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Process industries typically involve complex manufacturing
operations and thus require adequate decision support for aggre-
gate production planning (APP). The need for powerful and effi-
cient approaches to solve complex APP problems persists. Pro-
blem-specific solution approaches are advantageous compared to
standardized approaches that are designed to provide basic deci-
sion support for a broad range of planning problems but inade-
quate to optimize under consideration of specific settings. This in
turn calls for methods to compare different approaches regarding
their computational performance and solution quality. In this
paper, we present a benchmarking problem for APP in the che-
mical process industry. The presented problem focuses on
(i) sustainable operations planning involving multiple alternative
production modes/routings with specific production-related car-
bon emission and the social dimension of varying operating rates
and (ii) integrated campaign planning with production mix/
volume on the operational level. The mutual trade-offs between
economic, environmental and social factors can be considered as
externalized factors (production-related carbon emission and
overtime working hours) as well as internalized ones (resulting
costs). We provide data for all problem parameters in addition to a
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detailed verbal problem statement. We refer to Hahn and Bran-
denburg [1] for a first numerical analysis based on and for future
research perspectives arising from this benchmarking problem.

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications table
ubject area
 Operations Research

ore specific subject area
 Aggregate Production Planning

ype of data
 Table, Figure

ow data was acquired
 A benchmark problem introduced by Papageorgiou and Pantelides [2]

is complemented by other scientific sources

ata format
 Raw

xperimental factors
 Data can be aggregated for hierarchical aggregate production planning

xperimental features
 Data contains a benchmark problem for hierarchical aggregate pro-

duction planning in the chemical process industry

ata source location
 Not applicable

ata accessibility
 Data is within this article
D

Value of the data

� The dataset at hand serves as a benchmark problem for hierarchical aggregate production planning
in the chemical process industry. For this purpose, the data is represented by a state-task-network
and complemented by further information for mid-term planning (esp. demand quantities and
aggregate cost parameters).

� The dataset provides parameters that capture the stochasticity of the manufacturing system (e.g.
equipment availability, variation of setup and processing times). Consequently, this dataset can be
used for stochastic analyses of a manufacturing system.

� Furthermore, the dataset includes information about energy cost and carbon emissions as well as
information on social factors, in particular overtime, that allow for an analysis with respect to
sustainability issues.
1. Data

The benchmark problem presented in this paper arises from aggregate production planning (APP)
in the chemical process industry. To avoid problems regarding data confidentiality and to ensure
scientific rigor in the formulation of the benchmarking problem, we have combined published data
from publicly available sources, in particular scientific manuscripts.

The production system and processes of the benchmark problem are based on a case example of a
chemicals manufacturer. This case example has been used to numerically analyze procedures for
short-term campaign scheduling over a planning horizon of about ten weeks (see, e.g., [2,6,7]).
However, the manufacturing system and processes of the case example are adequate to numerically
illustrate and analyze mid-term APP approaches.

Numerous characteristics of planning and scheduling in the process industry (see, e.g., [3–5] for a
taxonomy) are reflected in the benchmark problem. Following the classification introduced by
Méndez et al. [5], the benchmark problem comprises batch processes with variable sizes and fixed,
unit-independent processing times. These processes are operated on multi-purpose production units
with full connectivity in multi-stage production with an instantaneous and, thus negligible, material



Table 1
Details of processing equipment based on Papageorgiou and Pantelides [2].

Size Feasibility

Unit in tons Finished product A Finished product B Finished product C

u1 40.0 P1.A, P3.A – P1.C
u2 10.0 – – P2.C, P4.C, P5.C
u3 10.0 – – P2.C, P4.C, P5.C
u4 30.0 – P1.B P3.C
u5 15.0 P5.A P1.B, P3.B P3.C
u6 40.0 P2.A, P4.A P2.B –

u7 15.0 P3.A P3.B P5.C
u8 50.0 P4.A – P3.C
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transfer. Regarding inventory storage, all kinds of quantity- and time-based constraints apply. Non-
working periods are caused by shifts and can be resolved by additional overtime. Due dates of
multiple product demands are distributed across a fixed planning horizon of one year. Stochasticity
arises from variations of setup and processing times and furthermore equipment unavailability.

Realistic magnitudes of additional numerical parameters, in particular financial figures (see [8,9]),
operational figures (see [10–14]) and environmental figures (see [15]), are also derived from related
literature. Unit-specific differences in carbon emissions [15] represent the environmental dimension
of sustainability. Overtime costs reflect workers' preferences to work during regular shifts [16] and,
thus, represent the social sustainability dimension. Information on shift patterns or non-working
periods during weekends in process industry is taken from Méndez et al. [5], Northrup et al. [17],
Shaik et al. [18] and Eberle et al. [19]. Demand seasonality is obtained from Jones et al. [13] and Shah
[14]. Ranges of these problem instance parameters are listed in Subsection 2.3 Problem instance data.
2. Experimental design, materials and methods

2.1. Base data

The production system manufactures three finished products (A, B, C) from three raw materials
and ten intermediate products. As illustrated in Table 1, the processing equipment consists of eight
multi-purpose units (u1, …, u8) with different capacities on which 13 processes (P1.A, …, P5.A, P1.B,
…, P3.B, P1.C, …, P5.C) are operated. A total of 23 different tasks result from the process-unit-
assignment. Each task represents a unique production mode. Process durations depend on the par-
ticular process and on the chosen processing unit.

Inventory storage is constrained by quantity (unlimited (UIS), finite (FIS) or no inventory storage
(NIS)) and time (unlimited (UW), finite (FW) or zero wait (ZW) storage durations).1 Some buffer
capacities are limited and zero wait conditions apply for some processes. As a consequence, the tasks
can be aggregated to in total five different stages, each of them consisting of two or three processes.
These stages are separated by different raw materials, intermediate and finished products which can
be stored in substantial quantities. In each stage, different process-unit assignments are feasible and
lead to in total 28 different production routings.2

Fig. 1 illustrates the chemical processes of the case example as a state-task-network (STN), a
concept which has been introduced by Kondili et al. [21]. In this STN, ovals represent states and the
numbers in parentheses inform about initial and maximum inventory levels. Furthermore, rectangles
1 See Neumann et al. [20] for a categorization of inventory storage constraints.
2 A routing is defined for a particular stage and determines which unit is chosen to operate each process of this stage.

Example: Stage 1 comprises two different routings (u1-u6-u1 and u1-u6-u7) to operate the three processes (P1.A-P2.A-P3.A).
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Fig. 1. State-task-network of the chemical processes based on Papageorgiou and Pantelides [2], p. 30, and Burkardt and Hatzl
[7], p. 1178, and developed further by Hahn and Brandenburg [1].
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represent tasks for the conversion of states, contain data for process duration, minimum and max-
imum batch size (numbers in parentheses) and inform about the production unit (u1, …, u8) on
which the task is operated. Dotted lines encircle the tasks that can be grouped to the same stage if
storage constraints (FIS, NIS or ZW) between subsequent processes apply.
2.2. Planning parameters

The available capacities have to be balanced with customer demands. Minimum batch sizes and
maximum campaign sizes have to be considered. The planning horizon of 12 months covers a
calendar year and a full seasonal cycle. Production equipment is operated over five days with two
shifts of eight hours per day which results in a weekly base capacity of 80 hours. This base capacity
can be extended to as much as 168 hours per week by overtime at cost of 640 currency units (CU) per
hour.



Table 2
Demand and cost parameter per production stage.

Stage Monthly Base
demand

Initial
Inventory

Inventory cost per
ton and month [CU]

Backlog cost per
ton and month [CU]

1 200 280 8.87 591.0
2 80 140 12.85 856.4
3 240 320 10.37 691.4
4 200 240 7.66 510.3
5 80 120 13.70 913.3

Table 3
Energy/CO2 factor for each processing unit.

Processing unit u1 u2 u3 u4 u5 u6 u7 u8

Energy/CO2 factor per ton and hour 1.00 0.90 1.10 0.85 0.95 0.85 1.20 1.05
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2.3. Problem instance data

In addition to data provided by Papageorgiou and Pantelides [2], the following problem instance
parameters are relevant for the benchmarking problem presented.

Base demands per month vary between 80 and 240 t. Seasonality is modeled using a trigonometric
function with an amplitude of 20% and a peak in the middle of the planning period. Inventory holding
costs are determined as 12% p.a. of cost of goods sold. Corresponding backlog cost rates are derived
according to a fill rate of 98.5%. The initial inventory of intermediate and finished production stages
corresponds to 1.2–1.4 as well as 1.3–1.8 times the base demand per month which reflects average
lead times. There is no initial and final backlog; inventory capacity at each stage is limited to 1000 t.
Initial WIP inventories equal the base demand of one period. Detailed values are provided in Table 2.

Each processing unit is available at 100%. Setup processes have a duration of 8 hours (1 shift). The
squared coefficient of variation of processing time is 0.2 for setup processes and 0.4 for conversion
processes. Carbon emissions per ton of production depend on the specific processing unit and vary
between 85% and 120% of the emission level of processing unit u1 (see Table 3).

A campaign on a specific production routing comprises at least one batch ranging in the size of 30
to 50 t. The routing-specific maximum campaign size equals 10 batches. The routing sequence and
corresponding cost parameters are provided in Table 4.

2.4. Data modeling and mapping

The process details of the STN may need to be aggregated in order to reduce granularity and
complexity to an appropriate level. For this purpose, an algorithmic preprocessing procedure can be
executed to determine alternative production routings and resulting capacity requirements for each
stage. The three steps of the preprocessing procedure are executed as follows:

Step 1 The processes are aggregated to stages if storage constraints (FIS, NIS or ZW) between
subsequent processes apply and all possible routings are determined for each stage. Example: Stage
1 comprises two different routings (u1-u6-u1 and u1-u6-u7) to operate the three processes (P1.A-
P2.A-P3.A). In contrast, stage 3 comprises four different routings (u4-u6-u5, u4-u6-u7, u5-u6-u5
and u5-u6-u7) to operate the three processes (P1.B-P2.B-P3.B).
Step 2 The capacity requirement is determined for each stage S and each routing m: The number
n∈ℕ and size κv∈ℝ0

þ of batches for each task v with maximum batch size kmax
v is determined that



Table 4
Routing sequences, batch sizes and cost parameters per production routing.

Stage Product
routing

Sequence Batch size [tons] Energy cost
per ton [CU]

Production cost
per ton [CU]

WIP cost per ton
and month [CU]

1 1 u1;u6;u1 40 85 175 3.99
1 2 u1;u6;u7 40 95 275 4.88
2 3 u6;u5 40 75 150 10.94
2 4 u8;u5 45 60 133 10.78
3 5 u4;u6;u5 30 65 233 4.87
3 6 u4;u6;u7 30 55 233 4.97
3 7 u5;u6;u5 30 110 333 5.40
3 8 u5;u6;u7 30 100 333 5.50
4 9 u1;u2 40 60 200 3.80
4 10 u1;u3 40 60 200 3.86
5 11 u4;u2;u2 30 45 300 10.73
5 12 u4;u2;u3 30 45 300 10.80
5 13 u4;u2;u7 30 45 300 10.80
5 14 u4;u3;u2 30 45 300 10.80
5 15 u4;u3;u3 30 45 300 10.86
5 16 u4;u3;u7 30 45 300 10.86
5 17 u5;u2;u2 30 60 300 10.62
5 18 u5;u2;u3 30 60 300 10.68
5 19 u5;u2;u7 30 60 300 10.68
5 20 u5;u3;u2 30 60 300 10.68
5 21 u5;u3;u3 30 60 300 10.75
5 22 u5;u3;u7 30 60 300 10.75
5 23 u8;u2;u2 50 80 260 10.52
5 24 u8;u2;u3 50 80 260 10.58
5 25 u8;u2;u7 45 70 244 10.40
5 26 u8;u3;u2 50 80 260 10.58
5 27 u8;u3;u3 50 80 260 10.65
5 28 u8;u3;u7 45 70 244 10.47

M. Brandenburg, G.J. Hahn / Data in Brief 18 (2018) 961–967966
minimizes the total unused capacity Σν∈S (kmax
v – κv) while ensuring that at least one task is exe-

cuted at most once and that the material flow constraints, i.e. the mass balances given by (nv – 1) ·
kmax
v þ κv ¼ (nw – 1) · kmax

w þ κw for each task v with predecessor task w, are not violated. Example:
For stage 1, the routing u1-u6-u1 can be chosen without resulting capacity loss (each task is
executed exactly once with maximum batch size 40) while routing u1-u6-u7 would leave 5 capa-
city units unused (tasks 1 and 5 are each executed once with maximum batch size and task 10 is
executed twice with maximum batch size 15 and once with batch size 10).
Step 3 For each stage and each routing, the capacity requirement is calculated. For each unit of the
routing and each task v that is operated on this unit, the duration of v is multiplied with the
number nv calculated in step 2. Example: For stage 1, routing u1-u6-u1 requires 20 h of unit u1 and
15 h of unit u6 to produce an output of 40 t while routing u1-u6-u7 requires 10 hours of u1, 15
hours of u6 and 30 h of u7 to produce 40 t.

This preprocessing step ensures that production batches within one stage are synchronized
regarding input and output quantities while the time-based synchronization remains a detailed
scheduling task. Therefore, intermediate products within one stage are implicitly considered but not
modeled explicitly or reflected by mass balances. Hence, the set of products comprises only the states
11, 15, and 16 as finished products and the states 9 and 10 as intermediate products.
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