
tion. mTORC1 is recruited to lysosomes by amino acid stimulation. 
Through V-ATPase and SLC38A9 on lysosomal membranes, amino 
acids such as arginine (Arg) and glutamine (Gln) modulate the func-
tion of protein complex Ragulator, leading to Rag activation. Arg and 
Gln are detected by SLC38A9. Once Rag is activated, mTORC1 is 
recruited to lysosomes via the interaction between Rag and raptor, 
followed by mTORC1 activation by Rheb. Upon binding arginine, 
SLC38A9 transports amino acids, such as leucine (Leu), from the 
lysosomal lumen into cytoplasm. GATOR1 and GATOR2 regulate 
Rag function. Rag is inhibited by GATOR1, which is inhibited by 
GATOR2. Sestrin1/2 and CASTOR1/2 inhibit GATOR2, and detect 
Leu and Arg, respectively, in cytosol. The interaction of these amino 

acids with their target proteins results in the reversal of inhibition by 
GATOR2. Leucyl-tRNA synthetase (LRS) can also activate Rag and 
detect Leu in the cytosol. Gln in the cytosol is detected by an Arf1-
dependent mechanism, followed by Rag activation. b The mechanism 
of growth factor-induced Rheb activation. Growth factor stimulation 
induces the PI3K–Akt pathway. Akt phosphorylates TSC2, which 
is located at lysosomal membrane as a protein complex with TSC1. 
After phosphorylation, the TSC1/2 complex dissociates from the lys-
osome. TSC1/2 is a Rheb GAP, so loss of TSC1/2 complex from the 
lysosomal membrane allows Rheb to be activated (Rheb-GTP). c The 
mechanism of amino acid-modulated Rheb deactivation. Depletion 
of amino acids from culture medium induces deactivation of RagA 
(GDP form). Inactivated RagA triggers TSC1/2 recruitment to lys-
osomes, resulting in deactivation of Rheb (Rheb-GDP)
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[64, 72, 73]. The molecular mechanism by which Akt 
reaches the lysosome to phosphorylate TSC2, and how the 
phosphorylation of TSC2 leads to its dissociation from the 
lysosomal membrane are still unknown. Recent studies dem-
onstrated that the dissociation of the TSC complex from lys-
osomes is also triggered by amino acid stimulation (Fig. 1c) 
[73, 74]. Under amino acid starvation conditions, the GDP-
bound form of RagA (inactive) interacts with and recruits 
TSC2 to the lysosomal membrane. Conversely, GTP-bound 
RagA (active) is unable to retain the TSC complex on the 
lysosomal membrane. Thus, both growth factor-mediated 
TSC2 phosphorylation and amino acid-induced RagA acti-
vation induce the dissociation of the TSC complex and, con-
sequently, stimulate Rheb-dependent mTORC1 activation. In 
addition to these mechanisms, a recent study demonstrated 
that arginine can directly inhibit the interaction between the 
TSC complex and Rheb, thereby supporting Rheb activation 
in response to amino acid availability [75].

Involvement of endocytosis and autophagy 
in mTORC1 activation

Given that the cytosolic face of the lysosomal membrane 
serves as a platform for numerous proteins and protein com-
plexes that mediate amino acid- and growth factor signal-
ing for mTORC1 activation, it can be hypothesized that 
processes important for endosomal and lysosomal traffick-
ing play key roles in the regulation of mTORC1 activity 
[76–78]. In addition to Rag and Rheb, other small GTPases 
associated with endocytosis contribute to the activation of 
mTORC1. In Drosophila S2 cells [79], mTORC1 activa-
tion was decreased by knockdown of Rab5 or Arf, which 
are important for endocytic membrane trafficking. Simi-
larly, knockdown of mammalian Rab5 or Arf1 decreased 
mTORC1 activity in HEK293 or murine embryonic fibro-
blast (MEF) cells. Ectopic expression of dominant-active 
Rab5(Q79L) in HEK293 cells specifically blocked activa-
tion of mTORC1 by amino acids but not glucose, implicat-
ing Rab5-related endocytic traffic in amino acid-dependent 
mTORC1 activation [79]. Ectopic expression of active Rab5 
often generates unusual vesicles containing both the early 
endosome marker EEA1 and the late endosome/lysosome 
marker LAMP1, indicating that aberrant Rab5 activation 
causes a defect in early-to-late endosome conversion [80]. 
Consistent with this observation, ablation of hVps39, which 
plays a role in the early-to-late endosome conversion, pro-
duced hybrid endosomes and inhibited insulin-induced 
mTORC1 activation [80]. mTORC1 localized to these hybrid 
endosomes, suggesting that the maturation or integrity of the 
late endosome/lysosome was critical for proper activation 
of mTORC1. It remains unclear whether Rheb localizes to 
these hybrid endosomes, and whether the dissociation of the 

TSC complex from these organelles occurs in response to 
growth factor stimulation. Together, these reports suggest 
that the transition from early to late endosome, regulated by 
Rab5, is required for mTORC1 activation.

As noted above, the GTPase Ras functions as an 
upstream suppressor of TSC2 via the ERK pathway [31, 
71]. Expression of dominant active Ras(Q61L) in HEK293T 
cells induced TSC2 phosphorylation [71], and stimulated 
mTORC1, as indicated by S6K1 phosphorylation. Thus, Ras 
functions upstream of Rheb to stimulate mTORC1 activity. 
mTORC1 activation by Ras(Q61L) was blocked by amino 
acid starvation in fibroblasts [65], suggesting that Ras does 
not act downstream of amino acid sensing machineries to 
activate mTORC1. However, these observations leave open 
the possibility that active Ras acts upstream of amino acid 
sensing machineries to induce mTORC1 activation. In 
addition, recent studies demonstrated that ablation of the 
GTPase Rac1 attenuated growth factor-induced mTORC1 
and mTORC2 activation in MEFs and HeLa cells [40, 81]. 
Immunofluorescence staining showed that Rac1 co-localized 
with mTORC1 and mTORC2 at the plasma membrane in 
response to serum stimulation [81]. As both Ras and Rac 
regulate endocytic pathways, these reports also suggest the 
involvement of endosomal traffic in mTORC1 activation. 
Interestingly, active Ras acts upstream of Rac1 to stimulate 
actin cytoskeleton reorganization, membrane ruffling, and 
macropinocytosis [1, 82].

Another activity in which mTORC1 is responsive to 
lysosome function is macroautophagy, a process in which 
cytoplasm is sequestered into membranous autophagosomes 
that, like macropinosomes, fuse with lysosomes to allow 
macromolecule hydrolysis and nutrient recycling. Inhibi-
tion of cellular mTORC1 activity stimulates autophagy 
[30], and amino acids recovered by autophagy can activate 
mTORC1 [51, 83, 84]. Thus, both heterophagy—the assimi-
lation of exogenous nutrients by endocytic activities—and 
autophagy—the degradation of cytoplasmic contents—
can provide amino acids for activation or reactivation of 
mTORC1.

Mechanisms of macropinosome formation

Macropinocytosis was recognized long ago as a feature of 
growing cells [3, 85], but its essential role in growth was 
only established recently [7, 8, 40]. Many of the signaling 
molecules necessary for mTORC1 activation also con-
tribute to macropinocytosis. The molecular mechanism of 
growth factor-induced macropinocytosis has been studied 
with a focus on the roles of small GTPases and phospho-
inositides [1, 77, 86] (Fig. 2). Treatment of macrophages 
with their growth factor macrophage colony-stimulating 
factor (M-CSF) immediately induces irregular membrane 
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ruffles at the cell margins which transform into “C”-shaped 
ruffles and then “O” shaped, cup-like structures. The open 
area at the top of the cup later closes to form a complete 
macropinosome [87]. The first stage of the closing process 
(C- to O-shaped ruffle) is termed ruffle closure, and the sec-
ond phase (cup to macropinosome) is termed cup closure 
[1]. Fully closed macropinosomes move toward the center of 
the cell via the microtubule network and fuse with the lyso-
some [88] or, rarely, recycle to the plasma membrane [89]. 
Imaging of cells expressing fluorescent protein chimeric 
protein probes revealed a cascade of signals corresponding 
to the various stages of macropinosome formation. These 
temporally arranged signals were all restricted to the bowl 
of the macropinocytic cup, likely by structural barriers to 
lateral diffusion in the inner leaflet of the cup membrane 
[90]. Förster resonance energy transfer (FRET) micros-
copy showed that Rac1 was active within the cup domain 
immediately following ruffle closure [87]. Ratiometric fluo-
rescence microscopy showed that cyan fluorescent protein 
(CFP)-labeled Rab5a was recruited to the cup membrane 
during cup closure and persisted on the macropinosome dur-
ing its movement toward the lysosome [87]. Similarly, yel-
low fluorescent protein (YFP)-tagged Ras-binding domain 
of Raf (YFP-RBD), a probe to detect activated Ras [91], 
was recruited to macropinocytic cups in macrophages, sug-
gesting that Ras is active during cup closure [92]. Similar 
macropinocytosis signaling patterns were also reported in 
other cell types following stimulation with platelet-derived 
growth factor (PDGF) [93–97]. Thus, as for activation of 

mTORC1, GTPases associated with membrane traffic are 
required for macropinocytosis.

Phosphoinositides are also essential for macropinocyto-
sis. PI3K is required for all macropinocytosis except that 
stimulated by PMA [98, 99]. Fluorescence microscopy of 
macrophages stimulated with M-CSF showed transient 
recruitment of YFP-Btk-PH, which localizes PIP3, to the 
macropinocytic cup, indicating transient, localized PIP3 gen-
eration (PIP3 spike) [87, 92]. PI3K also regulates PDGF-
induced macropinocytosis [100]. Live-cell imaging with flu-
orescent protein-tagged pleckstrin homology (PH)-domain 
chimeras demonstrated a signal transition from PI(4,5)P2 
to PIP3 during epidermal growth factor (EGF)-induced 
macropinosome formation [86, 99]. Two well-known sig-
nal pathways are activated by PIP3: Akt and phospholipase 
C-γ (PLCγ). PLCγ is involved in macropinosome forma-
tion; Akt is not [101]. Imaging YFP-C1δ as a probe for 
the PLCγ product diacylglycerol (DAG) revealed transient 
generation of DAG in the cup [87, 101]. Live-cell imaging 
also showed that YFP-tagged protein kinase C (PKC)-α, 
which is activated by DAG, was recruited to cups [92]. The 
DAG mimetic PMA stimulates macropinocytosis in mac-
rophages [102]. PMA-induced macropinocytosis is blocked 
by inhibitors of PKC and Ras but not by inhibitors of PLCγ 
or PI3K [101]. Additionally, the PIP3 spike was not observed 
in PMA-induced macropinocytic cups [40]. After cup clo-
sure, PI3P and Rab5a appeared on fully formed macropino-
somes, which then moved toward the center of the cells [87]. 
The PKC inhibitor calphostin C blocked PDGF-induced 
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Fig. 2   M-CSF-induced macropinocytosis. Interaction between 
M-CSF and the M-CSF receptor in macrophages activates Rac1 fol-
lowed by induction of membrane ruffling. Some ruffles change into 
cup-like structures, in which activated PI3K then transiently generates 
PIP3 (red). PIP3 generation in the cup triggers the activation of PLCγ 
and Akt. Akt is not involved in macropinosome formation. PLCγ 

generates DAG in the cup (green), leading to activation of PKC and 
Ras. Both pathways contribute to cup closure, in which the macropi-
nosome pinches off into the cytoplasm from the plasma membrane. 
Following cup closure, PI3P and Rab5a are localized at the macropi-
nosomes (orange). Macropinosomes with these signals (orange) then 
move toward the center of the cells
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macropinocytosis in MEFs [40]. Diacylglycerol kinase-ζ 
(DGKζ), which phosphorylates DAG to yield phosphatidic 
acid, is also necessary for macropinocytosis [103]. Knock-
down of DGKζ attenuated PDGF-induced macropinocyto-
sis. Therefore, DAG is a key signaling molecule involved 
in macropinocytosis. Together, these observations suggest 
that growth factor (GF)-induced macropinosome formation 
results from a signal cascade comprised of many molecules 
essential to growth control (Fig. 2).

The role of Ras in macropinosome formation remains 
undefined. Ras-induced pinocytosis was first described as a 
cellular response to injection of H-Ras [85]. H-Ras(G12V) 
expression induced membrane ruffles and macropinocy-
tosis in HeLa cells, which could be inhibited by the actin 
polymerization inhibitor cytochalasin D or by co-expression 
of dominant-negative Arf6(T27N) [104]. K-Ras-induced 
macropinocytosis in fibroblasts was blocked by cytocha-
lasin E or by the PI3K inhibitors wortmannin and LY294002 
[5]. H-Ras-induced macropinocytosis in BHK-21 cells was 
blocked by wortmannin or by expression of dominant nega-
tive Rab5(S34N), but not by dominant negative Rac1(S17N) 
[105]. The differential association of K-Ras with PI3K p110 
isoforms suggests roles for Ras in ruffling and macropino-
some closure. However, MEFs deficient in K-Ras, H-Ras 
and N-Ras are capable of generating macropinosomes in 
response to PDGF [106], which suggests that macropinocy-
tosis induced by oncogenic Ras may be an aberrant cellular 
behavior.

Phosphoinositide signals on macropinosomes were also 
observed during H-Ras(G12V)-induced macropinocytosis. 
Live-cell imaging using YFP-AktPH and YFP-PLCδ1-PH 
to localize PIP3 and PI(4,5)P2, respectively, showed that 
H-Ras(G12V)-induced macropinosomes in COS7 cells 
recruited both probe proteins and indicated that, like macro-
pinocytosis in macrophages, PI(4,5)P2 was lost from macro-
pinosomes before the PIP3 spike appeared [104]. Live-cell 
imaging showed co-localization of GFP-Akt and monomeric 
red fluorescent protein (mRFP)-H-Ras(G12V) at macropi-
nosomes in COS7 cells [104]. Immunofluorescence stain-
ing showed that cells co-expressing H-Ras(G12V) and 
Arf6(Q67L) formed macropinosomes containing phospho-
rylated Akt [104]. YFP-Akt-PH was recruited to M-CSF-
induced macropinocytic cups in macrophages [101] and 
to EGF-induced macropinocytic cups in A431 cells [99]. 
Moreover, GFP-Akt localizes to macropinosomes in LPS-
stimulated macrophages [107]. Thus, Akt is activated at the 
macropinocytic cup and/or macropinosomes.

Ras is also required for macropinocytosis and cell growth 
in axenic strains of the free-living ameba Dictyostelium 
discoideum which are capable of growth in nutrient broth. 
Those strains exhibit Ras activity localized to macropino-
cytic cups, which are larger than cups in wild-type amebas 
due to a mutation in the Ras GAP neurofibromin [108, 109]. 

Thus, active Ras contributes to the morphogenesis of large 
macropinosomes necessary for nutrient acquisition and cell 
growth.

Growth factor‑induced macropinocytosis transfers 
amino acids into lysosomes to activate mTORC1

Macropinocytosis rapidly and efficiently delivers extracel-
lular solutes into lysosomes [110]. Given that growth fac-
tors induce both mTORC1 activation and macropinocytosis, 
and that they share many common GTPases and signaling 
molecules for their induction, we proposed a model in which 
macropinocytosis-mediated delivery of extracellular amino 
acids or protein to lysosomes is essential for mTORC1 
activation (Fig. 3) [40]. Biochemical studies in murine 
macrophages showed that M-CSF treatment induced the 
PI3K–Akt–TSC–Rheb–mTORC1 pathway. Live-cell imag-
ing and quantitative fluorescence microscopy showed that 
M-CSF-induced macropinocytosis delivered small extracel-
lular molecules rapidly into lysosomes, where mTORC1 was 
recruited and activated. Inhibition of macropinocytosis by 
ethyl isopropylamiloride (EIPA) [111] or with the cytoskel-
eton inhibitors jasplakinolide and blebbistatin (J/B) blocked 
M-CSF-induced mTORC1 activation without inhibiting the 
PI3K–Akt pathway. These results suggest that macropinocy-
tosis provides rapid amino acid trafficking into lysosomes to 
activate mTORC1. Like M-CSF-induced macropinocytosis, 
PMA-induced macropinocytosis also increased amino acid-
dependent mTORC1 activation, but without inducing Akt 
phosphorylation. A role for macropinocytosis in mTORC1 
activation was also demonstrated in MEFs. PDGF-induced 
mTORC1 activation by leucine (in the absence of glucose) 
was blocked by EIPA, J/B, or by knock-down of Rac1, in 
a manner independent of the Akt–TSC pathway. PDGF 
treatment increased mTOR recruitment to lysosomes, as 
determined by the co-localization of mTOR with LAMP2, 
a lysosomal membrane protein.

Based on these observations, it was proposed that growth 
factor stimulation induces macropinocytosis, leading to effi-
cient uptake of essential amino acids via macropinosomes 
and subsequent delivery to the lysosome for mTORC1 
activation (Fig. 3). Accordingly, growth factor- dependent 
mTORC1 activation is established by two distinct path-
ways: a PI3K–Akt–TSC–Rheb (cytosolic) pathway and a 
PI3K–macropinocytosis–Rag (vesicular) pathway. The 
cytosolic pathway is the classical Akt-dependent mTORC1 
activation pathway described above: activated Akt induces 
TSC phosphorylation (TSC deactivation) and consequent 
activation of Rheb. In the vesicular pathway, PIP3 in macro-
pinocytic cups localizes DAG synthesis and PKC activity, 
leading to macropinosome closure. Macropinosomes fuse 
with the tubular lysosomal network in macrophages or the 
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lysosomes in MEFs, delivering ingested solutes such as pro-
teins or amino acids. Amino acids transferred into the lyso-
some via macropinosome-lysosome fusion, or derived from 
hydrolysis of proteins in lysosomes, activate Ragulator and 
lead to subsequent activation of mTORC1 [40]. Therefore, 
growth factor receptor signaling organizes macropinosome 
formation, and the amino acids or proteins internalized by 
macropinocytosis signal to mTORC1 from inside lysosomes.

The macropinosome as a signal platform 
for mTORC1 signaling

Macropinocytic cups and macropinosomes may also serve 
as structural platforms of signaling for cell growth. In 
addition to small GTPases, phosphoinositides are com-
mon signaling molecules involved in mTORC1 activation 
and macropinocytosis [76, 112]. Phosphoinositide kinase 
FYVE-type zinc finger containing (PIKFYVE) catalyzes 
the synthesis of PI(3,5)P2 from phosphatidylinositol 
3-phosphate (PI3P) [113]. PI(3,5)P2 interacts with rap-
tor [114], indicating its involvement in mTORC1 activa-
tion [112]. In 3T3-L1 adipocytes, depletion of PIKFYVE 
blocked insulin-induced activation of mTORC1 (as meas-
ured by S6K phosphorylation) without affecting Akt phos-
phorylation [114]. Myotubularin-related phosphatase 3 
(MTMR3) dephosphorylates PI3P to phosphatidylinositol 

[115]. Depletion of MTMR3 in HEK293T cells increased 
nutrient-induced mTORC1 activation, suggesting that 
MTMR3 suppresses mTORC1 activity by depleting PI3P 
[116]. Therefore, the synthesis of PI3P or PI(3,5)P2 on 
macropinosomes could help recruit mTORC1 to the late 
endosome or lysosome.

The macropinocytic cup can also localize Akt phospho-
rylation. Like M-CSF, the chemokine CXCL12 induces both 
macropinocytosis and mTORC1 activation in macrophages 
[38]. Unlike the response to M-CSF, however, CXCL12-
induced phosphorylation of Akt and S6K (a reporter of 
mTORC1 activity) was dependent on actin cytoskeleton 
rearrangement and the formation of macropinocytic cups. 
Live-cell imaging showed YFP-Akt-PH recruitment to the 
macropinocytic cup, and western blot analysis showed that 
the macropinocytosis inhibitors J/B and EIPA attenuated 
CXCL12-induced Akt phosphorylation. Thus, Akt phos-
phorylation in response to CXCL12 required the formation 
of a macropinocytic cup. Immunofluorescence microscopy 
showed that Akt was phosphorylated at membrane ruffles 
and macropinocytic cups. The PKCα/β-specific inhibitor 
Gö6976 blocked macropinocytosis and S6K phosphoryla-
tion without inhibiting membrane ruffling or cup forma-
tion, suggesting that PKCα and/or PKCβ are involved in 
cup closure. However, Gö6976 did not inhibit CXCL12-
induced Akt phosphorylation. Together these studies indi-
cated that CXCL12-induced macropinocytic cups are signal 
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Fig. 3   Macropinocytosis triggers mTORC1 activation. PI3K-gener-
ated PIP3 accumulates in macropinocytic cups (red line), activating 
Akt and PLCγ. PLCγ generates DAG in the cup (green line), leading 
to Ras- and PKC-dependent pathways that close the macropinosome. 
Extracellular nutrients internalized by the macropinosomes are deliv-
ered rapidly into lysosomes through fusion reactions. Nutrient trans-

fer from macropinosomes to lysosomes induces Rag activation (black 
to red), followed by mTORC1 recruitment to lysosomes. Meanwhile, 
activated Akt inhibits TSC function in a cytosolic pathway independ-
ent of macropinocytosis, resulting in Rheb activation (black to red). 
Rheb directly activates mTORC1 on the lysosomal membranes (black 
to red)
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platforms for the Akt phosphorylation required for mTORC1 
activation.

To what extent does the cytosolic pathway 
(Akt–TSC1/2–Rheb) require macropinocytosis? The sensi-
tivity of Akt activation by CXCL12 to cytoskeleton-inhib-
itors differed from Akt activation in response to M-CSF 
or PDGF, which was not affected by such inhibitors. The 
organization of the macropinocytic cup may allow local-
ized amplification of signals from some receptors, perhaps 
those that require multiple inputs for signal amplification. 
Circular ruffles create isolated domains of plasma membrane 
where signal propagation can occur [92], indicating the pres-
ence of barriers to lateral diffusion in the inner leaflet of the 
plasma membrane of cups [90]. Maximal Akt phosphoryla-
tion observed in response to CXCL12 was less than the level 
of Akt phosphorylation measured in response to M-CSF. 
Acute stimulation of cells with M-CSF (or PDGF) may gen-
erate sufficiently high concentrations of PIP3 that a spatially 
organized amplification is unnecessary. However, if recep-
tors cannot generate high PIP3 concentrations, then phospho-
rylation of Akt may require a mechanism based on spatial 
confinement of signal amplification to macropinocytic cups. 
Consistent with this model, a recent study identified a role 
for Rac-dependent macropinocytosis in the activation of the 
PI3K subunit p110β by G-protein coupled receptors [117].

As described above, the TSC complex inhibits Rheb 
function at the lysosome [64, 73, 74]. When Akt and Erk 
phosphorylate TSC2, the TSC complex subsequently loses 
its GAP activity for Rheb [31, 32, 72]. This suggests that, 
within a few minutes of stimulation, signal components that 
phosphorylate Akt and Erk reach lysosomal structures and 
phosphorylate TSC2. In cells co-expressing H-Ras(G12V) 
and Arf6(Q67L), Erk is recruited to and phosphorylated 
at macropinosomes [104]. Erk localizes to late endosomes 
and lysosomes via the protein complex p18/p14/MP1 [118]. 
Since macropinosomes show late endosome characteristics 
at this stage, growth factor/chemokine-induced macropi-
nosomes should recruit Erk via the p18/p14/MP1 protein 
complex during the maturation process. Given that another 
important function of the p18/p14/MP1 complex is to recruit 
mTORC1 to the lysosome as a Ragulator, we speculate 
that late stage macropinosomes recruit mTORC1 directly. 
Together, these reports indicate that macropinosomes deliver 
signaling molecules to the lysosome.

How macropinocytosis could be essential 
to growth control

Macropinocytosis may be essential for the growth of meta-
zoan cells [40]. Accordingly, when cells are growing in con-
stant concentrations of growth factor, macropinosomes form 
stochastically as discrete units of growth factor signaling, 

and activation of mTORC1 follows after a bolus of extracel-
lular protein or amino acids is delivered by macropinocytosis 
into the lysosomes. Moreover, Akt localization to cups and 
its continued association with fully formed macropinosomes 
could provide a route for Akt to reach its substrate tuberous 
sclerosis complex-1/2 (TSC1/2) on the lysosomal mem-
brane. Thus, the magnitude of growth factor stimulation of 
mTORC1 may be determined in part by the volume of sol-
ute internalized by macropinocytosis, with feedback from a 
nutrient-sensing mechanism regulating the magnitude of Akt 
signaling on macropinosome membranes and the volume of 
nutrient delivered into the lysosome via macropinocytosis. 
This model predicts that macropinocytosis is necessary for 
cell growth and proliferation.

Pathogenic functions of macropinocytosis 
in K‑Ras‑induced cancer

Dysregulation of Ras and mTORC1 are involved in cancer 
development [15, 29]. Pathologic functions of macropinocy-
tosis in oncogenic K-Ras-expressing cancer cells have been 
described. Human carcinoma cells expressing K-Ras(G12C) 
or H-Ras(G12V) showed increased macropinocytosis, simi-
lar to NIH 3T3 cells expressing K-Ras(G12V). Extracellular 
proteins ingested by macropinocytosis in cells expressing 
oncogenic K-Ras were degraded and their constituent amino 
acids were used for anabolic metabolism [7]. The macropi-
nocytosis inhibitor EIPA blocked albumin-dependent cell 
proliferation [7], indicating that ingestion of albumin by 
K-Ras(G12D)-induced macropinocytosis and subsequent 
hydrolysis of proteins in lysosomes were sufficient to provide 
the essential amino acids (EAA) necessary for cell prolif-
eration [39]. Moreover, the growth of cells in nutrient-poor 
regions of pancreatic tumors was supported by scavenging 
of extracellular proteins [119]. Other groups have reported 
that H-Ras(G12V)-induced macropinocytosis is necessary 
for albumin-dependent cell growth of MEFs and that inhibi-
tion of mTORC1 activation increases the rate of macropino-
cytosis in carcinoma cells (MIA PaCa-2 K Ras mutant) [41, 
42]. Additionally, inhibition of DOCK1, a Rac-activating 
protein required for macropinocytosis, reduces survival of 
Ras-driven cell growth [120]. Thus, macropinocytosis-medi-
ated ingestion of extracellular protein is now considered a 
hallmark of cancer metabolism [121].

However, unlike the responses observed in macrophages 
and MEFs, mTORC1 activation by EAA in K-Ras trans-
formed cells was not inhibited by EIPA [8]. This indicates 
that macropinocytosis in Ras-transformed cells is not the 
primary route by which free amino acids reach the cytosolic 
SESTRIN1/2 and CASTOR detection systems.

In sum, these studies suggest that macropinosomes serve 
as organizational units of a signal transduction pathway that 
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is induced by extracellular stimuli such as growth factors 
and chemokines (Fig. 4a). If this is the case, constitutive 
macropinocytosis induced by oncogenic K-Ras or cSrc may 
hyperactivate mTORC1, resulting in unrestrained growth 
(Fig. 4b). Similarly, the tumor promoting activity of PMA 
may be partly attributable to its activation of mTORC1 via 
macropinocytosis.

Future directions

Significant questions remain to be answered about the 
relationship between macropinocytosis and mTORC1. To 
what extent does macropinocytosis support growth of non-
neoplastic cells? Why is mTORC1 activation by EAA in 
K-Ras-transformed cells independent of macropinocytosis? 
Does membrane traffic unrelated to macropinocytosis regu-
late mTORC1 activity? Does the activity of mTORC1 or the 
nutrient status of the cell regulate macropinosome formation 
or fusion with the lysosomes? The studies of Palm et al. [8, 
106] indicated that active mTORC1 inhibits protein delivery 
into lysosomes via macropinocytosis, whereas Nofal et al. 
[122], showed that mTORC1 activation does not affect deg-
radation of extracellular protein. These studies suggest that 
mTORC1 or the cytosolic concentrations of amino acids reg-
ulate the uptake and degradation of extracellular solutes by 

macropinocytosis (i.e., heterophagy) in a manner analogous 
to its role in protein recycling and degradation by autophagy.

Alternative macropinocytosis-specific inhibitors are 
needed, both for better understanding of macropinocytosis 
biology and for the potential therapeutic manipulation of 
the macropinocytosis signaling pathway. Although EIPA 
does not block other types of endocytosis, such as phago-
cytosis and clathrin-dependent endocytosis, it is reasonable 
to expect it to affect other signal pathways related to cell 
growth and differentiation. Drugs targeting macropinocy-
tosis could attenuate growth of neoplastic cells or related 
mosaic disorders resulting from mutations in the signals 
leading to mTORC1 [123].
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