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ABSTRACT

In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of
Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory
science from academia, government and industry. The purpose of the workshop was to review the specific roles that
high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse
outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the
growing number of examples of the application of omics data in the context of ecological risk assessment, we
considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in
identifying potential AOP molecular initiating events and providing supportive evidence of key events at
different levels of biological organization and across taxonomic groups was discussed. Areas with potential for
short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support
chemical read-across, providing weight of evidence information for mode of action assignment, understanding
biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be
addressed were considered, including the need for a cohesive approach towards experimental design, the lack of
a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better
interpretation of chemically induced changes at the molecular level. This article was developed to provide an
overview of ecological risk assessment process and a perspective on how high content molecular-level datasets
can support the future of assessment procedures through the AOP framework.

Key words: toxicogenomics; methods; regulatory/policy; risk assessment; predictive toxicology; in vitro and alternatives.

Within the field of chemical safety and risk assessment, there is
a need to assess toxicity of a continuously growing number of
chemicals using finite resources while addressing the ethical
concerns surrounding the use of reliable animal alternatives
(Krewski, et al., 2010; SCENIHR, 2012). There are currently ap-
proximately 140 000 chemicals registered for use under the
European Inventory of Existing Commercial chemical
Substances (ECHA, 2017) and 85 000 chemicals listed on the U.S.
EPA Toxic Substances Control Act Inventory (USEPA, 2016a).
Improvements in technologies for measuring molecular-level
endpoints (eg, at the gene or protein level) have provided an im-
petus for evaluating the ability to incorporate these measure-
ments into modern-day risk assessment procedures (Cote et al.,
2016; Sturla et al., 2014). Guidance documents such as the
European Commission Scientific Committee’s publication
“Addressing the New Challenges for Risk Assessment”
(SCENIHR, 2012) highlight the advantages and challenges of
conducting risk assessments using data from molecular and
cellular biological processes (NRC, 2007). However, there is still
no cohesive approach to the incorporation of molecular-level
measurements into ecological or human health risk assess-
ments. One framework that is seen as a promising solution to
address this gap is the Adverse Outcome Pathway (AOP) frame-
work. AOPs represent a valuable framework for the evaluation
of biologically plausible and empirically supported links be-
tween different levels of biological organization, including mo-
lecular and biochemical measurements Ankley et al., 2010;
Villeneuve et al., 2014a). An AOP represents the linkage between
a chemical perturbation, which leads to a molecular initiating
event (MIE). Subsequent changes in the physiology of an organ-
ism caused by MIEs subsequently lead to adverse outcomes
(AOs). AOs occur at the level of the individual or the population,
with the possibility of extrapolating towards impacts on the
community and/or ecosystem level (Kramer et al., 2011). Within
an AOP, MIEs and AOs are linked by a series of measurable and
causally connected key events (KEs); ultimately, the application
of an AOP requires a clear definition of MIE and early KEs
(Madden et al., 2014).

Omics technologies (which are defined as high-content data-
sets with measurements of genes, proteins, and/or metabolites
for the purpose of this article) enable researchers to assess the
responses of tens of thousands of genes and their products in a
single sample (Aardema and MacGregor, 2002). In combination
with advances in system-level data analysis, omics datasets are
used to “learn” the structure of biological pathways from obser-
vational data (Mitra et al., 2013), an approach that is also being
used more frequently within the field of toxicology (eg,
McBride, 2017; Perkins et al., 2011; Quercioli et al, 2017; Thomas
et al., 2017). The magnitude and scope of omics datasets (ie,
The modENCODE Consortium et al., 2010) have raised our ex-
pectations of what these data can do for toxicology and risk as-
sessment, specifically by facilitating the identification of
molecular-level changes (eg, MIEs and early KEs) that underlie
responses to chemical stressors. In the context of the AOP
framework, these data can provide a better understanding of
potential molecular toxicity pathways as well as effects that
occur at basal biological levels of organization (Ankley et al.,
2010; Villeneuve et al., 2014a,b). Although omics have been at
the foundation of the application and derivation of some novel
AOPs (ie, Antczak et al., 2015), it is still not clear how omics
datasets should be used in the context of risk assessment and
what further research is needed to facilitate the framework’s
implementation and acceptance by the risk assessment
community.

Previous reviews and workshops have identified some of the
challenges in using omics within risk assessments, including
the lack of a standardized approach for interpreting gene ex-
pression data or quantitatively connecting omics data to a phe-
notypic outcome (Ankley and Villeneuve, 2006; ECETOC, 2008,
2010; Garcia-Reyero and Perkins, 2011). In this article, we sum-
marize the findings of a workshop held in conjunction with the
second international Environmental Omics Symposium (iEOS)
at the University of Liverpool (United Kingdom) in September
2014. The goal of this workshop was to identify how omics data
can support chemical risk assessments via the AOP framework.
We also discuss future challenges and provide a proposed
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workflow that can be used to achieve improved incorporation of
omics data into the AOP framework and the ecological risk as-
sessment (ERA) process.

THE CURRENT STATE OF ECOLOGICAL RISK
ASSESSMENT

The process of ERA is defined as an approach for determining
the potential impacts of chemical stressors on ecosystems
through the examination of chemical effects (defined as the
hazard) in the context of a measured or predicted environmen-
tal exposure. The standard approach for conducting an ERA is
comprised of 4 components: (1) hazard identification, (2)
concentration-response assessment, (3) exposure assessment,
and (4) risk characterization (REACH, 2006). Detailed methods
for conducting an ERA are outlined most recently in the
Registration, Evaluation, Authorization, and Restriction (REACH)
chemicals legislation (REACH, 2006) and are also derived from
earlier documents (USEPA, 1998).

The current approach for assessing hazard consists of 2 key
steps: (1) identification of the hazard of concern, and (2) quantifi-
cation of the hazard via concentration-response measurements in
order to derive a toxicity threshold or reference value, typically
based on an apical outcome (REACH, 2006; USEPA, 1998). The
European Chemicals Agency (ECHA) also provides guidance for ad-
ditional types of hazard assessment: (1) to establish a chemical’s
safe use in a risk assessment (described earlier), and (2) to screen a
set of substances in order to determine groups with particular
characteristics, which are indicative of a low or high potential haz-
ard. Once chemicals are grouped based on hazard levels, the in-
vestigator may focus development on promising candidates for
their application or use the information to support testing strate-
gies for safety evaluation (Tollefsen et al., 2014). Alternatively, a
regulator may investigate the necessity of further clarification for
substances suspected to be of concern (REACH, 2006).

One major challenge of hazard assessment is the require-
ment to derive an understanding of an effect in a species of rele-
vance to the environment of concern by extrapolating from a
standard laboratory species. The uncertainties of such an ap-
proach are then addressed by the use of uncertainty factors to
provide a margin of safety (Dorato and Engelhardt, 2005).
However, this approach was developed before many modern
molecular biology tools were established and, in addition to be-
ing associated with very great uncertainty, does not meet the
growing demand for managing a large number of synthetic
compounds in the environment (SCENIHR, 2012). Because of
this, scientists have focused on ways in which high-content
datasets could be used to provide knowledge of how chemicals
actually interfere with biological processes (Sturla et al., 2014).

OMICS AND CHEMICAL RISK ASSESSMENT

There is a growing agreement that omics approaches offer real
potential for informing risk assessments when applied as part
of an integrated systems biology approach (Cassman, 2005) and
when considered in the context of the AOP framework (Van
Aggelen et al., 2010). Although to date, omics datasets cannot
provide sufficient evidence to characterize risk within an ERA,
these datasets do currently have applications for improving our
knowledge of toxicological effects.

Using acetylcholine esterase inhibition as an example, tran-
scriptomics data were shown to support known MIEs and their
connections to KEs within the AOP framework. These KEs include

a build-up of acetylcholine in neural synapses as well as uncon-
trolled excitation within muscular junctions (Hodges et al., in
press; Russom et al., 2014). Microarray data from Caenorhabditis
elegans, a nematode model organism used for both ecotoxicology
and human health studies, identified impacted pathways related
to electron carrier activities and lipid metabolism (Vinuela et al.,
2010). These findings also correlated with results from studies
conducted in vertebrates such as mice (Mus musculus) and zebra-
fish (Danio rerio) (Garcia-Reyero et al., 2016; Moreira et al., 2010;
Tilton et al., 2011). These studies demonstrate that results from
omics datasets can be used to confirm and support the known
toxicology or pharmacology of classes of chemicals and can pro-
vide supporting evidence of KEs at different levels of biological
organization and across different taxonomic groups.

Within the AOP framework, omics datasets also enable a
more precise definition of the MIE and the selection of bio-
markers relevant for assessing effects and/or exposure. Omics
data provide both gene- and pathway-level read-outs (eg,
changes in individual gene expression levels or statistical indi-
ces for the differential regulation of sets of genes within a spe-
cific biological pathway) that can be used for selecting
measurable and relevant biomarkers (Gatzidou et al., 2007; Song
et al., 2016). In addition, by building upon the omics discoveries
made by the broader research community (eg, The modENCODE
Consortium et al., 2010), a carefully chosen suite of model test
species that represent major evolutionary lineages of animal di-
versity could allow researchers to gain knowledge for accurately
predicting chemical susceptibility in a range of organisms.

Using Omics Datasets for Mode/Mechanism of Action
Assessment and Chemical Grouping

One of the methods in aquatic toxicology currently used for as-
signing a specific mode of action (MOA) to an unknown chemi-
cal based on its chemical structure is the Verhaar scheme
(Ellison et al., 2015; Enoch et al., 2008; Verhaar et al., 1992, 2000).
The recently updated approach places chemicals into one of the
following categories: (1) inert compounds causing nonpolar nar-
cosis, (2) less inert/more toxic, compounds causing polar narco-
sis, (3) reactive compounds with increased toxicity, (4)
compounds with specific or receptor-mediated toxicity, and (5)
chemicals not able to be classified. Although this scheme is
freely available on several platforms such as the Organisation
for Economic Co-operation and Development (OECD) quantita-
tive structure-activity relationship toolbox (OECD, 2016) and the
Joint Research Center Toxtree application (EURL ECVAM, 2016),
it is only useful for acute toxicity endpoints and has a limited
ability to assign a chemical class, meaning that many chemicals
cannot be classified. Further, the biological domain of applica-
bility is somewhat limited relative to the number of species
used to derive the categorization scheme.

Other MOA identification approaches that include a broader
number of species are also available (eg, Barron et al., 2015; Russom
et al., 1997), but these approaches again are based largely on acute
toxicity data and therefore are of limited utility relative to chronic
and/or sublethal effects. Consequently, current MOA classifying
methods have very limited value in understanding population-
relevant endpoints as well as extrapolation to other taxa.

Omics datasets offer promise for providing molecular-level
evidence indicative of a specific MOA (Antczak et al., 2015;
Fabian et al., 2016; Soetaert et al., 2007a,b; Van Aggelen et al.,
2010; Van Ravenzwaay et al., 2016). Both the European Centre for
Ecotoxicology and Toxicology of Chemicals (ECETOC) and the
US EPA have developed specific guidance for these approaches,
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including how omics datasets might inform ERA by supporting
MOA classification (ECETOC, 2008; USEPA, 2004). Although the
use of high-content omics datasets has led to numerous publi-
cations on chemical MOAs (De Abrew et al., 2015; Massart et al.,
2015; Nookaew et al., 2012; Schmeits et al., 2015; Sohm et al.,
2015; Zhang et al., 2016), there is still a scientific requirement to
validate these results with additional biochemical or physiologi-
cal studies. The AOP approach provides a platform that aims to
meet this scientific requirement while supporting the use of
omics datasets in risk assessment.

Computational Biology Approaches and Their
Application Within the AOP Framework

One solution to the challenge of using omics datasets for risk as-
sessment procedures is to incorporate computational biology
methodologies into the analysis and application of omics data in
AOPs. Although these methods and approaches have been utilized
in the human health and biomedical research fields (Macarron
et al., 2011; Weston and Hood, 2004), there is still a bottleneck in
terms of developing the informatics environments for knowledge
management and tailoring these methods to support the AOP
framework and for assessing chemical risk (Groh et al., 2015).

The objective of systems biology is to “understand network
behaviour, and in particular their dynamic aspects, which re-
quires the utilization of mathematical modelling tightly linked to
experimental data (Cassman, 2005). Systems biology can be used
in the AOP framework to help understand how an MIE or an early
KE could lead to an AO. While these datasets can be powerful sci-
entific tools, the generation of large numbers of high-content mo-
lecular-level datasets over the past 10 years has not inherently
caused a ‘paradigm shift’ in our understanding of mechanistic
toxicology. This is partly because of the need for improved inte-
gration of large datasets to enable a better identification of the
crucial clusters of molecular responses (eg, network hubs) that
are at the centre of chemically induced changes (Davidsen et al.,
2016). Computational methods designed to learn the structure of
an unknown pathway from observational data (eg, Eren et al.,
2012; Perkins et al., 2011) can also be used to combine omics data
with phenotypic outcomes and to identify genetic pathways that
can explain observed phenotypic outcomes.

Davidsen et al. (2016) describe a framework that applies com-
putational biology approaches towards understanding physiol-
ogy and proposed 3 major categories of application: biomarker
discovery, network inference, and computational modelling.
Gene, protein, and metabolite biomarkers can be determined
using either univariate or multivariate selection approaches,
and have previously been used to identify the most relevant ex-
planatory measurements and their application in toxicology
(Gatzidou et al., 2007). Network inference can be conducted us-
ing reverse engineering (Perkins et al., 2011); however, other sta-
tistical methodologies are also available (Davidsen et al., 2016;
D’haeseleer et al., 2000). Ecological modelling is also becoming
more widely adopted by the AOP community and mechanistic
models such as the dynamic energy budget (DEB) are now more
prominent in the field (Forbes et al., 2017; Klanjscek et al., 2013).
DEB models detail quantitative relationships between energy
intake and key apical processes such as growth, maintenance,
and reproduction. Upon future model refinement, it may even
be possible to develop genomic indicators for these processes.

Data-driven learning of biological mechanisms also relies
on integrating available knowledge in the reasoning process.
In this respect, an increasing number of toxicology and omics
databases relevant for AOP development and risk

assessment are now available. Resources such as the com-
parative toxicogenomics database, ToxNet, PubChem,
ChEMBL, and the connectivity map are just some of the on-
line sources that can be used for chemical interaction and
toxicology data for both in vivo and in vitro applications
(Schroeder et al., 2016; Fay et al., 2017). In addition, coordi-
nated research programs including ToxCast and Tox21 are
working to generate pathway-based biological effects data on
large panels of chemicals using high-throughput, commer-
cially available tests (Krewski et al., 2010).

Although ToxCast and Tox21 do not currently focus on gen-
erating omics datasets, they do represent coordinated efforts
for addressing chemical screening and hazard analysis in a
high-throughput manner. Another online resource, the AOP
Wiki (Adverse Outcome Pathway Wiki, 2017), serves to organize
available toxicology knowledge into a clear conceptual frame-
work. Future integration of features allowing for the upload of
experimental results or functional genomics data could aid in
the development of a novel AOP in cases where other types of
data are scarce.

Research conducted in the field of omics applications has al-
ready demonstrated the applicability of omics datasets to gen-
erate new, or refine existing, AOPs (Rowlands et al., 2013;
Thomas et al., 2013a,b). For example, Antczak et al. (2015) were
able to identify a putative mechanism for narcosis toxicity in
Daphnia magna linked to calcium signalling. Narcosis, or base-
line toxicity, is a MOA that is highly prevalent for industrial
chemicals but the mechanism underpinning of narcosis re-
mains unclear. Data generated by Antczak et al. (2015) and re-
searchers at the University of Antwerp supported the
acceptance of a proposed AOP by the OECD as part of their AOP
development program (Project 1.2: The Adverse Outcome
Pathways for Nonpolar Narcosis) (OECD, 2015).

Using Omics Datasets for Species-Sensitivity
Extrapolations and Assessing Target Conservation

Current risk assessment approaches rely on extrapolating data
from standard laboratory model species to thousands of species
of environmental concern. Current species extrapolation
approaches tend to be characterized by a large degree of uncer-
tainty due to inherent physiological diversity, life history/trait
differences, and a wide range of sensitivities to contaminants
(Hecker, 2016; Kramer et al., 2011). AOPs are able to capture in-
formation within a defined realm of taxonomic applicability,
but this domain may be limited. However, while there are em-
pirically based interspecies correlation estimation tools avail-
able (eg, USEPA, 2016b), the general lack of comparative cross-
species sensitivity data limits our ability to make robust taxo-
nomic extrapolations in support of ERAs.

One source of inter-species differences in chemical sensitiv-
ity arises from changes in molecular targets (ie, potential MIEs)
over the course of evolution, in particular macromolecules such
as receptors, enzymes, and other functional proteins (Celander
et al., 2011; ECETOC, 2008; Gunnarsson et al., 2008; LaLone et al.,
2013). Although fundamental biological systems such as repro-
ductive, metabolic, or detoxification pathways are often con-
served across species (Hutchinson et al., 2014; Rand-Weaver
et al., 2013), small structural or functional variations can lead to
substantial differences in chemical sensitivity even in con-
served pathways. This was demonstrated in several species of
birds and fish, where large differences in the sensitivity to
dioxin-like chemicals were driven by seemingly minor amino
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acid residue differences in the ligand-binding pocket of the aryl-
hydrocarbon receptor (Doering et al., 2014; Karchner et al., 2006).

Information on the sequence and functional homology of a
molecular target can provide valuable insights into species sen-
sitivities. However, understanding the impacts of these differ-
ences on the MIE and/or KE is necessary to determine
differential sensitivity. For example, while the MIE triggered by
oestrogen receptor agonists may be highly conserved between
oviparous and viviparous animals, the role of KEs such as vitel-
logenin production represents a critical outcome in one group
of species (eg, oviparous vertebrates) but not in another (eg,
mammals). In other cases, interspecies differences in sensitivity
may arise through changes in less-defined structural features
or in physiological processes that are indirectly related to inter-
action with the target site. This applies in particular to catabolic
or metabolic pathways, where differences in toxicokinetics in-
fluence the concentrations at biological targets and are the pri-
mary drivers in sensitivity (ECETOC, 2008; Escher et al., 2011).

Given the vast inter-species differences present at multiple
levels of organization, there is unlikely to be one approach that
can effectively characterize species sensitivity on a broad scale.
However, the use of omics datasets within well-developed AOPs
is a way to develop and validate predictive models for reliable
species-sensitivity extrapolations. A tiered approach that in-
cludes (1) the use of existing AOP knowledge (eg, available se-
quence and functional homology information when the MIE
and KEs are well-characterized), and (2) the generation of cus-
tom de novo gene or protein sequence information can provide a
feasible solution to rapidly characterize taxonomic applicability
domain of a given toxicity prediction. Expert-curated species
similarity maps can then be constructed, with the goal of identi-
fying “forecaster species”, or organisms that can be use as pre-
dictors for a range of species in the environment. These
similarity maps and forecaster species can then enable a more
accurate extrapolation of sensitivity.

This approach, based on the theory of evolution, is similar to
the current practice for the risk assessment of dioxin-like con-
taminants for birds, where species are categorized as chicken-
like (highly sensitive), pheasant-like (moderately sensitive), or
quail-like (not sensitive) (Karchner et al., 2006). Confirmation of
predictors, which can identify drivers of species-specific differ-
ences, is proposed using a combination of (1) identification of
taxonomic conservation of MIEs based on existing data (eg,
LaLone et al., 2016), (2) advanced in silico modeling of MIEs or KEs
across species (eg, Madden et al., 2014), (3) the use of targeted
high-throughput in vitro assays that follow principles currently
used in drug discovery (eg, Doering et al., 2014, 2015), and (4) the
development of in ovo tests (eg, Embry et al., 2010). This ap-
proach would allow for anchoring to an AOP using more eco-
nomical and higher-throughput systems while still addressing
animal welfare and ethical concerns. Although these sources of
information are unable to address all the issues of species dif-
ferences (eg, life history traits and reproductive strategies), this
approach can be considered a means by which species sensitiv-
ity can be addressed during a risk assessment.

Additional Experimental Considerations in the AOP
Framework: Exposure and Absorption, Distribution,
Metabolism, and Excretion

As we move towards pathway-based risk assessments, we need
to understand, develop, and utilize tools that can aid in our un-
derstanding of the bioavailability of a chemical within an organ-
ism (Hubal, 2009). Although considerations of absorption,

distribution, metabolism, and excretion (ADME) are common-
place in traditional in vivo toxicity tests, there is currently a void
in the derivation and understanding of the role of ADME in
omics datasets (Burden et al., 2015). The growing emphasis on
the use of in vitro systems raises a key challenge in the need for
improved tools to model, measure, and understand the freely
available concentration of chemicals in an exposure system
(Embry et al., 2014; Pastoor et al., 2014).

Depending on a compound’s physical-chemical properties,
there may be variations between the nominal and the freely dis-
solved concentration that will reach the site of toxic action.
These variations, in addition to other factors such as volatility
and degradation rates, can arise due to chemical binding to me-
dia or in vitro test system constituents (eg, plastics). Having a ba-
sic understanding of a chemical’s physicochemical properties,
the make-up of an in vitro test system, and how these metrics in-
fluence the amount of freely available chemical present in the
system are crucial for a more accurate assessment of dose-
response relationships (Teeguarden et al., 2016). Although the
AOP framework is chemical-independent, the use of exposure in-
formation that is dependent on chemical and system properties
is an important practical consideration. Approaches such as the
Aggregate Exposure Pathway (AEPs), which are aimed at linking
exposure and ADME information to that of AOPs, are proposed to
overcome some of these obstacles (Teeguarden et al., 2016); how-
ever, AEPs are still under development and require further suc-
cessful demonstration before their widespread use.

CHALLENGES FOR OMICS IN THE AOP
FRAMEWORK: REGULATORY ACCEPTANCE

Perhaps one of the biggest challenges facing the application of
omics within the AOP concept are the regulatory requirements
placed on the generation of data that can be used within hazard
and exposure assessment. REACH, for example, sets standards
requirements and acceptance criteria for the quality of informa-
tion and provides guidance on what methods are acceptable for
a chemical’s registration (ECHA, 2014a). REACH also actively
promotes the use of animal alternative approaches, with an em-
phasis on chemical read-across, chemical grouping, modelling,
and weight of evidence approaches. While there has been an in-
crease in the use of such alternative methods in REACH submis-
sion dossiers, current evidence suggests that their application is
still limited (ECHA, 2014b).

In the dossiers submitted to ECHA, the use of in vitro assays
has been increasing. As an example, the total number of in vitro
studies submitted for skin and eye irritation endpoints increased
from 442 in 2011 to 1410 in 2013. Currently, the predominant use
of in vitro assays is for developing categories and predicting sub-
stance properties via read across, which is a consequence of the
limited availability of accepted in vitro tests (ECHA, 2014a). The
National Academy of Science report “Toxicity in the 21st
Century”, provides a vision for how these types of data could be
used in the future (NRC, 2007). Although the report states that the
current application of in vitro assays cannot be used as direct re-
placements for the generation of in vivo apical data, recent publi-
cations have demonstrated the predictive capabilities of in vitro
datasets for apical toxic outcomes, including predictions for toxic
mechanisms after binding to nuclear receptors (Drwal et al., 2015)
and classifying compounds based on estrogen receptor response
data (Norinder and Boyer, 2016). Although there currently is no
provision within existing U.S. regulations for how in vitro assays
can be used to determine chemical information directly, there is
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an increasing emphasis on the use of in vitro data in different pro-
grams. For example, the USEPA endocrine disruptor screening
program has described how a battery of high throughput screen-
ing assays can be used to prioritize chemicals for in vivo testing in
either mammalian or nonmammalian models (USEPA, 2014,
2016b; Ankley et al., 2016).

Although a direct application of omics datasets to risk as-
sessments remains a long-term goal, currently there are a num-
ber of knowledge gaps that can be addressed in the immediate
future in terms of how omics can be used as part of the current
AOP and risk assessment framework. For example, identifying
MIEs and supporting KEs at the molecular levels are places in
which omics datasets clearly can be used in the current AOP
framework (Patlewicz et al., 2015). Within REACH, there are 2
promising scenarios in which omics datasets can be used dur-
ing the registration process: chemical read-across and weight of
evidence. For read-across applications, omics datasets can be
used as supporting mechanistic information for the use of read-
across when multiple chemical substances have an overlapping
chemical property (Fabian et al., 2016; van Ravenzwaay et al.,
2016). Endpoints such as overlapping pathway-level changes be-
tween the responses to structurally similar chemicals can be
submitted as evidence for the use of read-across during the reg-
istration process. A quantitative approach is another way in
which the expression of biological pathways can be classified as
KEs that can be used for the development of a quantitative AOP
(Margiotta-Casaluci et al., 2016). In this approach, effect concen-
trations can be used as quantitative gatekeepers for progression
through the pathway in order to aid prediction of AO in the

context of a risk assessment. In other words, a known in vitro or
in vivo data concentrations that result in KEs can be used to pre-
dict progression through a pathway (Margiotta-Casaluci et al.,
2016; Conolly et al., 2017).

For weight of evidence, omics datasets can be used to pro-
vide scientific support for assessing the relative robustness of
data available (De Coen and Versonnen, 2015). There are also
several examples of how omics datasets can be applied to cur-
rent risk assessment paradigms, including the use of gene set
analysis to identify major biological responses after chemical
exposure (Bourdon-Lacombe et al., 2015). However, there is still
a need for a more complete demonstration of the scientific and
practical feasibility of applying these methods directly into hu-
man health or ERAs (ECHA, 2016; Margiotta-Casaluci et al., 2016;
Tralau and Luch, 2015).

DISCUSSION AND CONCLUSION

The increased ability over the last 10 years to generate high-
content omics data has provided exciting opportunities to
change the way we assess chemicals and provides an opportu-
nity to bring together elements of traditionally disparate disci-
plines through a systems biology approach (Sturla et al., 2014).
Yet even with the opportunities that omics datasets hold to
change in the way that risk assessments are conducted, we
have yet to see this shift take place from a regulatory perspec-
tive. When compared with the applications of omics datasets in
other fields such as biomedicine (Macarron et al., 2011; Weston

FIG 1. Schematic of a proposed tiered approach for the application of omics data and the AOP concept with the ultimate goal to derive computational models that en-

able assessment of species sensitivity to chemicals of regulatory concern in support of ERA. ADME, absorption, distribution, metabolism, and excretion of a chemical

in an organism; KE, key event; MIE, molecular initiating event; TK, toxicokinetics; TD, toxicodynamics.
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and Hood, 2004), environmental toxicology and risk assessment
applications have fallen behind. This is due in part to the in-
creased complexity of the systems in environmental science
(eg, multiple species, fewer well-characterized molecular tar-
gets and endpoints, abiotic/confounding environmental factors)
as well as a lack of central and comprehensive research efforts
focused on the application of omics approaches within risk as-
sessment. Although there has been significant progress result-
ing in over 100 AOPs present in the AOP Wiki, toxicologists are
still working to cohesively and rapidly understand mechanisms
of toxicity, identify toxicity pathway and MOA, and improve
cross-species extrapolations. There are still hurdles in terms of
the widespread use and applications of omics datasets in both
the AOP and ERA framework, but the increased efficiency and
reduced costs of omics data generation and interpretation will
further enable omics to play a significant role in identifying tox-
icity pathways in the near future

We propose a tiered approach for the coordinated application
of omics data and the AOP framework for deriving computational
models with the long-term goal of developing data that can sup-
port risk assessments (Figure 1). Factors that need to be addressed
include (1) the identification of the most relevant pathways for
study, (2) the validation of pathway models which can accurately
predict biological relevant effects from molecular level perturba-
tions, and (3) strong evidence of a dose-response for the response
metric(s) being used. This will require the development of
semiquantitative or quantitative relationships between MIEs, in-
termediate KEs, and AOs (defined as KE relationships) (Wittwehr
et al., 2017). In the future, we hope to see omics datasets enhance
risk assessment but do not feel that they will completely replace
all approaches used in traditional risk assessments.

Another inevitable consequence of the use of large datasets
has been the requirement to develop standardized statistical
methods for the identification of differentially expressed genes,
proteins, or metabolites in response to chemical exposure. This
falls in line with suggestions from ECETOC to develop more
standardized frameworks for the studies themselves along prin-
ciples of Good Laboratory Practices, standardized analytical/
data processing pipelines and approaches to applying the data
for regulatory purposes (ECETOC, 2016). For the field to progress,
more complex modelling techniques will be required which in-
clude approaches that are able to incorporate complex biologi-
cal processes such as compensatory homeostatic mechanisms.

Perhaps some of the areas with the strongest potential for
short and medium term breakthroughs are providing mechanis-
tic evidence to support chemical read-across, providing weight
of evidence in MOA assignment, understanding biological net-
works, and developing robust species-sensitivity extrapolations.
Three key challenges include (1) the need for a cohesive experi-
mental design approach for positively identifying relevant KEs,
(2) the integration of a framework for interpreting omics data to
identify genes and pathways which are linked to KEs and repre-
sentative of a pathway or MOA (Ankley et al., 2006), and (3) the
need for better interpretation of the causal linkages between
chemically induced molecular-level changes to physiological
and higher-level effects. In order for omics to have a future
within risk assessment, researchers need to demonstrate that
the degree of uncertainty generated from omics datasets is at
an acceptable level for risk assessment applications, whether it
be for screening, prioritizing tests, or for chemical read-across
(Perkins et al., 2015).

Despite these challenges, omics datasets can one day be use-
ful in providing supportive evidence for mechanistically driven
MOA determination as well as in assessing inter-species

sensitivity differences in order to provide the required valida-
tion to overcome the regulatory hesitations for accepting these
types of evidence. By continuing to focus ongoing research ef-
forts while directly addressing the challenges of applying these
omics datasets in the AOP and ERA frameworks, toxicologists
can finally enable a data-driven shift in how we assess the
safety of a large and growing number of chemicals.
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