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Abstract: Seafood, one of the most important food commodities consumed worldwide, is considered
a high-quality, healthy, and safe food option. However, marine ecosystems are the ultimate desti-
nation for a large group of chemicals, including contaminants of emerging concern, and seafood
consumption is a major pathway of human exposure. With growing awareness of food safety and
food quality, and increased demand for information on the risk of contaminants of emerging concern,
there is a need to assess food safety issues related to harmful contaminants in seafood and ensure
the safety of marine food resources. In this study, the risks of emerging compounds (endocrine
disruptors, brominated flame retardants, pharmaceuticals and personal care products, and toxic
elements) in fish and seafood were analyzed according to their PBT (persistence, bioaccumulation,
toxicity) properties as well as in terms of their concentration levels in seafood. A hazard index (HI)
was estimated for each compound by applying an artificial neural network (ANN) approach known
as Self-Organizing-Maps. Subsequently, an integrated risk rank (IRI) was developed considering
the values of HI and the concentrations of emerging compounds in seafood species gathered from
the scientific literature. Current results identified HHCB, MeHg, NP, AHTN and PBDE209 as the
top five highest ranked compounds present in seafood, according to the 50th percentile (mean)
of the IRI. However, this ranking slightly changed when taking into account the 99th percentile
of the IRI, showing toxic elements, methylmercury and inorganic arsenic, as having the highest
risk. The outcome of this study identified the priority contaminants and should help in regulatory
decision-making and scientific panels to design screening programs as well as to take the appropriate
safety measures.

Keywords: self-organizing maps; hazard index; risk ranking; contaminants of emerging concern; seafood

1. Introduction

Seafood is one of the most important food commodities consumed worldwide, being
recognized as a high-quality, healthy and safe food item. However, seafood consumption
is also a relevant pathway of human exposure to environmental pollutants. The issue of
seafood safety is even more important in view of the growth of the international fish trade,
which has undergone a tremendous expansion in the last three decades, increasing from
USD 8 billion in 1976, to a record export value of USD 102.5 billion in 2010 [1]. Consumption
of seafood has also seen a continuous uptrend, with an average world consumption of
11.5 kg/capita/year in 1970 compared to 19.2 kg/capita/year in 2012 [2]. Therefore, safety
of seafood is central to any society, and it has a wide range of economic, social and, in many
cases, environmental consequences.

Marine ecosystems are the ultimate destination for a large group of chemicals, receiv-
ing these pollutants through rivers, direct discharges and atmospheric deposition. Fish
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and shellfish have been identified as the food group showing the highest concentrations of
a number of toxic elements [3,4]. Some contaminants can bioaccumulate in marine organ-
isms and biomagnify along the marine food web, likely being transferred to the human
food chain, with subsequent potential problems for seafood safety [5,6]. Specifically, for
seafood, maximum levels for a range of contaminants are outlined in the legislation, and
seafood is regularly controlled by monitoring programs for a selection of environmental
contaminants. This gives rise to concern from an environmental and public health point of
view. So far, the focus mainly lays on well-known chemical pollutants, such as polycyclic
aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), certain marine toxins
and some toxic elements [7–11]. However, there is no regulation in place for recently
detected substances for which no maximum levels have been established in EU legislation
and for which a potential risk cannot be excluded. Although it is not fully implemented yet,
a new EC directive on priority substances in the field of water policy revised crucial rules
on determining the chemical quality of surface water [12]. Furthermore, contaminants of
emerging concern could be previously identified, for which maximum levels have been laid
down but need revision due to new hazard information (re-emerging contaminants) [6].
Therefore, there is an increasing need for knowledge about the presence and potential
effects of the so-called “contaminants of emerging concern” in seafood [6,13,14]. Special
attention has been paid to pollutants belonging to four important groups of contaminants:
toxic elements, endocrine disrupting compounds (EDCs), pharmaceuticals and personal
care products (PPCPs), and brominated flame retardants (BRFs).

Toxic elements are widespread in the environment from either natural or anthro-
pogenic sources [15]. Some of these elements can occur in food because of their presence
in the environment or due to contamination during food production and storage. Some
elements are essential to maintain a good health in humans but exposure to others can
lead to severe adverse health effects [16]. Elements may change their chemical form in
the environment, but they cannot be degraded over time. This means that they are en-
vironmentally persistent and may bioaccumulate [17,18]. The maximum levels of lead,
cadmium and total mercury in seafood are regulated by the European Commission regula-
tion 1881/2006 [7–9,19]. For other toxic elements or specific chemical forms, no maximum
levels have been laid down in the European legislation, partly due to a lack of information
about their presence in seafood. From a toxicological point of view, the chemical form
(i.e., the elemental speciation) in which the metal is ingested plays a significant role [20,21].
Knowledge about the chemical form(s) of certain elements (e.g., inorganic arsenic: InAs
and methyl mercury: MeHg) present in seafood is therefore required in order to improve
the assessment of seafood safety beyond simply knowing the total elemental amount.

There is also a growing interest in EDCs due to their ability to interfere with the
endocrine system of different organisms, causing important alterations in development.
Because of the lipophilic and persistent nature of most EDCs and their metabolites, many
of them can bioaccumulate and biomagnify in different environmental compartments,
including in marine biota [22].

PPCPs are another diverse group of potential pollutants. They can enter aquatic ecosys-
tems from municipal wastewater treatment plant discharges, runoff from agricultural areas
that utilize veterinary therapeutics and releases from aquaculture sites [23,24]. As a re-
sult, they have been increasingly detected in the environment during recent years [25–29].
Another source of accumulation of PPCPs in fish and seafood is the prophylactic or ther-
apeutic use of pharmaceuticals in aquaculture. Residues of these drugs can remain in
tissues creating a potential exposure for consumers [24]. The presence of pharmaceuticals
in seafood may potentially act as a risk for consumers, either through direct effect of allergy
and toxicity or indirectly through potential microbial resistance [24].

Flame retardants comprise a large group of chemical substances that are widely used in
many industrial and household products [30]. Currently, because of their high-performance
efficiency and low cost, the largest market group of flame retardants is the brominated
flame retardants (BFRs) group [31]. BFR-treated products, whether in use or waste, release
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BFRs into the environment. Unfortunately, these contaminants may then pass into the food
chain causing toxic effects to human health [32–39].

Humans may potentially be exposed to emerging environmental contaminants by
eating contaminated fish and seafood. However, monitoring the large group of contami-
nants of emerging concern is very extensive, so it is impossible to monitor all compounds.
Considering the large list and a cost-effective use of resources, priorities for screening
emerging contaminants in seafood should be set. Therefore, tools to combine and simplify
large data collections are mandatory for risk managers and decision-makers. In recent
years, many frameworks have been proposed to prioritize contaminants using a range
of approaches classified as qualitative, semi-quantitative to quantitative methods [40,41].
Semi-quantitative risk assessment provides an intermediary level between the contextual
evaluation of qualitative risk assessment and the numerical evaluation of quantitative
risk assessment, by evaluating risks with a score [42,43]. A quantitative approach offers a
more consistent and rigorous approach to assess and compare risks and risk management
strategies, and avoids some of the greater ambiguities that a qualitative risk assessment
may produce. However, qualitative approaches do not require the same mathematical skills
and amount of data as quantitative risk assessments, which means they can be applied
to risks and strategies where precise data are missing [42]. Recently, van der Fels-Klerx
et al. [43] performed an extensive systematic literature review identifying and characteriz-
ing the available methodologies for risk ranking in the fields of feed and food safety. The
following methods of risk ranking for chemical hazards were identified: risk assessment,
risk ratio, scoring methods, risk matrices, multi criteria decision analysis (MCDA), flow
charts/decision trees. Some of these methods are also classified as new approach method-
ologies (NAM) which have been recommended as complimentary tools for the integrated
approach to testing and assessment (IATA) strategy [44,45].

Among these approaches, the relative scoring methods are the most widely reported
approaches which allow ranking the list of chemical compounds by aggregating a selection
of parameters. Relative scores indicate where a particular chemical stand within a specified
normative sample of chemicals. For example, physicochemical parameters such as persis-
tence, bioaccumulation and toxicity (PBT) are often used to build the hazard index (HI), a
coefficient widely implemented to prioritize chemicals [46,47]. The applications of artificial
neural network (ANN) or machine learning (ML) algorithms in chemical health and safety
study can date back to the mid-1990s [48]. Most of these applications were in toxicity clas-
sification and prediction studies, however, lately these algorithms have also been used in
hazardous property prediction and consequence analysis [44,49]. Ranking has traditionally
been developed using various data aggregation methods such as partial order ranking [50],
utility function or simple additive ranking [51], fuzzy-based risk [52,53], Bayesian network
classification [54,55], and clustering based ANN methods, such as Self-Organizing-Maps
(SOM) [20,47]. In the latter case, HI is determined by intrinsic parameters of the chemicals
(PBT) and risk can be described as a function of hazard (toxicity) and exposure (dose). Due
to the ability to group data according to similar characteristics, the SOM algorithm was
previously used to create PBT-based rankings of chemical pollutants [20,47,56]. Recently,
SOM was also applied to elaborate an ecological hazard index of a series of pollutants
found in Ebro River waters (Spain) [52,53]. Integration of PBT parameters with exposure
levels in target food groups can be an interesting approach to obtain realistic information
for food safety policies.

The objective of the present study was to prioritize a selection of contaminants of
emerging concern by means of an artificial neural network (ANN) based approach inte-
grating PBT properties and the concentration levels of these pollutants in seafood species.
Firstly, HI was generated and applied to each individual compound by using SOM. Sec-
ondly, an integrated risk ranking was developed by combining the HI and concentration
level of each compound in seafood, considering the linearity between concentration levels
in the food source and the possible dose. Finally, a prioritized list of emerging contaminants
was performed by ranking the chemicals according to the integrated risk score.
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2. Materials and Methods
2.1. Raw Data Sets
2.1.1. List of Chemicals

A list of 62 emerging chemicals was elaborated according to the availability of concen-
tration data on seafood species in the ECsafeSEAFOOD database [6] (Table 1). Chemicals
from four important groups of contaminants were incorporated in this study: toxic elements
(n = 2), EDCs (n = 19), PPCPs (n = 31), and BFRs (n = 10).

Table 1. List of emerging pollutants included in the risk ranking.

Group CAS Number Compound Label

Toxic elements
7440-38-2 (arsenic) Inorganic Arsenic InAs

22967-92-6 Methyl mercury MeHg

Endocrine Disrupting
Compounds (EDCs)

80-05-7 Bisphenol A BPA
118-74-1 Hexachlorobenzene HCB

1763-23-1 Perfluorinated octane sulfonate PFOS
375-73-5 Perfluorobutanesulfonic acid PFBS
355-46-4 Perfluorohexane sulfonic acid PFHxS
307-24-4 Perfluorohexanoic acid PFHxA
375-85-9 Perfluoroheptanoic acid PFHpA
335-67-1 Perfluorinated octanoic carboxylic acid PFOA
754-91-6 Perfluorooctanesulfonamide PFOSA
375-95-1 Perfluorononanoic acid PFNA
335-76-2 Perfluorodecanoic acid PFDA

2058-94-8 Perfluoroundecanoic acid PFUnA
307-55-1 Perfluorododecanoic acid PFDoDA

72629-94-8 Perfluorotridecanoic acid PFTrDA
376-06-7 Perfluorotetradecanoic acid PFTeDA

number of isomeric compounds Nonylphenol NP
number of isomeric compounds Octylphenol OP
number of isomeric compounds OctylphenolMonoethoxylate OPE
number of isomeric compounds NonylphenolMonoethoxylate NPE

Pharmaceuticals and Personal
Care Products (PPCPs)

25812-30-0 Gemfibrozil GEM
298-46-4 Carbamazepine CAR

59729-32-7 Citalopram CIT
87857-41-8 Desmethylsertraline DMSER

439-14-5 Diazepam DAZ
54910-89-3 Fluoxetine FLX
83891-03-6 Norfluoxetine NFLX
61869-08-7 Paroxetine PRX
79617-96-2 Sertraline SER
93413-69-5 Venlafaxine VEN

58-73-1 Diphenhydramine DPHM
29122-68-7 Atenolol ATEN

525-66-6 Propanolol PRP
58-08-2 Caffeine CAF

42399-41-7 Diltiazem DTZ
114-07-8 Erythromycine ERYR
723-46-6 Sulfamethoxazole SMX
101-20-2 Triclocarban TCAR

3380-34-5 Triclosan TCS
738-70-5 Trimethoprim TMP

13171-00-1 Celestolide ADBI
1222-05-5 Galaxolide HHCB

81-14-1 Musk ketone MK
21145-77-7 Tonalide AHTN
15323-35-0 Phantolide AHMI
68140-48-7 Traseolide ATII
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Table 1. Cont.

Group CAS Number Compound Label

Pharmaceuticals and Personal
Care Products (PPCPs)

94-26-8 Butylparaben BUPB
120-47-8 Ethylparaben EPB
99-76-3 Methylparaben MPB
94-13-3 Propylparaben PPB
94-18-8 Benzylparaben BEPB

Brominated Flame Retardants
(BFRs)

79-94-7 Tetrabromobisphenol A TBBPA
25637-99-4 Hexabromocyclododecane HBCD
41318-75-6 2,4,4Tribromodiphenyl ether PBDE28

5436-43-1
2,2′,4,4′-Tetra-

PBDE47bromodiphenyl ether

60348-60-9
2,2′,4,4′,5-Penta-

PBDE99bromodiphenyl ether

189084-64-8
2,2′,4,4′,6-Penta-

PBDE100bromodiphenyl ether

68631-49-2
2,2′,4,4′,5,5′-Hexa-

PBDE153bromodiphenyl ether

207122-15-4
2,2′,4,4′,5,6′-Hexa-

PBDE154bromodiphenyl ether

207122-16-5 1,2,3,5-tetrabromo-4-(2,4,5-
tribromophenoxy)benzene PBDE183

1163-19-5 1,2,3,4,5-pentabromo-6-(2,3,4,5,6-
pentabromophenoxy)benzene PBDE209

2.1.2. PBT Parameters

The values of three parameters (persistence, bioaccumulation and toxicity) were
assembled from the quantitative structure–activity relationship (QSAR) modelling software
Estimation Program Interface (EPI SuiteTM, [57]). EPI Suite is a Windows based software
developed by the Office of Pollution Prevention Toxics and Syracuse Research Corporation
(SRC), U.S. Environmental Protection Agency (EPA) [57]. This screening-level tool is used
to estimate the physical and chemical properties, environmental fate and aquatic toxicology
of chemicals, integrating data of more than 41,000 compounds from the PHYSPROP©
database (Syracuse Research Corporation, Syracuse, NY, USA). It is a very powerful tool
used to obtain estimated values when experimental information is not available.

(a) Persistence: environmental half-lives of each chemical were estimated using the
BiowinTM tool [57], capable of predicting the primary aerobic and anaerobic biodegrad-
ability of organic chemicals using 7 different models, the results of which were recon-
verted to a semi-quantitative rate of times, with the following units: 5 h, 4 days, 3
weeks, 2 months, and 1 year [58].

(b) Bioaccumulation: bioconcentration factor logarithm (log BCF) was obtained from
BCFWinTM [57] through the octanol–water constant (Kow).

(c) Toxicity: toxicity was estimated through the Ecological Structure Activity Relation-
ships (EcoSARTM, [57]) tool which estimates acute and chronic toxicity to aquatic
organisms of different trophic levels: fish, aquatic invertebrates and green algae
(Sanderson et al., 2003). The toxicity data used to build the SARs were collected from
publicly available experimental studies and confidential submissions provided to the
U.S. EPA New Chemicals Program.

2.1.3. Contamination Levels

The information currently available about emerging environmental contaminants
is rather dispersed. A database was developed [6], to compile all the information from
the scientific literature concerning emerging contaminant levels in seafood. Based on the
information available in this database, the mean and range of the concentrations of each
one of the pollutants in seafood, was estimated. Only studies reporting concentration
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levels expressed in wet weight were considered, as conversion factors from dry or lipid
to wet weight, were not available for all species. Thus, for each one of the 62 contami-
nants, distribution data of concentration levels (in wet weight) in marine fish, mollusks
and crustaceans were gathered and a minimum, mean and maximum concentration was
reported (Table 2). Because of unavailability of PPCP data on marine biota, studies on fresh-
water biota were used. As data on contamination levels in European seafood are scarce,
non-European studies were also included in this study. Because this study is assessing
the risk of consumption of seafood, only edible fractions were considered. For fish and
crustaceans only levels in meat were considered. Levels in liver/gonads/blood of fish and
in hepatopancreas/gonads of crustaceans were not considered. For mollusks, levels in the
whole body were used.

Table 2. Concentration values of selected emerging contaminants in seafood species (units in ng/g
wet weight).

Contaminant
Concentartion (ng/g ww) Contaminant Concentartion (ng/g ww)

Min Mean Max Min Mean Max

InAs 2 14.10 5800 DPHM 0 1.25 2.5
MeHg 0 230.00 19,370 ATEN 0 0.15 0.3
BPA 0 39.40 233.3 PRP 0 - 0
HCB 0.006 0.21 1.68 CAF 0 2.25 4.5
PFOS 0 1.71 877 DTZ 0 0.14 0.27
PFBS 0 0.01 13.45 ERYR 0 0.05 0.1

PFHxS 0.003 0.09 0.52 SMX 0 - 0
PFHxA 0.004 0.07 0.39 TCAR 0 0.75 1.5
PFHpA 0.082 0.14 0.43 TCS 0 15.50 31
PFOA 0.078 0.76 3.25 TMP 0 - 0

PFOSA 0.0378 0.53 2.957 ADBI 0 0.78 18.3
PFNA 0 0.21 1.02 HHCB 0 416.00 3600
PFDA 0 0.24 0.3 MK 0 22.90 73

PFUnA 0.024 0.32 0.93 AHTN 0 96.20 1500
PFDoDA 0.001 0.16 0.24 AHMI 0 1.16 21.5
PFTrDA 0.15 0.28 0.46 ATII 0 0.57 15.4
PFTeDA 0 1.25 0.14 BUPB 0 0.01 0.269

NP 0 242.00 1639 EPB 0 0.11 2.27
OP 0 9.66 66.1 MPB 0 1.09 12.2

OPE 0 8.73 78 PPB 0 0.09 1.48
NPE 1 21.10 127.7 BEPB 0 0.13 2.47
GEM 0 - 0 TBBPA 0 0.30 1.9
CAR 0 2.65 5.3 HBCD 0 0.61 329
CIT 0 2.11 4.21 BDE28 0 1.39 38

DMSER 0 6.00 12 BDE47 0 0.51 197
DAZ 0 - 0 BDE99 0 0.59 91
FLX 0 3.30 6.6 BDE100 0 1.87 56

NFLX 0 2.50 5 BDE153 0 1.23 24
PRX 0 0.29 0.58 BDE154 0 1.03 94
SER 0 9.50 19 BDE183 0 0.55 25
VEN 0 15.00 30 BDE209 0 19.20 1433

2.2. Hazard Index

The compilation and organization of large amounts of data can be computed by
data mining tools, such as ANNs [59]. Among the different kinds of ANNs, Kohonen’s
Self-Organising-Map (SOM) is one of the most commonly applied methods [60]. SOM
uses an unsupervised learning algorithm that reduces the dimensionality of large input
data and utilizes a neighborhood function to preserve the topological properties of the
input space [61]. The results are generally visualized in two-dimension maps, allowing
for clustering of the input information by grouping similar data characteristics. The
final result, is on the one hand, a low dimension map (or Kohonen’s map) showing the
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discretized representation of the multidimensional input space, and on the other hand, a
set of component planes showing the clusters created by the algorithm in the Kohonen’s
grid. The ability of SOM to group data and cluster the analyzed parameters has been
extensively applied in environmental toxicology, but little is known about its applicability
in food toxicology [58,62–66]. The interpretation of the SOM clusters begins with the map
visualization. Each of the SOM nodes (neuron or hexagonal grid) has a specific weight,
allowing one to cluster the original information, akin to multidimensional scaling. The
weights associated to each node or neuron in a two-dimensional lattice are adjusted to
cluster the original information. The map can also be divided into so many c-planes
(component planes) as data variables, representing the variable contribution to each node
in the map [20].

The integration of PBT parameters was performed with inbuilt functions of SOM
toolbox for MatlabTM. The HI for each chemical was built by integration of PBT parameters
through the distance measure (such as Euclidean distance), which is the average distance
between the node’s weight vector and that of its closest neighbors used in Kohonen’s
algorithm. A linear initialization was applied for SOM clustering. The competitive learning
phase consisted of 10,000 steps, while the tuning phase added another 10,000 steps. After
iterative trainings, SOM is eventually formed in the format that inputs with similar features
are mapped to the same map unit or nearby neighboring units, creating a smooth transition
of related individuals over the entire map. HI was considered as the sum of the PBT
values for each compound after SOM training. As low levels of persistence and toxicity
result in a higher hazard, inverse values obtained from the BiowinTM and EcoSARTM
tools, respectively, were considered in the HI building [58]. The three full datasets were
normalized to obtain a variance equal to one for each parameter. Default ranges of PBT
parameters was re-scaled to 0–10 and hazard indexes were normalized using Equation (1)
and re-scaled from 0 to 10.

Cnorm =
Ci − Cmin

Cmax − Cmin
(1)

where Cnorm is the normalized value, Ci is the parameter value of species i, Cmin is the
lowest and Cmax is the maximum concentration value.

2.3. Risk Ranking

In order to apply weights to the effects of contamination levels, PBT parameters were
integrated with the distribution data of concentration levels of pollutants in seafood as
follows (Equation (2)):

RIt(Mean± Std) = (HIt)× (P〈Ct,s(µt, σt)〉) (2)

where RIt is the risk index for the contaminant t, HIt is the hazard index for the contaminant
t and Ct,s is the sth sample of concentration level of the contaminant t in seafood from
the sample concentration generated with mean µt standard deviation σt. Uncertainties
of the concentration have been included in the risk ranking calculation by simulating
the concentration distribution. If a mean concentration (and standard deviation) of the
contaminant was available in seafood, a normal data distribution was assumed. If only the
min–max range was available, data distribution was assumed to be uniform. Mean and
standard deviation of the risk index was calculated and reported in Table 3.
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Table 3. Ranking of emerging contaminants based on mean (50 percentile) integrated risk rank (IRI) score considering the
persistence, bioaccumulation, toxicity (PBT) parameters and concentration levels in seafood.

Ranking
Position Contaminant Integrated Risk Index

(Mean ± Std)
Ranking
Position Contaminant Integrated Risk Index

(Mean ± Std)

1 HHCB 1.00 × 101 ± 2.50 × 101 32 BDE47 1.26 × 10−2 ± 1.42
2 MeHg 6.04 ± 1.47 × 102 33 BDE99 1.26 × 10−2 ± 5.64 × 10−1

3 NP 5.92 ± 1.16 × 101 34 BDE183 9.99 × 10−3 ± 1.31 × 10−1

4 AHTN 1.76 ± 7.92 35 TBBPA 7.87 × 10−3 ± 1.44 × 10−2

5 BDE209 8.59 × 10−1 ± 1.85 × 101 36 PFOA 7.09 × 10−3 ± 8.59 × 10−3

6 BPA 4.76 × 10−1 ± 8.14 × 10−1 37 PRX 4.97 × 10−3 ± 2.87 × 10−3

7 OP 4.22 × 10−1 ± 8.33 × 10−1 38 HCB 4.42 × 10−3 ± 1.04 × 10−2

8 TCS 3.07 × 10−1 ± 1.77 × 10−1 39 MPB 3.89 × 10−3 ± 1.26 × 10−2

9 MK 2.82 × 10−1 ± 2.59 × 10−1 40 PFUnA 3.02 × 10−3 ± 2.45 × 10−3

10 NPE 2.76 × 10−1 ± 4.78 × 10−1 41 PFDA 2.28 × 10−3 ± 8.12 × 10−4

11 InAs 2.71 × 10−1 ± 3.22 × 101 42 PFDoDA 1.49 × 10−3 ± 6.47 × 10−4

12 SER 1.88 × 10−1 ± 1.09 × 10−1 43 BEPB 1.44 × 10−3 ± 7.98 × 10−3

13 VEN 1.51 × 10−1 ± 8.69 × 10−2 44 DTZ 9.52 × 10−4 ± 5.50 × 10−4

14 OPE 1.40 × 10−1 ± 3.61 × 10−1 45 CAF 9.04 × 10−4 ± 5.22 × 10−4

15 DMSER 1.10 × 10−1 ± 6.33 × 10−2 46 PPB 8.02 × 10−4 ± 3.68 × 10−3

16 FLX 4.54 × 10−2 ± 2.62 × 10−2 47 PFNA 7.50 × 10−4 ± 1.05 × 10−3

17 BDE100 4.01 × 10−2 ± 3.47 × 10−1 48 EPB 6.52 × 10−4 ± 3.88 × 10−3

18 NFLX 3.64 × 10−2 ± 2.10 × 10−2 49 PFTeDA 5.02 × 10−4 ± 1.62 × 10−5

19 TCAR 3.28 × 10−2 ± 1.89 × 10−2 50 ERYR 4.57 × 10−4 ± 2.64 × 10−4

20 BDE28 3.18 × 10−2 ± 2.51 × 10−1 51 PFHpA 3.19 × 10−4 ± 2.24 × 10−4

21 CIT 2.59 × 10−2 ± 1.50 × 10−2 52 PFTrDA 1.12 × 10−4 ± 3.59 × 10−5

22 AHMI 2.34 × 10−2 ± 1.25 × 10−1 53 BUPB 1.06 × 10−4 ± 9.16 × 10−4

23 BDE153 2.23 × 10−2 ± 1.26 × 10−1 54 ATEN 6.02 × 10−5 ± 3.48 × 10−5

24 BDE154 1.87 × 10−2 ± 4.93 × 10−1 55 PFHxS 3.47 × 10−5 ± 5.99 × 10−5

25 ADBI 1.69 × 10−2 ± 1.14 × 10−1 56 PFHxA 2.62 × 10−5 ± 4.47 × 10−5

26 PFOS 1.60 × 10−2 ± 2.37 57 PFBS 3.41 × 10−6 ± 1.56 × 10−3

27 CAR 1.57 × 10−2 ± 9.06 × 10−3 58 GEM 0.00 ± 0.00
28 HBCD 1.52 × 10−2 ± 2.37 58 DAZ 0.00 ± 0.00
29 PFOSA 1.31 × 10−2 ± 2.10 × 10−2 58 PRP 0.00 ± 0.00
30 DPHM 1.29 × 10−2 ± 7.44 × 10−3 58 SMX 0.00 ± 0.00
31 ATII 1.28 × 10−2 ± 1.00 × 10−1 58 TMP 0.00 ± 0.00

3. Results and Discussion

The application of the SOM clustering algorithm to PBT data of all the compounds
listed in Table 4 has resulted in grouping of chemicals based on their PBT properties.
The clustering map structure was based on a two-dimensional grid of 100 (10 × 10) cells.
The data training phase consists of a twostep primary training and a tuning phase. The
labeled Cluster of Kohonen’s map (Figure 1A) visualizes distances between neighboring
map units, and thus shows the cluster structures of the map obtained from iterative
process of unsupervised learning. The C-planes show the distance measure obtained
from normalized values of persistence, bioaccumulation and toxicity obtained from an
iterative SOM procedure (Figure 1B). The color-coding index stands for the normalized
integrated values of the respective chemical properties. The color index of each display
was established on the basis of all the values of a single component plane. All these
presentations are linked by position: in each display, the hexagon in a certain position
corresponds to the same map unit. Color intensity shows the numeric strength of the index,
while the label display shows positions of each unit on the map.
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Table 4. Persistence, bioaccumulation and toxicity parameters for the 62 emerging contaminants.

Persistence Bioaccumulation Toxicity

Log Days Log L/Kg mg/L

InAs 2.87 0.50 3.00 × 10−3

MeHg 1.82 2.00 1.00 × 10−4

BPA 0.58 1.86 1.28
HCB 2.44 3.45 8.00 × 10−4

PFOS 1.95 1.75 2.37 × 101

PFBS 2.86 0.50 3.60 × 103

PFHxS 2.41 0.50 3.01 × 102

PFHxA 2.89 0.50 1.22 × 102

PFHpA 2.67 0.75 3.54 × 101

PFOA 2.44 1.75 1.01 × 101

PFOSA 1.78 3.84 1.58 × 10−1

PFNA 2.22 1.00 2.84
PFDA 2.08 1.75 7.88 × 10−1

PFUnA 2.41 1.75 2.17 × 10−1

PFDoDA 2.74 1.75 5.90 × 10−2

PFTrDA 1.31 0.50 1.60 × 10−2

PFTeDA 1.09 0.50 4.00 × 10−3

NP 0.12 2.09 3.60 × 10−2

OP 0.05 1.92 7.90 × 10−2

OPE 3.31 2.69 1.15
NPE 0.34 1.72 1.33 × 10−1

GEM 3.66 0.50 6.73 × 10
CAR 3.51 1.28 1.16 × 102

CIT 2.88 2.14 7.26 × 10
DMSER 1.31 2.85 7.87 × 10−1

DAZ 3.48 1.53 5.50 × 101

FLX 3.25 2.34 1.06
NFLX 3.27 2.43 2.66
PRX 3.59 2.80 9.29 × 10−1

SER 1.66 3.16 2.81 × 10−1

VEN 3.01 1.83 1.61 × 101

DPHM 1.32 1.83 2.13 × 101

ATEN 3.85 0.50 1.44 × 104

PRP 3.72 1.96 6.19 × 101

CAF 3.61 0.50 7.22 × 103

DTZ 3.47 1.45 6.58 × 101

ERYR 2.59 1.69 2.24 × 102

SMX 3.31 0.50 4.78 × 103

TCAR 0.05 2.90 6.42 × 10−1

TCS 0.52 2.81 9.65 × 10−1

TMP 3.37 0.50 3.30 × 103

ADBI 0.44 2.99 6.00 × 10−2

HHCB 0.55 3.56 3.20 × 10−2

MK 0.76 1.92 2.02
AHTN 1.05 2.84 2.70 × 10−2

AHMI 0.58 2.94 6.90 × 10−2

ATII 0.51 3.25 2.90 × 10−2

BUPB 1.18 2.02 7.63
EPB 1.53 1.30 4.98 × 101

MPB 1.68 0.96 1.26 × 102

PPB 3.86 1.67 1.96 × 101

BEPB 3.79 2.02 5.52
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Table 4. Cont.

Persistence Bioaccumulation Toxicity

Log Days Log L/Kg mg/L

TBBPA 2.11 4.03 2.30 × 10−2

HBCD 1.49 3.76 4.00 × 10−3

BDE28 1.36 3.55 1.10 × 10−1

BDE47 2.61 3.83 2.10 × 10−2

BDE99 2.34 3.39 4.00 × 10−3

BDE100 2.34 3.39 4.00 × 10−3

BDE153 2.08 2.95 6.93 × 10−4

BDE154 2.08 2.95 6.93 × 10−4

BDE183 2.16 2.93 1.24 × 10−4

BDE209 1.01 1.21 6.56 × 10−7
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definitions of compound abbreviations refer to Table 1. Color intensity shows numeric strength of index, the brighter the
color, the higher the value. The label display shows positions of each unit on the map.

The SOM based HI for each emerging contaminant is summarized in Table 5 and
ranked according to its absolute score. Considering the HI values, the highest scores were
attributed to BDE209 (4.473), octylphenol (4.367), triclocarban (4.367), MeHg (2.625), tetra-
bromobisphenol A (2.625), BDE47 (2.504), perfluorooctanesulfonamide (2.493), and hexabro-
mocyclododecane (2.493). While BDE209 was identified as the most toxic compound, high
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HI values of the remaining top compounds were due to their high bioaccumulation (MeHg,
TBBPA, PFOSA, BDE47, HBCD) or persistence (OP, TCAR).

Table 5. Hazard Index (HI) developed for the 62 compounds by means of the Kohonen’s algorithm.

Ranking Position Contaminant HI Ranking Position Contaminant HI

1 BDE209 4.473 23 MK 1.230
2 OP 4.367 24 BPA 1.208
2 TCAR 4.367 25 BUPB 1.180
3 MeHg 2.625 26 BEPB 1.119
3 TBBPA 2.625 27 PRP 1.092
4 BDE47 2.504 28 DPHM 1.031
5 PFOSA 2.493 29 VEN 1.004
5 HBCD 2.493 30 PFOS 0.938
6 NP 2.448 30 PFOA 0.938
7 HHCB 2.403 30 PFDA 0.938
8 BDE28 2.290 30 PFUnA 0.938
9 ATII 2.251 30 PFDoDA 0.938

10 ADBI 2.166 31 ERYR 0.914
11 HCB 2.146 32 PPB 0.862
11 BDE99 2.146 33 DAZ 0.780
11 BDE100 2.146 34 DTZ 0.705
12 AHMI 2.019 35 CAR 0.592
13 TCS 1.981 35 EPB 0.592
14 SER 1.980 36 PFNA 0.357
15 InAs 1.922 36 MPB 0.357
16 DMSER 1.829 37 PFHpA 0.223
16 AHTN 1.829 38 PFBS 0.040
17 BDE153 1.817 38 PFHxS 0.040
17 BDE154 1.817 38 PFHxA 0.040
17 BDE183 1.817 38 PFTrDA 0.040
18 PRX 1.716 38 PFTeDA 0.040
19 OPE 1.603 38 GEM 0.040
20 NFLX 1.457 38 ATEN 0.040
21 FLX 1.377 38 CAF 0.040
22 NPE 1.306 38 SMX 0.040
23 CIT 1.231 38 TMP 0.040

Both toxic elements, MeHg and InAs, were found in the upper side of the ranking.
PPCPs and EDCs are evenly distributed throughout the ranking, while BFRs reached the
highest scores as a group. The BCF cluster map clearly provided three clusters, while those
relative to persistence and toxicity entailed two main clusters (Figure 1B). As the Kohonen’s
based HI is a mutual scoring method where scores are computed using a set of properties
data, the comparisons with other studies become complicated. Nonetheless, Fabrega
et al. [58] implemented a similar methodology on PPCPs, EDCs, pesticides, perfluorinated
compounds (PFCs), illicit drugs and UV filters. In that study, the most hazardous pollutants
were identified to be six PFCs (PFHxDA, PFODA, PFTeDA, PFTrDA, PFDoA, and PFUdA).

Since the PBT based HI values do not reflect the current situation in terms of consumer
safety, we implemented a second step by integrating the HI with the concentration of
these emerging compounds in commercial seafood. This integration was performed by
multiplying the HI score with the concentration level of the compounds in seafood (as
explained in Section 2.3), weighting the contamination vector in the final score. Since the
concentration data account for the distributional variability of different samples reported in
the literature, the risk index is calculated as mean and standard deviation by propagating
the uncertainty of concentration in the integrated risk index (IRI) calculation. The resulting
integrated index provides a new ranking of chemicals considering the current contamina-
tion of seafood reported as mean± Std (Table 3). In the overall ranking based on maximum
value (99 percentile) of the IRI score, metals (MeHg and InAs) occupy the highest rank
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followed by HHCB, BDE209, AHTN and NP belonging to different groups of compounds
(Figure 2A). Nonylphenol (NP), perfluorinated octane sulfonate (PFOS) and bisphenol A
(BPA) (Figure 3A) were the endocrine disrupting compounds with highest risk, whereas
most PFCs showed the lowest risk index due to their low concentration values (Table 2).
Among the PPCPs, galaxolide (HHCB) and tonalide (AHTN) (Figure 3B) were estimated to
be the riskiest contaminants. However, since the PPCPs risk index was calculated using
concentration values in freshwater biota, an overestimation may have occurred. In the
BFRs group, BDE209, HBCD and BDE47 (Figure 3C) were ranked as the flame retardants
with the highest risk.
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Uncertainty is inherent in the process even when using the most accurate data and the
most sophisticated models. However, in this case, only uncertainty due to concentration
variability was considered. “Uncertainty” is, in this case, the description of the imperfect
knowledge of the true value of concentration level, or its real variability in samples or
observations. The dataset for this study is very heterogeneous with different sample
sizes and it is based on reported values in the literature [6]. The degree of uncertainty
of the IRI was analyzed using linear propagation of uncertainty of concentration levels
(Equation (2)). Using mean values of IRI (low degree of conservatism), the risk ranking
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of these compounds changed significantly, in comparison to the 99th percentile of the IRI
(high degree of conservatism). In the overall ranking based on mean values (50th percentile)
of the IRI score, HHCB occupied the highest position, followed by MeHg, NP, AHTN and
BDE209 in the top five ranked compounds (Figure 2B). Detailed IRI scores with the mean
and standard deviation of all compounds in this study are presented in Table 3. Comparing
the ratio of mean and max values of IRI score (Figure 3D–F), it is evident that IRI score is
skewed towards the higher end of the distribution, which is mainly due to small sample of
concentration data biased toward extreme outliers (higher concentration value).

A limitation of the method used in this study is the use of theoretical values as
HI parameters. Since this study focuses on contaminants of emerging concern, data on
persistence, bioaccumulation and toxicity are unavailable in the scientific literature for
most compounds and were thus estimated by applying the US EPI SuitTM software [57].
The process of modeling PBT data may be associated with uncertainty, especially for the
“toxicity” variable. In this study, only fish toxicity values were used to estimate the HI by
means of the ECOSARTM tool [57]. This may lead to a significant bias, as the relationship
with human toxicity is not taken into account. In this framework, further improvements of
the hazard index should be focused on incorporating experimental PBT values whenever
new data become available.

Another important limitation in this study is the exposure parameter. Since dietary
exposure is determined by both concentration and consumption, the dietary consumption
vector should be considered as an additional parameter in future studies. In this study,
the complexity of the database does not allow for the provision of an individual input for
each pollutant and fish species. However, the mean level of consumption for all the species
(as mean European fish level intake) will be the same through the different pollutants and
will not affect the risk index. Moreover, contamination levels considered in this study
were averaged from all seafood species, sometimes including freshwater species, as the
availability of levels of contaminants of emerging concern was limited. A specific ranking
for each species should be performed in future studies once the levels of every contaminant
become available for each seafood species.

4. Conclusions

Risk ranking frameworks for chemical hazards have been mainly developed to estab-
lish priority settings in order to reduce environmental problems related with pollutants, as
well as to provide an objective tool for risk managers and decision makers for resources
optimization. It also provides a user-friendly visualization and data analysis approach
to be used as a risk communication and management strategy. The objectivity of risk
ranking has been improved by applying a quantitative approach in the form of a SOM
based methodology for risk ranking contaminants of emerging concern in food safety. By
combining HI based on PBT parameters with contamination levels in seafood, the IRI
was estimated for each environmental pollutant using SOM. The highest HI values were
estimated for BDE209, octylphenol, triclocarban, MeHg, tetrabromobisphenol A, BDE47,
perfluorooctanesulfonamide, and hexabromocyclododecane. Nonetheless, the integration
of concentration levels with the HI modified this ranking, resulting in HHCB, MeHg, NP,
AHTN and BDE209 emerging as the top five ranked compounds, according to the 50th
percentile (mean) score of IRI. Furthermore, and considering the 99th percentile of IRI score,
the risk ranking slightly changed, with toxic elements (MeHg and InAs) posing the highest
risk, followed by HHCB, BDE209, AHTN and NP.

Uncertainty is introduced at every step of the health risk assessment. Unfortunately,
in this particular case, the uncertainty associated with PBT values was not accounted due
to the scarce information in the QSAR model for emerging contaminants. The availability
of homogeneous high-quality data can determine the accuracy and uncertainties associated
with the final results of this method. As information on PBT values and contamination
levels in seafood is very heterogeneous and scarce for contaminants of emerging concern,
theoretical values need to be used. Further improvements on the use of this method should
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be focused on incorporating homogeneous experimental values and model the uncertainty
of PBT values. Besides these improvements, other aspects such as consumption levels,
could be added to improve the risk ranking method, while other emerging pollutants
should ideally also be incorporated.
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