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A B S T R A C T   

Background: Predicting severe respiratory failure due to COVID-19 can help triage patients to higher levels of 
care, resource allocation and decrease morbidity and mortality. The need for this research derives from the 
increasing demand for innovative technologies to overcome complex data analysis and decision-making tasks in 
critical care units. Hence the aim of our paper is to present a new algorithm for selecting the best features from 
the dataset and developing Machine Learning(ML) based models to predict the intubation risk of hospitalized 
COVID-19 patients. 
Methods: In this retrospective single-center study, the data of 1225 COVID-19 patients from February 9, 2020, to 
July 20, 2021, were analyzed by several ML algorithms which included, Decision Tree(DT), Support Vector 
Machine (SVM), Multilayer perceptron (MLP), and K-Nearest Neighbors(K-NN). First, the most important pre
dictors were identified using the Horse herd Optimization Algorithm (HOA). Then, by comparing the ML algo
rithms’ performance using some evaluation criteria, the best performing one was identified. 
Results: Predictive models were trained using 12 validated features. Also, it found that proposed DT-based 
predictive model enables a reasonable level of accuracy (=93%) in predicting the risk of intubation among 
hospitalized COVID-19 patients. 
Conclusions: The experimental results demonstrate the effectiveness of the proposed meta-heuristic feature se
lection technique in combining with DT model in predicting intubation risk for hospitalized patients with COVID- 
19. The proposed model have the potential to inform frontline clinicians with quantitative and non-invasive tool 
to assess illness severity and to identify high risk patients.   

1. Background 

The Coronavirus disease 2019 (COVID-19) also known as severe 
acute respiratory syndrome coronavirus 2 (SARS-COV-2) has affected 
millions of people worldwide [1,2]. Approximately 15%–20% of 
symptomatic patient’s onrush to serious complications such as severe 
pneumonia, Acute Respiratory Distress Syndrome (ARDS), cytokine 
storm syndrome, and Multi-system Organ Dysfunction (MOF) requiring 
Intensive Care Unit (ICU) hospitalization [3,4]. Many hospital systems 
face extreme challenges with the extraordinary number of critical cases, 
causing many ICU departments to reach or surpass capacity [5,6]. In 
response to this serious infection, the design and implementation of 

predictive models will be essential to the optimal use of limited ICU 
resources and support for clinical decisions [7,8]. Physicians have re
ported problems in predicting the progression of COVID-19 in hospi
talized patients, along with problems in diagnosing patients who are 
prone to rapid deterioration. This requirement is more accentuated, 
especially with regard to the unpredictability of the disease behavior 
and courses [9]. 

The COVID-19 patients who deteriorate and need critical support 
with their breathing, require mechanical ventilator [10]. Therefore 
there is an immediate demand for classifying cases to use respiratory 
intubation services [11]. Within a short span of the COVID-19 pandemic, 
many researchers have extensively interested in the introduction of new 
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and non-invasive digital technologies such as Artificial Intelligence (AI) 
that can be effective in accurate and timely detection of patient at risk 
for clinical deterioration and severe hypoxia (low SPO2) [12,13]. It is 
proven that these methods may facilitate the identification of high-risk 
patients and adopt the most effective supportive oxygen therapy 
[13–15]. Machine Learning (ML) as a subfield of AI [16] is an essential 
tool for clinicians to identify patients at high risk for severe disease and 
to prioritize their hospitalization and resource utilization. Therefore, it 
can help reduce patient mortality and reduce the burden of health care 
resources(7, 17). In the prior studies, a large number of ML-based 
models were developed for predicting the risk of COVID-19 severity 

and patient illness deteriorating [18,19], ICU admission [17,19–22], 
mechanical intubation [23] and deaths [17,20,24–29]. 

In this paper, we retrospectively analyzed the data of COVID-19 
hospitalized patients from Imam Khomeini hospital, Ilam, Iran. At 
first, multiple meta-heuristic feature selection methods are compared 
based on the K-NN classification algorithm to select the best intubation 
predictors in patients with COVID-19. Then we construct and compare 
several ML-based prediction models for predicting the COVID-19 pa
tients’ severity requiring respiratory intubation based on selected vari
ables. More precisely, the study questions posed for the experiment are: 
what are the most relevant predictors for predicting the COVID-19 

Fig. 1. Flow chart describing patient selection.  

Fig. 2. An overview of proposed methodology.  
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intubationa and 2- which prediction model presents better performance. 

2. Material and methods 

2.1. Data set description 

In this study, a COVID-19 hospital-based registry data base from 
Imam Khomeini hospital, Ilam city, West of Iran, was retrospectively 
reviewed from February 9, 2020, to December 20, 2020. During this 
period, a total of 6854 suspected cases with COVID-19 had been referred 
to this center, of whom 1853 cases were introduced as positive COVID- 
19, 2472 as negative, and 2529 as unspecified. After applying exclusion 
criteria, for example negative RT-PCR COVID-19 test, unknown dispo
sitions, discharged or death from emergency department, missing data 
>70%, noisy and abnormal values and out of defined time span, the 
number of 1225 case records were remained and their clinical data are 
recorded in the registry database based on 54 primary features (Fig. 1). 
These features are classified in six classes including patient’s de
mographic (five features), clinical features (14 features), history of 
personal diseases (seven features), laboratory results (26 features), 
remedies (one feature) and an output variable (0: non-intubation and 1: 
intubation). 

2.2. Study roadmap 

The proposed method in this paper has three main phases. In the first 
phase, the raw data of patients with COVID-19 are preprocessed so that 
they can be used in the data mining process. In the second phase, which 
is our main goal in this study, effective clinical factors for predicting 
mortality in patients with COVID-19 are identified. In this way, with the 
help of metaheuristic optimization algorithms, the most important fea
tures that achieve higher predictive accuracy are extracted. After iden
tifying the most important risk factors for intubation associated with 
COVID-19, ML algorithms are applied. Moreover, the performance of 
ML algorithms for prediction of intubation are evaluated and ranked 
based on statistical methods. The most important part of the proposed 
model is the feature selection, which works based on the rapper method. 
Details of the rapper-based model are shown in Fig. 2. 

2.3. Dataset preprocessing 

The use of COVID-19 raw data sets in the data mining process causes 
the efficiency of the algorithms to be low and the experimental results to 
be of poor quality. Useful information that can be extracted from the 
data directly affects our model’s ability to learn. Therefore, it is very 
important to pre-process our data before inserting it into the model. Pre- 
processing is imperative to address irrelevant, redundant and unreliable 
data and to resolve inconsistencies [30]. In this regard, several pre
processing methods are used to prepare the data in order to use them for 
the data mining process. 

Removing records with high missing rate improves the data mining 
accuracy and classification precision. It enhances learning efficiency, 
increasing predictive performance and reducing complexity of learning 
results [31,32]. In this paper, records with more than 70% of missing 
data were excluded from analysis. Finally, for the remaining records 
missing cells were imputed by mean and mode values substitution for 
continuous and discrete variables, respectively. The dataset used in this 
research are not balanced in terms of the number of records in each data 
class. This problem, disrupts the performance of ML algorithms. Hence, 
various techniques are introduced to deal with unbalanced datasets. In 
order to balance the data, we use the Synthetic Minority Over-Sampling 
Technique (SMOTE). SMOTE produces synthetic samples of each mi
nority class based on its nearest neighbors to increase the performance of 
the generalizer classifier on minority classes [33,34]. 

To manage noisy data, the normal range of each variable is defined 
using the opinion of two infectious disease specialist, two virologist and 

hematologist. Then, we specified all the values that were outside the 
defined range and completed them by referring to the patient records or 
responsible doctor. Finally, normalization is used to reduce the variety 
of baseline between variables [35]. In this paper, MinMaxNormalization 
technique is used to scale dataset in (0, 1) interval as follow [33]. 

x=
x − Xmin

Xmax − Xmin  

Where, Xmin and Xmax are maximum and minimum values of each col
umn, respectively. This step is performed on KNIME analytics Platform. 

2.4. Feature selection 

Feature selection methods are one of the most important issues in ML 
and statistical pattern recognition [36,37] and divided into three main 
categories including filtering, wrapper and hybrid methods [38–40]. 
Feature selection in a high-dimensional data set is one of the most 
important steps in ML, which eliminates redundancy and irrelevant 
features in the dataset. So far, various classical methods have been 
proposed for the problem of feature selection, but with the magnifica
tion of real-world problems and the importance of the speed of access to 
the answer, the quality of their answer is not appropriate. The use of 
intelligent optimization methods has provided an effective help in 
solving these problems. Therefore, it can be said that one of the most 
effective and constructive problem solving algorithms is the selection of 
features and their dependencies, the use of meta-heuristic optimization 
methods and evolutionary algorithms [41,42]. Metaheuristic algorithms 
are a type of wrapper-based feature selection model in which ML algo
rithms are used to select optimal features. In other words, the criterion 
for selecting a feature is the efficiency of the classification algorithm. 

In this paper, several well-known meta-heuristic algorithms 
including Horse herd Optimization Algorithm (HOA), Particle Swarm 
Optimization (PSO) [41], Genetic Algorithm (GA) [42], Grey Wolf 
Optimization (GWO) [42], Differential Evolution (DE) [43] and Harris 
Hawks Optimization(HHO) [44] have been used for feature selection. 
Feature selection can be considered as solution vectors whose length is 
equal to the total number of features and the values of its components 
are “0” or “1”. A value of “1” indicates that the feature is selected and “0” 
is the non-selection of the feature. A “d” dimensional search space is 
limited to only these values in each dimension. Given that there are 
many modes of these solution vectors and as the number of features 
increase, the total number of solution modes increases exponentially, so 
the feature selection problem is an NP-Hard problem, and meta-heuristic 
algorithms are suitable for solving it. Besides the K-Nearest Neighbors 
(KNN) algorithm is used to calculate the fitness value of each of these 
algorithms in selecting the least number of features that have higher 
classification accuracy. The reason for using this algorithm is its 
simplicity of implementation and high classification accuracy. KNN can 
compete with the most accurate classification models and it is one of the 
most widely used machine learning algorithms, which is the best option 
for classification for most real-world problems. This algorithm is the best 
choice for problems where accuracy is important. Also, based on feature 
selection studies, the KNN algorithm is the best algorithm that can be 
used to calculate the fitness value [45–47]. 

The performance of the fitness value of meta-heuristic algorithms to 
find the features that have the highest classification accuracy with the 
least number of selected features is calculated by the following formula 
(Equation (1)). 

Fitness ​ =αγR(D) + β
|R|
|C|

(1)  

Where γR(D) is the classification error rate of KNN classifier. R is the 
number of selected features and C is the total number of features in the 
dataset, α and β are two parameters corresponding to the importance of 
classification quality and subset length. In this research, we set α = 0.99 
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and β = 0.01. 
In this phase, all experiments were performed using MATLAB 2019 

software. To evaluate the performance of meta-heuristic algorithms in 
identifying the most effective factors, three performance evaluation 
metrics are calculated: mean fitness value, classification accuracy using 
KNN, and the number of selected features. 

2.5. Prediction model construction 

As we can see in Fig. 3, the last step of the proposed method is to 
classify the data by the ML algorithms including K-NN, Multi-Layer 
Perceptron(MLP), Support Vector Machine(SVM) and Decision Tree 
(DT). In this step, ML algorithms are applied on dataset before and after 
running feature selection step. This step is performed on KNIME ana
lytics Platform. The performance of classification algorithms was 
measured in terms of accuracy, precision, recall, specificity and F- 

measure. The calculation formula for each of these criteria is shown in 
Table 1. Also, in order to evaluate the performance of each classifier 10- 
fold Cross-Validation is used in which the data set was divided into 10 
independent subsets and each subset was considered as test data and 
other data as training data. In addition, Friedman statistical technique 
was used to compare algorithms more precisely and select an algorithm 
with the highest efficiency. This test assigns a rank to each algorithm 
and the best algorithm has a lower rating. Hypothesis zero states that all 
algorithms are the same. While rejecting the null hypothesis shows that 
the compared algorithms are significantly different. In this paper, we set 
the significance level to α = 0.05. 

Fig. 3 shows the schematic workflow of this step which is performed 
on KNIME analytics Platform. 

3. Results 

A total of 6854 suspected cases with COVID-19 had been referred to 
Imam Khomeini hospital which after applying the exclusion criteria and 
removing records with more than 70% missing data, records of 1225 
positive RT-PCR patients remained. In order to balance the data, we use 
SMOTE method is used. Before data balancing, “intubation” class con
tained only 176 records (13%), while after balancing the dataset, 
number of records in this class raised to 748. Then, using Min
MaxNormalization technique all data normalized between 0 and 1. All 
ML algorithms were implemented on original and preprocessed dataset 
and the achieved results are shown in Table 2. Since, it is difficult to 
compare performance of ML algorithms based on five different evalua
tion metrics, the Friedman statistical test is used to compare and rank 
ML algorithms on the basis on these evaluation criteria. The results of 

Fig. 3. KNIME workflow of classification methods.  

Table 1 
Definition of performance measures.  

Performance Measures Definitions 

Precision TP/(TP + FP) 
Specificity/true negative rate (TNR) TN/(TN + FP) 
Sensitivity/true positive rate (TPR) or 

Recall 
TP/(TP + FN) 

Accuracy (TP + TN)/(TP + TN + FP + FN) 
F-measure (2 × Precision × Recall)/(Precision +

Recall) 

*True Positive (TP), True Negative (TN), False Positive (FP), False Negative 
(FN). 

Table 2 
Performance of ML algorithms before preprocessing and after preprocessing.  

ML algorithm Accuracy Precision Recall Specificity F-Measure F.a.r p-value = 0.00544 F.a.r p-value = 0.00041 

b.p a.p b.p a.p b.p a.p b.p a.p b.p a.p b.p a.p 

Decision tree 0.861 0.858 0.564 0.941 0.534 0.791 0.902 0.961 0.547 0.863 7.600 4.200 
SVM 0.457 0.821 0.287 0.743 0.412 0.792 0.375 0.921 0.336 0.767 31.800 6.600 
MLP 0.856 0.896 0.511 0.905 0.566 0.839 0.893 0.947 0.535 0.858 8.400 4.200 
KNN 0.826 0.971 0.462 0.942 0.485 0.903 0.912 0.982 0.471 0.922 17.200 1.400 

*b.p: before preprocessing, a.p: after preprocessing, F.a. r: Friedman aligned ranks. 
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Fig. 4. ROC curve for ML algorithms.  
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Friedman test with a significance level of 0.05 are also shown in Table 2. 
The achieved p-values indicate that there is a significant difference in 
performance of ML algorithms. 

According to Table 2, the DT with rank 7.6 generally performed 
better than other algorithms for original data set. The results shown in 
Table 2 revealed that the performance of ML algorithms in prediction of 
the need to intubation has improved significantly after preprocessing. 
According to Table 2, KNN with mean rank of 1.4 had the best perfor
mance for preprocessed dataset. Additionally, ROC curves are plotted 
for all ML algorithms using preprocessed dataset. As shown in Fig. 4, 
KNN is the best model because the area under the ROC curve is close to 
1. 

Feature selection step is done by using binary version of well-known 
meta-heuristic algorithms including HOA, PSO, GA, GWO, DE and HHO. 
Due to the fact that meta-heuristic algorithms are random in nature and 
the solutions may be slightly different in each independent execution, so 
each algorithm is executed 20 times and finally, the average of the re
sults are collected after 20 independent executions. Furthermore, in all 
algorithms, the population size and the maximum number of iterations 
are considered 50 and 100, respectively. The mean fitness value of each 
algorithm, the accuracy of the K-NN classifier based on the selected 
features, and the number of selected features are shown in Table 3. 

Numerical results show that the HOA algorithm is superior to other 
algorithms in terms of all three criteria. We are looking for an algorithm 
that selects the least number of features and at the same time, can 
achieve higher classification accuracy. The HOA algorithm selects 12 of 

the features as most effective risk factors for prediction of the need for 
intubation, including high age, high weight, dry cough, fever, dyspnea, 
loss of smell, cardiovascular diseases, hypertension, C-reactive protein, 
ALT/ASP, oxygen saturation (SPO2), and leukocytosis. The convergence 
diagram of meta-heuristic algorithms is also shown in Fig. 5. Among 
meta-heuristic algorithms, the algorithm with the lowest fitness value 
has higher performance than other algorithms. The results show that the 
efficiency of HOA algorithm with fitness of 0.083 is higher than other 
algorithms in finding the least number of features with the highest 
classification accuracy. 

After identifying the most important factors by the HOA algorithm, 
ML algorithms were used to predict the need of intubation. The obtained 
results from the implementation of these algorithms are presented in 
Table 4. 

According to Table 4, DT with a rank of 1.2 is the best classification 
algorithm for predicting the need of patients with COVID-19 to intu
bation. The SVM algorithm with a mean rank of 4 is weaker than other 
algorithms. By comparing the best models in Tables 2 and 4, it is 
concluded that although the accuracy, precision and specificity are 
reduced but recall and F-measure are improved, after feature selection. 

4. Discussion 

Given the wide range of clinical manifestations of COVID 19, it is 
important to develop models for estimating the likelihood of intubation 
using ML techniques(7). In response to this life-threatening infection, 
the design and implementation of Clinical Decision Support Systems 
(CDSS) will be critical to the optimal use of hospital limited resources 
and support for clinical decisions. CDSS equipped ML can assist clinical 
decisions by informing caregivers and recommending interventions 
based on objective and generalizable empirical data [7,48,49]. 

In this article, we analyzed the data from a hospital registry database 
to develop and evaluate models capable of predicting the need for res
piratory intubation in hospitalized COVID-19 patients according to 
baseline clinical features. First, the efficiency of six feature selection 
methods was compared to identify the best predictors. The results show 
that the efficiency of HOA algorithm is higher than others in finding the 
least number of features with the highest classification accuracy. 

This study then adopted the most reliable and clinically relevant 
predictors related to intubation by using HOA method. Hence we 
identified 12 highly correlated variables with output class. Several 
studies selected some clinically important predictors for COVID-19 pa
tient deterioration and progression of disease using the feature selection 
techniques. Selected features are used as input for the development of 
ML-based predictive models for the severity and intubation risk pre
diction in hospitalized COVID-19 patients. For example, Olmedo (2021) 
designed an intelligent CDSS based on some ML algorithms to predict 
future intubation among hospitalized patients with COVID-19. The four 
most relevant features for model prediction were Lactate Dehydrogenase 
(LDH) activity, CRP levels, neutrophil counts, and urea levels [50]. The 
most important variables in the Aljouie (2021) study for intubation 
prediction were age, BMI, LOS, oxygen saturation, D-dimer, and car
diovascular diseases [51]. Varun Arvind’s(2021) results also showed 
that the laboratory variables of CRP, D-dimer, ALT, ASP, and leuko/
lymphocyte counts have a higher capability in predicting the intubation 
risk among hospitalized COVID-19 patients(23). Burdicka(2020) pre
dicts the need for ventilation in COVID-19 by using some selected 

Table 3 
Comparison of algorithms in terms of different criteria in 20 runs.  

Measure Algorithms 

GA PSO DE GWO HHO HOA 

Mean fitness value 0.101 0.095 0.096 0.098 0.101 0.083 
Accuracy 0.891 0.903 0.904 0.900 0.892 0.924 
No. selected features 17 21 20 24 19 12  

Fig. 5. Convergence comparison of meta-heuristic algorithms.  

Table 4 
Performance evaluation results of classification algorithms.  

ML algorithm Accuracy Precision Recall Specificity F-Measure Friedman aligned rank p-value = 0.00013 

Decision tree 0.938 0.931 0.927 0.934 0.933 1.200 
SVM 0.754 0.643 0.692 0.832 0.667 4.000 
MLP 0.896 0.905 0.872 0.907 0.878 2.600 
KNN 0.924 0.897 0.943 0.892 0.922 2.200  
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variables such as age, BMI, fever&chill, CRP, BUN, SPO2, lung lesion, 
and underline diseases [52]. In the present study, we used HOA 
meta-heuristic optimization technique to determine the weight of each 
predictor. Accordingly, the features of high age, high weight, dry cough, 
fever, dyspnea, loss of smell, cardiovascular diseases, hypertension, 
C-reactive protein, ALT/ASP, oxygen saturation (SPO2), and leukocy
tosis were the best predictive features. 

ML can be applied to forecast future risk of mechanical intubation 
and may facilitate identification of high-risk patients to assist in clinical 
care [23]. Bolourani showed ML capable of accurate discrimination 
between COVID-19 patients at high risk versus low risk of requiring 
ventilation within 24 h [53]. The model predicted the need for me
chanical ventilation using only routinely available labs and vital sign 
data. 

It is proven that ML can be an effective tool in dealing with COVID-19 
pandemic. Therefore we trained four well-known classification algo
rithms including DT, SVM, MLP, and RF classifiers according to the top 
12 related parameters affecting the risk of intubation that derived from 
HOA feature selection. So far, several studies have been evaluating the 
application of ML techniques in predicting the COVID-19 poor out
comes. Olmedo (2021) designed an intelligent CDSS based on some ML 
algorithms to predict future intubation among hospitalized patients with 
COVID-19. Finally, the best performance was yielded by DT algorithm 
with AUC-ROC of 97%, accuracy of 94%, F-score of 77%, sensitivity of 
93% and specificity of 95% [50]. Aljouie (2021) in their study, assessed 
the performance of four common ML algorithms such SVM, RF, Linear 
Regression (LR), and DT to model COVID-19 outcome prediction. Their 
results showed that the model developed using DT with 0.81 of AUC 
introduced as the best performing model [54]. Burdicka(2020) predict 
the need for respiratory ventilation in COVID-19 by using the DT clas
sifier with sensitivity of 90%, specificity of 58%, and AUC of 86% [55]. 

The result of other studies confirm the better performance of DT than 
other similar algorithms in predicting the intubation of patients with 
COVID-19 (61,49,29,24,25). In this research, different data mining al
gorithms have been used to classify the data, which the DT algorithm has 
a higher efficiency than other algorithms. Accordingly in the current 
study, the results showed that the DT algorithm with precision of 0.931, 
recall of 0.927, specificity of 0.934, F-mesasure of 0.933 and acuuracy of 
0.938 has the best capability for early prediction of the risk of intubation 
in COVID-19 hospitalized patients. Based on the DT algorithm some 
clinical rules have been extracted, we have brought the two most 
important of them with the highest samples classified. 

Rule 1: IF (oxygen saturation (SPO2) ≤96% && pleural fluid = Yes, 
Activated partial thromboplastin time ≤ 31) THEN the Intubation =
True. This rule can be interpreted as overall among the 64 research 
samples who had more than 96% of oxygen saturation (SPO2), the 47 
samples had the intubation process and the variable as the root node in 
the decision tree was considered as the most important factor for 
determining the endotracheal intubation risk among hospitalized 
COVID-19 patients. 

Rule 2: IF (oxygen saturation (SPO2) >96% && dry cough = Yes && 
C-reactive protein <8.8 Mg/L && loss of smell = No) THEN the endo
tracheal intubation risk = negative. In this study, 221 samples had this 
rule template and among them, 187 samples have been classified 
correctly through this rule template as negative or low risk of endotra
cheal intubation. Generally, this rule with the most classified samples 
has been recognized as the most important decision rule in this research. 
Oxygen saturation as the most important node in our model was one the 
best predictor for intubation which in other studies also recognized as an 
important feature. 

The results of the present study may help clinicians throughout 
correct, accurate and timely diagnosis of the disease progression and 
reduce the severe complications and the resulting mortalities. Despite 
the small amount of data fed into the models and the lack of some 
important clinical variables, the selected ML models, especially DT al
gorithm, performed well. On the other hand, this model application in 

real clinical environments will assist physicians owing to its simplicity, 
user-friendliness and easy-to-use characteristics. Given the power of the 
current study in timely and accurate prediction of intubation risk, this 
study had some limitations that need to be addressed. First, this is a 
retrospective study that suffers from low data quantity (missing or 
duplicate cells) and non-optimal quality (imbalanced, noisy, and 
meaningless values). Second, we deal with a single-center dataset with 
limited sample size which undoubtedly confines the generalizability of 
the proposed model. Moreover, we used only four well known ML al
gorithms for prediction analyses based on some clinical features. Finally, 
the selected registry dataset lacks some important Para-clinical vari
ables. In the future, the performance accuracy of our model and its 
generalizability will be enhanced if we test more ML techniques, at the 
larger, multicenter, and prospective dataset which is equipped with 
more qualitative and validated data. 

5. Conclusion 

The main idea behind this research is to evaluate several Meta- 
heuristic feature selection algorithms and ML models to predict future 
risk of intubation among hospitalized patients with COVID-19. The 
present study may assist medical specialist in choosing the optimal 
supportive oxygen therapy in the critically ill patient with respiratory 
failure through identification and prioritizing predictors and ML based 
predictions. Our developed prediction model has the potential to pro
vide frontline physicians with an easy and fast tool to classify COVID-19 
patients without having to wait for the results of additional tests. This 
predictive model also may be an advantage in better care delivery, 
lessen clinician workload, and diminish severe complication and death 
in the COVID-19 patients. In the future work, the proposed method is 
expected to be applied to other medical and healthcare domains such as 
early diagnosis and treatment of chronic disease. The meta-heuristic 
algorithms used in feature selection can also be improved. 
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