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Abstract: Degenerative aortic stenosis is the most common valve disease in the elderly and is usually
confirmed at an advanced stage when the only treatment is surgery. This work is focused on the
study of previously defined biomarkers through systems biology and artificial neuronal networks to
understand their potential role within aortic stenosis. The goal was generating a molecular panel
of biomarkers to ensure an accurate diagnosis, risk stratification, and follow-up of aortic stenosis
patients. We used in silico studies to combine and re-analyze the results of our previous studies
and, with information from multiple databases, established a mathematical model. After this, we
prioritized two proteins related to endoplasmic reticulum stress, thrombospondin-1 and endoplasmin,
which have not been previously validated as markers for aortic stenosis, and analyzed them in a cell
model and in plasma from human subjects. Large-scale bioinformatics tools allow us to extract the
most significant results after using high throughput analytical techniques. Our results could help
to prevent the development of aortic stenosis and open the possibility of a future strategy based on
more specific therapies.

Keywords: aortic valve; biomarkers; endoplasmic reticulum; in silico models; systems biology

1. Introduction

Aortic stenosis (AS) is defined as an abnormal narrowing of the aortic valve (AV)
opening, which blocks blood flow from the left ventricle into the aorta and, consequently, to
the rest of the organism. The most common valve disease in the elderly is calcific or degen-
erative AS, which remains the main cause of AV replacement in developed countries [1–3].

AS progresses from an initial stage of aortic sclerosis, with a thickening and stiffening
of the AV, to severe calcific stenosis. Unfortunately, the disease is usually diagnosed at an
advanced stage since the symptoms are usually insidious at the onset. The appearance
of its most common symptoms, such as dyspnea, angina, and syncope, predict a rapid
deterioration of left ventricular function and the development of heart failure, potentially
provoking the death of the patient if the pathology progresses. The only effective treatment
to avoid this and improve survival is AV replacement, either surgically or via a transcatheter,
which makes the management of these patients difficult [4,5]. As surgery should only be
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performed when the risks of AS outweigh those of the intervention, it is important to
define different indicators to stratify the risk and timing of such interventions [6]. Early
interventions may expose the patient to an unnecessary risk of complications, including
living with a prosthetic valve and lifetime anticoagulation therapy, whereas an excessive
delay may produce irreversible damage to the myocardium [7].

Ideally, the assessment of the global risk requires the integration of multiple biomark-
ers (including clinical factors) and an evaluation of molecular indicators belonging to
independent pathways [8,9]. In an effort to identify suitable markers, large-scale analysis or
-omics studies are powerful tools that enable panels of biomarkers to be defined that may
later be assessed in patient cohorts. Combining and re-analyzing the results of multiple
-omics studies through a systems biology approach allow AS treatment to be considered as
a holistic process without applying a targeted hypothesis. As such, here, we used in silico
studies that enabled us to combine results from our previous proteomics studies [10–14]
with information from multiple databases, establishing a mathematical model thanks to
the use of complex systems biology algorithms. Through this roadmap, we prioritized
two proteins related to endoplasmic reticulum (ER) stress that have not been previously
validated as markers for AS and analyzed them in a cell model as well as in plasma samples
from human subjects.

2. Materials and Methods
2.1. Molecular Characterization of AS

For the molecular characterization of AS, as well as the generation of mathematical
models and candidate prioritization, an exhaustive bibliographic search of the molecular and
cellular processes involved in the disease allowed the main pathophysiological events in AS
(motives) to be identified and novel candidates to be defined (Figure 1). In this workflow, a
search for reviews on the molecular pathogenesis and pathophysiology of the condition was
performed in the PubMed database on 8 April 2019. The specific search was: (“degenerative
aortic stenosis” [Title] OR “aortic stenosis” [Title] OR “calcific aortic valve disease”[Title]
OR “calcific aortic stenosis” [Title]) AND (pathogenesis [Title/Abstract] OR pathophysiology
[Title/Abstract] OR molecular [Title/Abstract]) and Review [ptyp]. Additionally, if the
evidence of the implication of a candidate in the condition was judged not consistent enough
to be assigned as an effector, an additional PubMed search was performed specifically for the
candidate, including all the protein names according to UniProtKB.
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Figure 1. Mathematical model pipeline. Aortic stenosis was defined at molecular level through
bibliography and database revision, a biological map was built, and mathematical models were trained.
Then, candidate proteins were prioritized according to the functional relationship with the disease.

2.2. Generation of the Mathematical Models

To generate systems biology-based mathematical models, a biological map was built
around the molecular processes and key proteins defined during the characterization of AS.
The map was extended by adding knowledge-oriented connectivity layers (i.e., protein-
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to-protein interactions), including physical interactions and modulations, signaling and
metabolic relationships, and the regulation of gene expression. Data were obtained from
public and private databases (KEGG [15], BioGRID [16], IntAct [17], REACTOME [18],
TRRUST [19], and HPRD [20]) and from manual curation of the relevant scientific literature.
The models were then trained with a proprietary “Truth Table” containing publicly available
data. The models must be able to weight the relative value of each protein (nodes), and
since the number of links is very high, the number of parameters that must be resolved
increases exponentially. The use of artificial intelligence technologies to model complex
network behavior, including: graph theory and statistical pattern recognition technologies;
genetic algorithms; artificial neural networks; dimensionality reduction techniques; and
stochastic methods such assimulated annealing, Monte Carlo, etc.

2.3. Candidate Prioritization

The first step in candidate prioritization was the confection of a list of 126 proteins
based on our previous studies (Table 1). Once the mathematical models had been gener-
ated, their predictive power can be exploited through an artificial neural network (ANN)
strategy [21] in order to prioritize the different proteins and protein combinations based on
their potential relationships with defined AS related processes (motives). Specifically, the
potential relationship between each differentially expressed protein and the protein sets
defining each AS motive (process) of interest was predicted through ANNs. This approach
attempts to find the shortest distance between the protein sets, thereby generating a list of
differentially expressed proteins ordered according to their association with the selected
disease or pathway.

Table 1. List of 126 proteins of interest based on our previous studies, showing the original work
used for the selection of each protein. Additional information about their biological functions is
shown in Table S1. These proteins were subsequently evaluated using the ANN strategy.

Protein Name Uniprot
ID Reference Protein Name Uniprot

ID Reference

72 kDa type IV collagenase P08253 Alvarez-Llamas G
et al., 2013 [10]

Glutathione
S-transferase P P09211 Martin-Rojas T et al., 2012 [13]

Alcohol dehydrogenase 1B P00325 Martin-Rojas T
et al., 2015 [11]

Glycogen
phosphorylase,

liver form
P06737 Alvarez-Llamas G et al., 2013 [10]

Alpha-1-acid glycoprotein 1 P02763 Martin-Rojas T
et al., 2015 [11] Haptoglobin P00738 Martin-Rojas T et al., 2012 [13];

Martin-Rojas T et al., 2015 [11]

Alpha-1-antichymotrypsin P01011

Gil-Dones F et al.,
2012 [12];

Alvarez-Llamas G
et al., 2013 [10]

Hemoglobin
subunit beta P68871 Gil-Dones F et al., 2012 [12]

Alpha-1-antitrypsin P01009

Martin-Rojas T
et al., 2012 [13];
Martin-Rojas T
et al., 2015 [11];

Gil-Dones F et al.,
2012 [12]

Hemopexin P02790 Martin-Rojas T et al., 2015 [11];
Gil-Dones F et al., 2012 [12]

Alpha-1B-glycoprotein P04217 Martin-Rojas T
et al., 2012 [13] Histone H2A type 1-H Q96KK5 Martin-Rojas T et al., 2015 [11]

Alpha-2-HS-glycoprotein P02765

Martin-Rojas T
et al., 2015 [11];

Gil-Dones F et al.,
2012 [12]

Ig gamma-1 chain
C region P01857 Martin-Rojas T et al., 2015 [11];

Alvarez-Llamas G et al., 2013 [10]

Alpha-2-macroglobulin P01023 Alvarez-Llamas G
et al., 2013 [10] Ig kappa chain C region P01834 Gil-Dones F et al., 2012 [12]

Alpha-enolase P06733 Martin-Rojas T
et al., 2015 [11]

Ig lambda-1 chain
C regions P0CG04 Gil-Dones F et al., 2012 [12]

Angiotensinogen P01019 Alvarez-Llamas G
et al., 2013 [10] Ig mu chain C region P01871 Gil-Dones F et al., 2012 [12]

Annexin A1 P04083 Martin-Rojas T
et al., 2015 [11]

Insulin-like growth
factor-binding protein 5 P24593 Alvarez-Llamas G et al., 2013 [10]
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Table 1. Cont.

Protein Name Uniprot
ID Reference Protein Name Uniprot

ID Reference

Annexin A2 P07355 Martin-Rojas T
et al., 2015 [11]

Insulin-like growth
factor-binding protein 7 Q16270 Alvarez-Llamas G et al., 2013 [10]

Antithrombin-III P01008 Gil-Dones F et al.,
2012 [12]

Inter-alpha-trypsin
inhibitor heavy

chain H4
Q14624 Gil-Dones F et al., 2012 [12]

Apolipoprotein A-I P02647

Martin-Rojas T
et al., 2012 [13];

Gil-Dones F et al.,
2012 [12]

Interleukin-6 P05231 Alvarez-Llamas G et al., 2013 [10]

Apolipoprotein A-IV P06727 Gil-Dones F et al.,
2012 [12]

Killer cell
immunoglobulin-like

receptor 3DL3
Q8N743 Alvarez-Llamas G et al., 2013 [10]

Apolipoprotein B-100 P04114 Alvarez-Llamas G
et al., 2013 [10] Kininogen-1 P01042 Gil-Dones F et al., 2012 [12]

Apolipoprotein C-II P02655 Martin-Rojas T
et al., 2015 [11]

Leucine-rich
alpha-2-glycoprotein P02750 Gil-Dones F et al., 2012 [12]

Apolipoprotein C-III P02656 Gil-Dones F et al.,
2012 [12]

Leukocyte receptor
cluster member 9 Q96B70 Alvarez-Llamas G et al., 2013 [10]

Apolipoprotein E P02649 Gil-Dones F et al.,
2012 [12]

L-lactate
dehydrogenase A chain P00338 Martin-Rojas T et al., 2015 [11]

Beta-1,4-galactosyl- transferase
2 O60909 Alvarez-Llamas G

et al., 2013 [10] Lumican P51884
Martin-Rojas T et al., 2012 [13];
Martin-Rojas T et al., 2015 [11];

Alvarez-Llamas G et al., 2013 [10]

Biglycan P21810

Martin-Rojas T
et al., 2015 [11];

Alvarez-Llamas G
et al., 2013 [10]

Mannose-binding
protein C P11226 Gil-Dones F et al., 2012 [12]

Biogenesis of lysosome-related
organelles complex 1 subunit 5 Q8TDH9 Martin-Rojas T

et al., 2015 [11]
Metalloproteinase

inhibitor 1 P01033 Alvarez-Llamas G et al., 2013 [10]

Calcineurin-binding protein
cabin-1 Q9Y6J0 Martin-Rojas T

et al., 2015 [11]
Metalloproteinase

inhibitor 3 P35625 Alvarez-Llamas G et al., 2013 [10]

Calreticulin P27797 Martin-Rojas T
et al., 2012 [13] Moesin P26038 Martin-Rojas T et al., 2015 [11]

Cartilage oligomeric matrix
protein P49747 Alvarez-Llamas G

et al., 2013 [10]

Nuclear factor
NF-kappa-B p100

subunit
Q00653 Alvarez-Llamas G et al., 2013 [10]

Cathepsin B P07858 Alvarez-Llamas G
et al., 2013 [10]

Pentraxin-related
protein PTX3 P26022 Alvarez-Llamas G et al., 2013 [10]

Cathepsin D P07339 Alvarez-Llamas G
et al., 2013 [10]

Peptidyl-prolyl
cis-trans isomerase A P62937 Martin-Rojas T et al., 2015 [11]

CD5 antigen-like O43866 Gil-Dones F et al.,
2012 [12] Periostin Q15063 Martin-Rojas T et al., 2015 [11]

CD9 antigen P21926 Alvarez-Llamas G
et al., 2013 [10] Peroxiredoxin-1 Q06830 Martin-Rojas T et al., 2015 [11]

Ceruloplasmin P00450

Gil-Dones F et al.,
2012 [12];

Alvarez-Llamas G
et al., 2013 [10]

Phosphoglycerate
kinase 1 P00558 Martin-Rojas T et al., 2015 [11]

Chitinase-3-like protein 1 P36222 Alvarez-Llamas G
et al., 2013 [10]

Phospholipid transfer
protein P55058 Alvarez-Llamas G et al., 2013 [10]

Chitinase-3-like protein 2 Q15782 Alvarez-Llamas G
et al., 2013 [10]

Pigment
epithelium-derived

factor
P36955 Alvarez-Llamas G et al., 2013 [10]

Clusterin P10909

Gil-Dones F et al.,
2012 [12];

Alvarez-Llamas G
et al., 2013 [10]

Plasma protease C1
inhibitor P05155 Gil-Dones F et al., 2012 [12];

Alvarez-Llamas G et al., 2013 [10]

Coagulation factor XII P00748 Gil-Dones F et al.,
2012 [12]

Plasminogen activator
inhibitor 1 P05121 Alvarez-Llamas G et al., 2013 [10]

Collagen alpha-1(III) chain P02461 Alvarez-Llamas G
et al., 2013 [10]

Pre-B-cell leukemia
transcription

factor-interacting
protein 1

Q96AQ6 Alvarez-Llamas G et al., 2013 [10]

Collagen alpha-1(VI) chain P12109

Martin-Rojas T
et al., 2015 [11];

Alvarez-Llamas G
et al., 2013 [10]

Procollagen
C-endopeptidase

enhancer 2
Q9UKZ9 Alvarez-Llamas G et al., 2013 [10]
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Table 1. Cont.

Protein Name Uniprot
ID Reference Protein Name Uniprot

ID Reference

Collagen alpha-1(XIV) chain Q05707 Alvarez-Llamas G
et al., 2013 [10] Prolargin P51888 Martin-Rojas T et al., 2015 [11]

Collagen alpha-2(I) chain P08123 Alvarez-Llamas G
et al., 2013 [10] Prosaposin P07602 Alvarez-Llamas G et al., 2013 [10]

Collagen alpha-3(VI) chain P12111 Mourino-Alvarez L
et al., 2016 [14]

Prostaglandin-H2
D-isomerase P41222 Alvarez-Llamas G et al., 2013 [10]

Complement C1s
subcomponent P09871 Alvarez-Llamas G

et al., 2013 [10] Protein AMBP P02760 Gil-Dones F et al., 2012 [12]

Complement C3 P01024

Gil-Dones F et al.,
2012 [12];

Alvarez-Llamas G
et al., 2013 [10]

Protein NDRG2 Q9UN36 Mourino-Alvarez L et al., 2016 [14]

Complement C4-A P0C0L4 Gil-Dones F et al.,
2012 [12]

Protein phosphatase 1
regulatory subunit 3E Q9H7J1 Alvarez-Llamas G et al., 2013 [10]

Complement C4-B P0C0L5 Gil-Dones F et al.,
2012 [12] Protein S100-A6 P06703 Martin-Rojas T et al., 2015 [11]

Complement component C9 P02748 Gil-Dones F et al.,
2012 [12] Prothrombin P00734 Gil-Dones F et al., 2012 [12]

Complement factor H P08603 Gil-Dones F et al.,
2012 [12] Serine protease HTRA1 Q92743 Alvarez-Llamas G et al., 2013 [10]

Complement factor H-related
protein 1 Q03591 Gil-Dones F et al.,

2012 [12] Serotransferrin P02787 Martin-Rojas T et al., 2015 [11]

Complement factor I P05156 Gil-Dones F et al.,
2012 [12] Serum albumin P02768 Martin-Rojas T et al., 2012 [13];

Martin-Rojas T et al., 2015 [11]

Cystatin-C P01034 Alvarez-Llamas G
et al., 2013 [10]

Serum amyloid
P-component P02743 Martin-Rojas T et al., 2012 [13];

Martin-Rojas T et al., 2015 [11]

Decorin P07585 Martin-Rojas T
et al., 2015 [11]

Serum paraox-
onase/arylesterase

1
P27169 Gil-Dones F et al., 2012 [12]

EGF-containing fibulin-like
extracellular matrix protein 1 Q12805 Alvarez-Llamas G

et al., 2013 [10]

Serum
paraoxonase/lactonase

3
Q15166 Alvarez-Llamas G et al., 2013 [10]

Endoplasmin P14625 Martin-Rojas T
et al., 2015 [11] Spondin-1 Q9HCB6 Alvarez-Llamas G et al., 2013 [10]

Extracellular superoxide
dismutase [Cu-Zn] P08294 Martin-Rojas T

et al., 2012 [13]
Superoxide dismutase

[Cu-Zn] P00441 Martin-Rojas T et al., 2015 [11]

Fatty acid-binding protein,
adipocyte P15090 Martin-Rojas T

et al., 2012 [13]
Superoxide dismutase
[Mn], mitochondrial P04179 Martin-Rojas T et al., 2015 [11]

Fibrinogen alpha chain P02671 Gil-Dones F et al.,
2012 [12]

SWI/SNF complex
subunit SMARCC1 Q92922 Alvarez-Llamas G et al., 2013 [10]

Fibrinogen beta chain P02675 Gil-Dones F et al.,
2012 [12] Tenascin-X P22105 Alvarez-Llamas G et al., 2013 [10]

Fibrinogen gamma chain P02679

Martin-Rojas T
et al., 2012 [13];

Gil-Dones F et al.,
2012 [12]

Thrombospondin-1 P07996 Alvarez-Llamas G et al., 2013 [10]

Fibronectin P02751 Alvarez-Llamas G
et al., 2013 [10]

Transforming growth
factor-beta-induced

protein ig-h3
Q15582 Martin-Rojas T et al., 2015 [11]

Ficolin-2 Q15485 Gil-Dones F et al.,
2012 [12] Transgelin Q01995 Martin-Rojas T et al., 2012 [13];

Martin-Rojas T et al., 2015 [11]

Follistatin-related protein 3 O95633 Alvarez-Llamas G
et al., 2013 [10] Transthyretin P02766 Martin-Rojas T et al., 2012 [13]

FRAS1-related extracellular
matrix protein 2 Q5SZK8 Alvarez-Llamas G

et al., 2013 [10]
Triosephosphate

isomerase P60174 Martin-Rojas T et al., 2015 [11]

Galectin-1 P09382 Martin-Rojas T
et al., 2015 [11] Tubulin beta chain P07437 Martin-Rojas T et al., 2015 [11]

Gelsolin P06396 Alvarez-Llamas G
et al., 2013 [10] Vimentin P08670 Martin-Rojas T et al., 2012 [13];

Martin-Rojas T et al., 2015 [11]

Glutathione peroxidase 3 P22352

Martin-Rojas T
et al., 2012 [13];
Martin-Rojas T
et al., 2015 [11]

Vitronectin P04004 Gil-Dones F et al., 2012 [12]

The ANNs evaluate the relationships among the protein sets or regions within the network,
providing a predictive score that quantifies the probability a functional relationship exists
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between the network regions evaluated. Each score is associated with a p-value that describes
the probability of the result being a true positive result. Three categories were used to group
the proteins analyzed according to the predicted relationship value (Table 2): strongly related
proteins (including the “Very high” group with a predicted ANN value ≥92% (p < 0.01),
the “High” group with a predicted ANN value <92–≥78% (p values between 0.01 and 0.05),
and the “Medium-high” group with a predicted ANN value <78–≥63% (p values between
0.05 and 0.15)); moderately related proteins (the “Medium” group with a predicted ANN
value <63–≥38 (p values between 0.15 and 0.25)); and proteins with a low or no relationship
(the “Low” group predicted ANN value <38% (p > 0.25)).

Table 2. Category division of ANN score, in decreasing order, according to probability of being a
true positive result.

ANN Category ANN Score Associated p-Value

Strong relationship
Very high >92 <0.01

High 78–92 0.01–0.05
Medium-High 63–78 0.05–0.15

Medium
relationship Medium 38–63 0.15–0.25

Low or no
relationship Low <38 >0.25

This classification defined those proteins predicted to have a:

• “strong relationship” with the processes under study, with very high, high or, medium-
high predicted relationships with any of the sub-processes used in the characterization,
and considered to be good candidates;

• “medium relationship” with the processes under study, with at least a medium pre-
dicted relationship with any of the sub-processes used in the characterization;

• “low or no relationship” with the processes under study and with a weak predicted
relationship with all the sub-processes used in the characterization.

2.4. Cell Culture and Differentiation

Human cardiac valvular interstitial cells (HAVICs: Innoprot, P10462) were used in this
study, cells isolated from heart valves, cryopreserved in primary cultures, and guaranteed
to further expand for 10 population doublings under the conditions indicated in the data
sheet. HAVICs were cultured in Fibroblast Medium-2 (FM-2: Innoprot), designed for
optimal growth of normal human cardiac fibroblasts invitro, and containing essential and
non-essential amino acids, vitamins, organic and inorganic compounds, hormones, growth
factors, trace minerals, and a low concentration of fetal bovine serum (FBS, 5%). For the
experiments, HAVICs were used at passage 5, and during the previous passage 4, the
medium was replaced by a special medium for fibroblasts (FIBm) that favors a quiescent
phenotype: Dulbecco’s Modified Eagle Medium (DMEM: Hyclone) supplemented with 2%
heat-inactivated FBS, 150 U/mL penicillin-streptomycin, 2 mM L-glutamine, 10 ng/mL
fibroblast growth factor (FGF-2), and 50 ng/mL insulin [22]. In the experiments, the cells
were cultured for up 14 days in two different media, FIBm and osteogenic medium, to
induce the osteogenic differentiation of the HAVICs (OSTm—FIBm supplemented with
50 µg/mL ascorbic acid, 10 mM β-glycerophosphate, and 100 nM dexamethasone) [23].

2.5. Alizarin Red Staining

The cells were washed with PBS, fixed with 4% paraformaldehyde for 15 min, and
then incubated for 10 min with alizarin red S (Sigma Aldrich, St. Louis, MO, USA) [24].
After washing with deionized water, calcium deposition was visualized under an Olympus
IX83 inverted microscope, capturing 49 images per well, and analyzing this with ScanˆR
software. These experiments were performed in triplicate.
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2.6. Patient Selection and Plasma Extraction

Peripheral blood samples were collected from control subjects (n = 18) and from
patients with severe AS (n = 18) who underwent follow-up at the Hospital 12 de Octubre
(Madrid, Spain) and/or Hospital Virgen de la Salud (Toledo, Spain) from November
2018 to December 2019. All patients had severe AS diagnosed with two-dimensional
echocardiography/doppler and were at least 50 years old. Control subjects were also
subjected to echocardiographic control to avoid the presence of valve disease. Samples
from patients with a severe morbidity (ischemic heart disease with ventricular dysfunction,
end-stage chronic kidney disease), bicuspid AV, a family or personal history of aortopathy,
rheumatic valve disease, and ≥moderate mitral valve disease were excluded from the study.
Importantly, subjects were selected to avoid significant differences between the groups in
terms of the main cardiovascular risk factors: gender, obesity, hypertension, dyslipidemia,
and diabetes. Clinical characteristics of both groups are shown in Table 3.Blood samples
(28 mL) were collected in tubes containing EDTA and centrifuged at 1125× g for 15 min,
immediately freezing the resulting supernatant at −80 ◦C until analysis.

Table 3. Clinical characteristics of the subjects in the study: M/F, male/female; AHT, arterial
hypertension; IHD, ischemic heart disease; BMI, body mass index.

Controls Severe AS p-Value

Age 67.76 ± 10.03 79.94 ± 7.21 0.000
Gender (M/F) 11/7 9/9 0.584

BMI 28.48 ± 4.62 26.92 ± 3.67 0.282
AHT (Yes,%) 9 (50%) 12 (67%) 0.406

Dyslipidemia (Yes, %) 5 (28%) 9 (50%) 0.265
Diabetes (Yes, %) 0 (0%) 0 (0%) 1.000
Smokers (Yes, %) 2 (11%) 0 (0%) 0.584

Pneumopathy (Yes, %) 0 (0%) 1 (5%) 0.791
Chronic IHD (Yes, %) 0 (0%) 0 (0%) 1.000

This study was carried out in accordance with the recommendations of the Helsinki
Declaration, and it was approved by the Ethics Committee at the participant hospitals
(approval reference numbers: 18/315 and 07/036). Signed informed consent was obtained
from all subjects prior to their inclusion on the study.

2.7. Western Blotting

HAVICs were trypsinized and homogenized in lysis buffer containing protease inhibitors
on day 7 or 14 of treatment [25]. The protein concentration of both the cell extracts and plasma
samples was determined by the Bradford–Lowry method (Bio-Rad protein assay) [26]. Equal
amounts of protein from the samples (10 µg for cell extracts and 25 µg for plasma) were
resolved by SDS–PAGE in a Bio-Rad Miniprotean II electrophoresis cell run at a constant
current of 25 mA/gel. After electrophoresis, the proteins were transferred to a nitrocellulose
membrane under a constant voltage of 20V for 30 min, and the membranes were stained with
Ponceau S to guarantee an equal amount of protein was loaded for each patient. Subsequently,
the membranes were blocked for 1 h with PBS-Tween 20 (PBS-T) containing 7.5% non-fat dry
milk and incubated overnight with the primary antibody in PBS-T with 5% non-fat dry milk.
The primary antibodies used were antisera against thrombospondin-1 (THBS, 1/100, Abcam
ab85762, Cambridge, UK), endoplasmin (GRP94, 1/100, Abcam ab3674, Cambridge, UK), and
α-smooth muscle actin (SMA, 1/100, Abcam ab7817, Cambridge, UK). After washing, the
membranes were incubated with a specific HRP-conjugated secondary antibody in PBS-T
containing 5% non-fat dry milk, and antibody binding was detected by enhanced chemilumi-
nescence (ECL: GE Healthcare), according to the manufacturers’ instructions. Densitometry
was performed with the ImageQuantTL software (GE Healthcare). We used Ponceau S stain
images to normalize Western blot data from cell cultures, a more consistent way of normalizing
data than using a single house-keeping protein [27].
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2.8. Statistics

Dichotomous variables are expressed as prevalence in number and percent, and
continuous variables, such as age, are expressed as mean ± s.d. The normality of the data
was assessed with the Kolmogorov–Smirnov test. Two-tailed Student t-tests were employed
to calculate the differences between the groups and a general linear model adjusted for age
was used to avoid the effect of age as confounder. All statistical analyses were performed
using SPSS 15.0 for Windows software (SPSS Inc., Chicago, IL, USA). Statistical significance
was accepted at p < 0.05.

3. Results
3.1. Molecular Motives of AS

After the bibliographic review of AS, eight pathophysiological processes or ‘motives’
were identified as being associated with this condition. These motives can be classified at two
levels depending on their involvement in the pathology: causative, motives that are directly
related to the onset or pathophysiology of the condition characterized; and symptomatic,
motives that are a consequence of the pathology. Lipoprotein accumulation, inflammation, ox-
idative stress, endothelial dysfunction, oxidative stress, and the renin–angiotensin–aldosterone
(RAA) system are all causatives motives in AS, whereashypertrophy and myocardial fibrosis
are symptomatic. Calcification is included at both levels, as a cause and manifestation of
the disease. The results of this search were thoroughly reviewed to identify protein/gene
candidates that might be condition effectors, i.e., proteins whose activity (or lack thereof) is
functionally associated witheach motive. A total of 168 proteins were defined as effectors of
particular processes in AS or to AS in general (Table S2).

3.2. Candidate Prioritization

The mechanistic ANN ranking enabled the list of 126 proteins to be classified based on
their predicted functional or mechanistic relationship. The ANN analysis indicated that, of
the 126 candidate proteins, 61 (48.41%) were predicted to have a strong relationship with at
least one process involved in degenerative AS or with degenerative AS in general (Table 4).
Of these, 20 proteins are degenerative AS effectors already described in the molecular
characterization of the disease, whereasthe remaining 41 proteins were not included in this
characterization. Moreover, 32 of the 61 proteins are associated with more than one of the
processes. The list of all proteins analyzed and the ANN score or relationship predicted
values to the entire disease are presented in Supplementary Table S3. Whether the proteins
are effectors of the disease is also displayed.

Table 4. Categorization of the ANN score according to the probability of being a true positive result,
showing the number of proteins with a strong relationship in each category. DAS, degenerative AS.

Very High High Medium-High

Effectors No Effectors Effectors No Effectors Effectors No Effectors TOTAL

DAS general
characterization - - 7 - 13 15 35

1. Calcification - - 4 1 1 4 10
2. Lipoprotein
accumulation - - - - 2 10 12

3. Inflammation - - 3 5 1 11 20
4. Oxidative stress - - 0 1 3 3 7
5. Endothelial
dysfunction - - 5 2 2 13 22

6. RAA system - - - - 1 4 5
7. Hypertrophy - - 1 1 - 8 10
8. Myocardial
fibrosis 1 - 3 1 1 4 10
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Moreover, there were 22 proteins strongly related to three or more of the processes
evaluated, including general AS characterization (Table 5). Among these, eight pro-
teins were not present in the molecular characterization: endoplasmin, decorin, alpha-2-
macroglobulin, serum albumin, transthyretin, clusterin, and Thbs1.

Table 5. Protein candidates that display a strong relationship with at least 3 degenerative AS motives,
arranged in decreasing order of the highest ANN score. Proteins that were not described in the
molecular characterization and are not considered effector proteins are in bold and highlighted.

Uniprot ID Gene Name Protein Name Motive Effector ANN Score Related Motive

P08123 COL1A2 Collagen alpha-2(I)
chain

Yes 92.52 Myocardial fibrosis
No 90.86 Inflammation

Yes 87.50 Endothelial
dysfunction

Yes 69.82 DAS General

P35625 TIMP3 Metalloproteinase
inhibitor 3

Yes 91.85 Endothelial
dysfunction

Yes 82.53 DAS General
No 69.20 Calcification
No 63.61 RAA system

P02461 COL3A1
Collagen

alpha-1(III) chain

Yes 91.69 Myocardial fibrosis

Yes 87.29 Endothelial
dysfunction

Yes 76.47 DAS General

P01033 TIMP1 Metalloproteinase
inhibitor 1

Yes 91.45 Endothelial
dysfunction

Yes 84.60 DAS General
No 68.80 Calcification

P05231 IL6 Interleukin-6

Yes 90.45 Myocardial fibrosis
Yes 88.05 Calcification
Yes 87.64 Inflammation
Yes 73.24 DAS General

P01042 KNG1 Kininogen-1

Yes 90.45 DAS General
Yes 87.34 Inflammation
No 70.10 RAA system
No 63.40 Calcification

P07339 CTSD Cathepsin D
Yes 87.00 DAS General

Yes 84.46 Endothelial
dysfunction

No 71.66 Hypertrophy

P21810 BGN Biglycan

Yes 86.97 Inflammation
No 84.26 Calcification
No 83.08 Myocardial fibrosis
Yes 80.74 DAS General

No 78.98 Endothelial
dysfunction

No 70.50 Lipoprotein
accumulation

P14625 HSP90B1 Endoplasmin

No 86.48 Inflammation

No 74.62 Endothelial
dysfunction

No 70.58 DAS General

No 65.44 Lipoprotein
accumulation
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Table 5. Cont.

Uniprot ID Gene Name Protein Name Motive Effector ANN Score Related Motive

P01019 AGT Angiotensinogen

Yes 84.81 DAS General
Yes 82.54 Myocardial fibrosis
Yes 78.60 Hypertrophy
Yes 65.54 RAA system

P08253 MMP2
72 kDa type IV

collagenase

Yes 84.40 Calcification

Yes 75.40 Endothelial
dysfunction

Yes 74.10 Myocardial fibrosis
Yes 73.98 DAS General
No 71.88 Hypertrophy
No 64.52 Oxidative stress

P02766 TTR Transthyretin

No 79.18 Oxidative stress

No 74.11 Inflammation
No 71.21 DAS General

P00441 SOD1
Superoxide

dismutase [Cu-Zn]

No 78.56 Inflammation
Yes 74.41 DAS General
Yes 69.12 Oxidative stress

P10909 CLU Clusterin

No 76.50 Inflammation

No 67.68 Endothelial
dysfunction

No 64.01 Lipoprotein
accumulation

P07996 THBS1 Thrombospondin-1
No 76.17 Endothelial

dysfunction

No 71.70 Myocardial
fibrosis

No 63.52 RAA system

P02768 ALB Serum albumin

No 76.03 Inflammation

No 75.65 Endothelial
dysfunction

No 68.55 Hypertrophy

No 68.34 Lipoprotein
accumulation

Q00653 NFKB2
Nuclear factor

NF-kappa-B p100
subunit

Yes 75.62 Inflammation
Yes 74.83 Calcification
Yes 72.15 DAS General

P04114 APOB Apolipoprotein
B-100

No 75.04 Endothelial
dysfunction

No 74.02 Inflammation
Yes 71.61 DAS General

Yes 64.60 Lipoprotein
accumulation

P02647 APOA1 Apolipoprotein A-I
Yes 74.73 DAS General

No 72.41 Endothelial
dysfunction

Yes 64.68 Lipoprotein
accumulation
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Table 5. Cont.

Uniprot ID Gene Name Protein Name Motive Effector ANN Score Related Motive

P07585 DCN Decorin

No 74.42 Calcification

No 73.11 Endothelial
dysfunction

No 71.71 Hypertrophy

No 68.53 Myocardial
fibrosis

Q92743 HTRA1 Serine protease
HTRA1

No 72.82 Myocardial
fibrosis

No 72.73 Endothelial
dysfunction

No 70.23 DAS General

P01023 A2M Alpha-2-
macroglobulin

No 72.55 Oxidative stress

No 70.52 Myocardial
fibrosis

No 68.56 Inflammation

No 68.30 Endothelial
dysfunction

3.3. Confirmation of the Prioritized Candidates in a Cell Model and Plasma

Protein extracts from HAVICs were analyzed at 7 and 14 days of treatment, when higher
levels of alizarin red and α-SMA were evident in the treated cells, confirming their osteoblastic
differentiation (Figure 2a,b). There was also more total Thbs1 (day 7 p-value= 0.002; day 14
p-value = 0.045) and endoplasmin (day 7 p-value = 0.014; day 14 p-value = 0.038) in these
HAVICs maintained in OSTm (Figure 2c,d). We found two different bands in the Western
blot of Thbs1, one higher than 250 KDa (day 7, FIB medium = 0.681 ± 0.088, osteogenic
medium = 1.268 ± 0.192, p-value = 0.009; and day 14, FIB medium = 0.862 ± 0.048, os-
teogenic medium = 2.527 ± 0.241, p-value = 0.005) and one at 200 KDa (day 7, FIB medium
= 3.451 ± 0.458, osteogenic medium = 6.828 ± 0.968, p-value = 0.005; and day 14, FIB
medium = 5.679 ± 0.467, osteogenic medium = 7.268 ± 1.708, p-value = 0.195), whichwere
also analyzed separately.

The alterations to Thbs1 and endoplasmin were confirmed in Western blots of plasma
from control subjects and severe AS patients. Consequently, we found lower levels of total
Thbs1 (p-value = 0.007; age-adjusted p-value = 0.017) and endoplasmin (p-value = 0.024;
age-adjusted p-value = 0.021) in the AS patients in both non-adjusted and age-adjusted
model (Figure 3).
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4. Discussion

Currently, there area large amount of data generated by high-throughput techniques
such asproteomics, such that the interpretation and analysis of these data is becoming a
complicated task. To overcome this challenge, systems biology approaches are essential, as
they bring together all this information along with newly generated data. Systems biology
uses a network-based approach to model complex biological systems and processes, em-
ploying mathematical models and computational approaches. These strategies allow new
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properties or mechanisms involved in a disease to be discovered that were not previously
evident with traditional reductionist approaches [28].

In this work, systems biology approaches were used to evaluate and prioritize potential
AS candidate biomarkers based on their association with the disease and their mechanistic
implications. This ANN strategy provides a specific predictive value to the candidate
markers identified, giving an idea of the probability that a relationship exists between each
differentially expressed protein and the processes studied. This value is based on validating
the predictive capacity of these models through the information available in the databases.

Our initial general characterization of AS identified six causative (calcification, lipopro-
tein accumulation, inflammation, oxidative stress, endothelial dysfunction, and RAA sys-
tem) and two manifestation motives (hypertrophy and myocardial fibrosis). During AV
degeneration, the causative motives are tightly related. In the initial phase, endothelial
dysfunction occurs due to classic cardiovascular risk factors, such as advanced age, hyper-
tension, smoking, diabetes mellitus, and the presence of high concentrations of cholesterol
in the blood [29]. As a consequence, the permeability of the area increases, allowing the
passage of molecules that leads to lipoprotein accumulation and inflammatory cytokine
release. These lipids and cytokines further contribute to endothelial damage, amplifying the
inflammatory process. In addition, this chronic inflammation causes oxidative stress, which,
in turn, drives gene expression involved in the inflammatory process, thereby establishing
a noxious vicious circle whereby inflammation causes oxidative stress and vice versa [30].
This activation of the immune system will provoke the differentiation of valvular interstitial
cells from fibroblast to myofibroblasts, which will, in turn, develop angiogenic activity
and produce a matrix of metalloproteins. The pro-inflammatory cytokines will induce
the differentiation of a subgroup of myofibroblasts to osteoblasts, which leads to severe
calcification and valve dysfunction [3,31]. Likewise, the RAA system plays an important
role in the pathogenesis of AS. Its activation enhances collagen I and III mRNA expression,
leading to myocardial fibrosis [32], and it is associated with left ventricle pressure over-
load. The combination of valve obstruction and elevated blood pressure imposes a high
hemodynamic load on the left ventricle that leads to both left ventricle hypertrophy and
myocardial fibrosis, two motives manifested in the general characterization of AS [33–35].

After the molecular characterization, and according to the mechanistic ANN ranking
analysis, 22 proteins were found to be strongly related tothree or more of the processes evalu-
ated. Of those 22 proteins, we highlight 8 of these that were not defined as effectors during
the molecular characterization: decorin, alpha-2-macroglobulin, serum albumin, transthyretin,
clusterin, endoplasmin and Thbs1. This study focused specifically on endoplasmin and Thbs1,
as they are located in the ER. The ER is a major site for the regulation of calcium and lipid
homeostasis, and it is essential for protein synthesis, folding, and transportation. When the
influx of unfolded proteins to the ER exceeds its capacity to fold them correctly, unfolded and
misfolded proteins accumulate in the ER lumen. This build-up creates a state defined as ER
stress, and it activates a signaling pathway known as the unfolded protein response (UPR).
In the context of AS, several studies indicate that oxidized low-density lipoprotein (oxLDL)
causes ER stress in valvular interstitial cells by increasing cytosolic calcium levels [36,37]. Fur-
thermore, oxLDL induces osteoblastic differentiation and promotes inflammatory responses
via different ER stress-mediated pathways [38,39].

Endoplasmin, also known as glucose-regulated protein 94 (GRP94), HSP90b1, and
gp96, is the most abundant glycoprotein in the ER and one of the major chaperones.
Activation of the UPR results in the expression of genes encoding endoplasmin and other
chaperones that mitigate the effects of increased load of unfolded proteins [40,41]. As all
three branches of the UPR, the protein kinase-like ER kinase (PERK), inositol-requiring
transmembrane kinase and endonuclease-1α (IRE1α), and activating transcription factor
(ATF), are activated during bone formation to regulate expression of osteogenic genes, it
is crucial to elucidate the role of endoplasmin in valve calcification [42–46]. Importantly,
elevated levels of endoplasmin have been found in calcified vascular smooth muscle
cells [47] and in the calcified aorta [48,49], consistent with our results.
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Another protective mechanism in the calcified valve may be the increase in the levels
of Thbs1, a multimeric Ca2+-binding glycoprotein that resides within the ER and that can be
secreted by cells depending on the Ca2+ levels or the cell type examined [50]. As it matures
in the ER, this protein also forms a complex with endoplasmin and other chaperones,
such as PDI, BiP, and ERp72 [51], and it has the ability to mediate an ATF6α-dependent
ER-stress response [52]. It has been suggested that Thbs1 is induced in the pressure-
overloaded myocardium given that Thbs1−/− mice have greater cardiac hypertrophy
than wild-type mice when submitted to pressure overload stimulation [53,54]. Our results
are consistent with that phenomenon, and it seems that Thbs1 may act as a protective signal
that prevents cardiac remodeling by altering fibroblast function and matrix metabolism.
The appearance of two different protein isoforms of Thbs1 should also be further studied. It
is known that this protein has a complex structure that includes a heparin-binding domain
along with a procollagen homology domain at the amino terminus, and type I, II, and
III repeats at the carboxyl-terminal end [55,56]. Thbs1 is implicated in several activities,
such as homeostasis, apoptosis, or cell adhesion, as its domains can bind to receptors
and specific proteins anchored in or secreted into the extracellular matrix [57–60]. As
such, its synthesis and degradation are carefully regulated. Once secreted, the exposure of
Thbs1 to specific microenvironmental milieus alters its structure and activity in a tissue
and pathophysiological specific manner [61]. Several studies have found Thbs1 species of
different molecular weights, and it has been suggested that this protein is rapidly cleared
from circulation once secreted [62,63]. The influence of Thbs1 on cardiovascular diseases is
complex and multifactorial, since its activity depends on the vessel type, the stage of the
lesions, and associations with obesity, diabetes, or other metabolic diseases [64,65]. Thus,
this protein should undoubtedly be further studied in the context of AS.

Confirmation of these proteins in both the cellular model and human plasma sample
has different targets. Firstly, we used protein extracts from HAVICs submitted to osteogenic
treatment. Although these proteins have previously been described in a small number of
human samples, AS is a multifactorial disease and so it is difficult to discriminate if the
alterations are due to the cardiocirculatory alterations caused by AV dysfunction or due
to calcification itself. Moreover, AS patients are most often elderly and present different
co-morbidities. These are the main limitations of this work: we have a small cohort and
with different co-morbidities (although all related to cardiovascular disease). We have used
a cohort of controls matched for risk factors, and we have excluded subjects with serious
co-morbidities from the study, but we are aware that this may not be enough. All these
drawbacks are partially avoided by the use of the cell model; this is not as complex a system
as the organism, and thus the information obtained is not so complete. For this reason, in this
work, we combined the insilico study and the cell model with an analysis of a larger cohort of
patients to confirm the results. We searched for these proteins directly in plasma from healthy
individuals and patients with severe AS. This step is important as it provides information
about the usefulness of these proteins as diagnostic markers and may help translate the results
to the clinical field, particularly as blood samples are easy to obtain and not too invasive
compared to biopsies and surgical procedures. In the future, it would be interesting to quantify
these proteins in a larger cohort, which will ideally allow the stratification of the subjects by
age and co-morbidities. This will be an important step to improve precision medicine, as it
will enable different thresholds to be established according to the specific characteristics of
each patient, facilitating their management by clinicians.

5. Conclusions

In this work, we set out to demonstrate the importance of using largescale bioinformat-
ics tools that allow us to consider all the data obtained through high-throughput analytical
techniques to select the most significant results. Consequently, we will be able to select
more specific targets and design future studies in a much more efficient way, better direct
financial and social resources, and obtain higher quality results with a better chance of
making advances and breakthroughs in our understanding and treatment of AS.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12040642/s1, Figure S1: Ponceau S stain image of the ni-
trocellulose membrane used for Western blots from cell cultures (a) and analysis of Thsb-1 (b) and
endoplasmin (c) in plasma samples; Table S1: Functional analysis of the 126 proteins of interest se-
lected from our previous studies. The proteins are represented in clusters according to their function.
The enrichment score, number of terms and proteins included in each cluster are shown; Table S2:
Effectors defined during the molecular characterization of the “Motives”: (1) calcification; (2) lipopro-
tein accumulation; (3) inflammation; (4) oxidative stress; (5) endothelial dysfunction; (6) RAA system;
(7) hypertrophy; (8) myocardial fibrosis; Table S3: ANN score of each protein for each specific motive.
The column effector indicates whether the protein was described in the molecular characterization,
specifically in that motive [2,11,33,66–103].
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