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Abstract

In large collections of tumor samples, it has been observed that sets of genes that are commonly involved in the same
cancer pathways tend not to occur mutated together in the same patient. Such gene sets form mutually exclusive patterns
of gene alterations in cancer genomic data. Computational approaches that detect mutually exclusive gene sets, rank and
test candidate alteration patterns by rewarding the number of samples the pattern covers and by punishing its impurity, i.e.,
additional alterations that violate strict mutual exclusivity. However, the extant approaches do not account for possible
observation errors. In practice, false negatives and especially false positives can severely bias evaluation and ranking of
alteration patterns. To address these limitations, we develop a fully probabilistic, generative model of mutual exclusivity,
explicitly taking coverage, impurity, as well as error rates into account, and devise efficient algorithms for parameter
estimation and pattern ranking. Based on this model, we derive a statistical test of mutual exclusivity by comparing its
likelihood to the null model that assumes independent gene alterations. Using extensive simulations, the new test is shown
to be more powerful than a permutation test applied previously. When applied to detect mutual exclusivity patterns in
glioblastoma and in pan-cancer data from twelve tumor types, we identify several significant patterns that are biologically
relevant, most of which would not be detected by previous approaches. Our statistical modeling framework of mutual
exclusivity provides increased flexibility and power to detect cancer pathways from genomic alteration data in the presence
of noise. A summary of this paper appears in the proceedings of the RECOMB  2014 conference, April 2 5. 
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Introduction

Recent years in cancer research are characterized by both

accumulation of data and growing awareness of its overwhelming

complexity. While consortia like The Cancer Genome Atlas

(TCGA) [1] and the International Cancer Genome Consortium

(ICGC) generate the multidimensional profiles of genomic changes

in various cancer types, computational approaches struggle to

pinpoint its underlying mechanisms [2]. The most basic yet

already challenging task is to identify cancer drivers, genomic

events that are causal for disease progression. A second, more

general task is to elucidate sets of functionally related drivers, such

as mutations of genes involved in a common oncogenic pathway.

One systematic approach to address the latter task is to search

for mutually exclusive patterns in cancer genomic data [3–7].

Typically, the data is collected for a large number of tumor

samples, and records presence or absence of genomic alterations,

such as somatic point mutations, amplifications, or deletions of

genes. In mutually exclusive patterns, the alterations tend not to

occur together in the same patient. These patterns are commonly

characterized by their coverage and impurity. Coverage is defined

as the number of patient samples in which at least one alteration

occurred, while impurity refers to non-exclusive, additional

alterations (referred to as non-exclusivity or coverage overlap in

previous studies). Such mutually exclusive alterations have

frequently been observed in cancer data [8–10] and were

associated with functional pathways or synthetic lethality [3–

8,11,12]. Therefore, mutually exclusive patterns are important for

a basic understanding of cancer progression and may suggest

genes for targeted treatment.

Previous studies identified mutually exclusive patterns either via

integrated analysis of known cellular interactions and genomic

alteration data [6], or de novo, by an online learning approach [3],

or by maximizing the mutual exclusivity weight introduced by

Vandin and colleagues [4,5,7]. The weight increases with coverage

and decreases with coverage overlap [4] and proved successful for

pattern ranking and cancer pathway identification.

To our knowledge, there exists no approach that explicitly

models the generative process of mutual exclusivity patterns. In the

absence of a statistical model of the data, the definition of the

weight, although intuitively reasonable, remains arbitrary. In the

previous studies, the weight served also as statistic for a column-

wise permutation test that assesses the significance of patterns. We

show that the power of this test decreases with the number of

genes, likely because the weight does not scale with gene number,

and the same impurity level affects it more with more genes in the

pattern. Most importantly, none of the existing approaches deal

with the problem of errors in the data. Despite advanced

methodologies on both experimental and computational side

[13], records of genomic alterations may contain false positives

and false negatives, due to measurement noise, as well as

uncertainty in mutation calling and interpretation. As illustrated

in Figure S1, ignoring errors in the data, particularly false

positives, may lead to wrong ranking of patterns.
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Here, we develop two alternative models for cancer alteration

data (Figure 1). One is a probabilistic, generative model of

mutually exclusive patterns in the data. The model contains

coverage as well as impurity as parameters, together with false

positive and false negative rates. We show analytically that the

model parameters are identifiable, and propose how they can be

estimated and used for pattern evaluation. The second is a null

model assuming independent alterations of genes. Via comparison

of the mutual exclusivity model to the null model, our approach

allows statistical testing for mutual exclusivity, both in the presence

and absence of errors.

First, we evaluate performance of our approach in the case

when, as it is done in the literature, the data is assumed to record

no false positive or negative alterations. On simulated patterns

our mutual exclusivity test proves more powerful than the

weight-based permutation test. In glioblastoma multiforme data

[14], analyzed by the previous approaches, we find novel,

biologically relevant patterns, which are not detected by the

permutation test. Next, we examine the bias introduced in pattern

ranking by ignorance of errors, especially false positives, and show

that when the error rates are known, our approach is able to

accurately estimate the true coverage and impurity and rank the

patterns accordingly. Finally, we analyze the practical limits of

accurate parameter estimation in the most difficult, but also most

realistic case where the data contains errors occurring at unknown

rates. We apply our approach to a large, pan-cancer collection of

3299 tumor samples from twelve tumor types [15], for which the

model accounting for the presence of false positives can accurately

be estimated. This model is shown to be more flexible than the

model assuming no errors in the data, and is applied to identify

several universal, significant mutual exclusivity patterns, which

would not be found by the previous methods.

Results

Modeling and testing for mutual exclusivity
A mutual exclusivity pattern can be detected in a given cancer

alteration dataset, with n columns that correspond to a subset of

measured genes and m rows (observations) that correspond to

patients whose tumor samples were collected (with m&n). For

each patient and gene, the dataset records a binary alteration

status of the gene observed in the patient, with 0 standing for

absence and 1 for presence of alteration.

We assume that the mutual exclusivity patterns are the result of

the following generative process (Figure 1A). First, with a certain

probability, denoted c and called coverage, the patients who are

covered by the pattern are chosen. Each row corresponding to a

covered patient is hit by an exclusive alteration, meaning that

exactly one gene is assigned value 1 in this row. Here, we assume

that all genes have equal probability to be exclusively mutated.

Next, in the same row, with probability d, any other gene can be

mutated in addition. Those added alterations are interpreted as

Figure 1. Principles of the mutual exclusivity model and test. A The generative process underlying mutual exclusivity patterns. The matrices
show alteration status (shaded for presence and white for absence of alteration) for genes (columns) in patients (rows) in consecutive steps of the
process, each dependent on parameters indicated in brackets. Blue arrows point at patients that are covered by the pattern with probability c.
Orange arrows point at impure alterations, added with probability d. Yellow and green arrows show false positives (added with rate a) and false
negatives (rate b), respectively. B Graphical representation of the mutual exclusivity model. Large circles: random variables, with observed variables
shaded. Small black circles indicate model parameters, and are connected to their corresponding variables with edges. Arrowed edges show
dependencies between variables. The rectangle plate indicates a set of identically distributed variables or a set of their parameters (with indices
g[f1,:::,ng). C The independence model.
doi:10.1371/journal.pcbi.1003503.g001

Author Summary

Tumor DNA carries multiple alterations, including somatic
point mutations, amplifications, and deletions. It is
challenging to identify the disease-causing alterations
from the plethora of random ones, and to delineate their
functional relations and involvement in common path-
ways. One solution for this task is inspired by the
observation that genes from the same cancer pathway
tend not to be altered together in each patient, and thus
form patterns of mutually exclusive alterations across
patients. Mutual exclusivity may arise, because alteration
of only one pathway component is sufficient to deregulate
the entire process. Detecting such patterns is an important
step in de novo identification of cancerous pathways and
potential treatment targets. However, the task is compli-
cated by errors in the data, due to measurement noise,
false mutation calls and their misinterpretation. Here, we
propose a fully probabilistic, generative model of mutually
exclusive patterns accounting for observation errors, with
interpretable parameters that allow proper evaluation of
patterns, free of error bias. Within our statistical frame-
work, we develop efficient algorithms for parameter
estimation and pattern ranking, together with a statistical
test for mutual exclusivity, providing more flexibility and
power than procedures applied previously.

Modeling Mutual Exclusivity of Cancer Mutations
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impurity in the mutual exclusivity pattern, hence d is referred to as

the impurity parameter. The generative process described up to

this point coincides with the data simulation procedure used in

previous studies [4,5]. However, the corresponding generative

model was not used for statistical inference. This prevalent view of

the generative process ignores the possible occurrence of errors.

Realistically, the observed alteration data result from adding false

positives (with rate a) and false negatives (rate b) to the true,

exclusive, and impure alterations.

We propose a generative model of mutual exclusivity that

describes the process illustrated in Figure 1A. For each patient in a

given dataset, the proposed model (Figure 1B and Methods)

assigns a probability to the corresponding observation. The model

is defined by a set of hidden random variables C, H, T , and

observed variables Y . The binary variable C has value 1 with

probability c, indicating that the patient is covered by the mutual

exclusivity pattern. The hidden random variable H points at the

gene that is exclusively altered in that pattern. The set of hidden

random binary variables T~(T1, . . . ,Tn) corresponds to the true

alteration status of the genes, and the set of observed binary

variables Y~(Y1, . . . ,Yn) corresponds to the alteration status that

is recorded in the data. Each true alteration variable Tg has value

1 either if it was chosen to be exclusively altered, or if it was not

chosen but acquired an impure alteration with probability d. The

values of the variables Y are the same as values of T , except for

cases of false positives (with probability a) and false negatives (with

probability b). First, we analyzed the identifiability of the model

from observed data (Text S1):

Proposition 1 For n§3, the parameters in the mutual

exclusivity model are identifiable.

Encouraged by this result, we propose an expectation maximi-

zation algorithm (Methods) to estimate the maximum likeli-

hood parameter values and evaluate its performance in practice

(Results).

In the case when the dataset does not carry the mutual

exclusivity pattern, we assume that the corresponding genes are

mutated independently with their individual alteration frequen-

cies. This is modeled with a set of independent, observed binary

random variables Y~(Y1, . . . ,Yn), satisfying P(Yg~1)~pg for

each g (referred to as the independence model; Text S1). We

devise a mutual exclusivity test (shortly, ME test), which compares

the likelihood in the mutual exclusivity model to the likelihood in

Figure 2. Our mutual exclusivity (ME) test is more powerful than a permutation test, which was applied previously. A Example
simulated mutual exclusivity pattern. B The ME test shows smaller p-values with growing number of genes in the patterns. On the contrary, the
permutation test (with 1000 column-wise permutations) is less powerful for larger patterns. C Both tests do not support mutual exclusivity in data
generated from the independence model.
doi:10.1371/journal.pcbi.1003503.g002
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the independence model. Since the models are not nested, we use

Vuong’s closeness test [16] to compute the p-values (Methods). A

small p-value means that the mutual exclusivity model is closer

(with respect to Kullback-Leibler divergence) to the true model

from which the data was generated than the independence model.

The test statistic accounts for the difference in degrees of freedom

between the models.

We evaluate our mutual exclusivity model and statistical test in

three different scenarios. First, we make an assumption prevalent

in the literature, namely that the data is generated without errors.

In the second scenario, we assume that the data contains errors,

and the error rates are given. Finally, we consider the scenario

where the data is generated with errors, and the error rates are

unknown.

Modeling mutual exclusivity patterns without errors
First, we evaluate the performance of our mutual exclusivity

model on simulated data assuming that the data is clean of errors.

In this case, the model is reduced, since it is parametrized only by

the coverage c and the impurity d, and the observed variables Y
are equated with the true hidden variables T . We have derived

closed-form expressions for the maximum likelihood parameter

values (Methods), providing reliable parameter estimates already

for datasets of sample size 200 (Table S1). We simulated datasets

from the reduced mutual exclusivity model, for increasing gene set

sizes, n[f3,5,10g, m~1000 patients, and combinations of

parameter values c[f0:2,0:4,0:6,0:8g and d[f0:02,0:05,0:08g,
with 20 datasets generated per each parameter setting (example in

Figure 2A). For each dataset, we assessed the significance of

mutual exclusivity using the proposed ME test (Methods). For

comparison, we obtained empirical p-values from the weight-

based permutation test, which permutes individual columns in the

dataset 1000 times, and reports the number of times a permuted

dataset had a higher weight than the original [4,5].

For datasets with three genes only and low coverages, both our

ME and the permutation test not always detect mutual exclusivity

(Figure 2B). As the gene set size increases, in contrast to the

permutation test, the ME test becomes more powerful. With ten

genes, our test supports mutual exclusivity for all datasets, whereas

the permutation test does not, even for a large fraction of datasets

with high coverage. As an example, for the mutual exclusivity

pattern in Figure 2A the ME test p-value is 1:1|10{7, and the

permutation test p-value is 0.15. We speculate that the reason for

the decreased power of the permutation test is the weight itself.

With the same coverage and impurity, large gene sets get less

significant weights than small gene sets, since the weight decreases

drastically with addition of impure alterations in each row, and

this addition is more likely for longer rows. In addition, with

increased gene set size the ME test p-values tend to decrease. This

suggests that the test will remain powerful also after multiple

hypothesis testing correction, which is expected to be more

restrictive for larger set sizes.

Both tests correctly do not support mutual exclusivity for

datasets generated from the independence model (Figure 2C). 20

datasets were simulated per each maximum individual frequency

p[f0:2,0:4,0:6,0:8g (each frequency pg was drawn at random

uniformly from interval ½0:01, p�). The same, correct behavior was

observed when the independent frequencies were drawn from a

distribution observed in real cancer data (Figure S2). Figures 2B,C

show that the ME test, without computationally expensive

permutations, yields ranges of p-values that are amenable to

multiple testing corrections. In summary, the ME test is equally

powerful for small gene sets as the permutation test, and more

powerful for larger ones, and can efficiently be applied in practice.

Figure 3. Top mutual exclusivity patterns identified in cancer data. A–D Patterns in glioblastoma. A Pattern for the gene set with the
highest weight (scoring high coverage and low impurity, applied in previous studies), with adjusted permutation test p-value 0. B–D Examples of
significant, high quality patterns identified using the reduced mutual exclusivity model (assuming no errors), with estimated coverage larger by 0.3
and impurity lower than 0.2. E–H Patterns in pan-cancer data. E Pattern the for gene set with the highest weight. F–H Examples of significant, high
quality patterns identified using the mutual exclusivity model that accounts for false positives, with estimated coverage larger by 0.3 and impurity
lower than 0.2.
doi:10.1371/journal.pcbi.1003503.g003
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We further use our model to identify significant mutual

exclusivity patterns with high coverage and low impurity in

glioblastoma multiforme samples from The Cancer Genome Atlas

(TCGA [14]; extended collection; originally published with fewer

samples [1]). The data were organized in a binary matrix

combining point mutations and copy number variants for 236

patients in 83 genes. The genes and their alterations were selected

to represent significant players and events in disease progression

(Methods).

To obtain a comprehensive picture of the types of patterns that

can be found in this dataset, we restricted the gene set size to four,

and evaluated all 1,837,620 possible gene subsets of this size.

Figure 3A presents the pattern with the largest weight, but also

large imbalance: in that pattern, almost the entire coverage comes

from alterations of a single gene, EGFR. With our approach the

quality of each pattern can be assessed with the estimated coverage

and impurity parameters, while its significance is given by the p-

value from the ME test. In the standard understanding, a high

quality pattern has high coverage and low impurity. For the GBM

dataset we obtained 11 significant (Benjamini-Hochberg adjusted

ME p-value ƒ0:05) patterns with estimated coverage larger than

0.3 and impurity lower than 0.2 (Table S2). Figure 3B–D presents

top three of those patterns with the lowest impurity. Out of the

genes included in those top sets, NF1, PIK3C2G, PIK3R1 and

PIK3CA play roles in the interconnected canonical glioblastoma

signaling [1], although are not found directly grouped into

individual pathways as identified by the original publication.

Notably, the TRAT1 protein is a known interaction partner of

PIK3R [17,18].

Table 1 summarizes the statistics for all presented patterns,

underlining the differences between the ME and permutation tests.

With the explicit account for coverage and impurity as parameters

in the model, our approach gives control over which important

features of the patterns should be used to prioritize the significant

patterns of interest. In contrast to the permutation test, the ME test

is specifically designed to prefer balanced patterns. Consequently,

patterns identified using our ME approach have over three times

lower median imbalance than the median imbalance of top weight

patterns with adjusted permutation test p-values ƒ0:05 (Figure

S3). To assess the imbalance of a given gene set, we calculated the

ratio between the number of alterations of the gene with the

largest individual frequency in the set to the total number of

patients covered with the pattern.

Our analysis did not rediscover four mutually exclusive gene sets

(Table S3) identified previously based on optimizing the weight

[4,7] for the first, original GBM dataset version. Several genes in

those sets did not pass our filtering criteria in the pre-processing

step (Methods), and one gene set could not be analyzed for this

reason. Two sets had large estimated impurity(w0:2), which does

not satisfy our threshold. All three analyzed gene sets were

insignificant according to the ME test, most likely due to relatively

high imbalance (two to three times larger than median imbalance

of gene sets we identified, compare Figure S3). Interestingly, one of

those gene sets does not have a significant permutation p-value,

which may be due to the fact that the processing of the data was

different and the original dataset contained fewer samples.

Modeling mutual exclusivity with known error rates
In this section, we consider the scenario where the data are

erroneous, and the error rates are known and can be used for

pattern evaluation. Figure S1 visualizes the severe effects of error

ignorance. The observed weight, computed on datasets with false

negatives, is consistently reduced as compared to the true weight of

patterns generated without errors. Addition of false positives
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introduces most bias in the observed weight, and results in false

ranking. Similarly, for the reduced mutual exclusivity model

assuming no errors, parameter estimation fails in the case when

they do occur in the data (Figure S4). Thus there is a well

motivated need for the model to account for errors.

Fixing the parameters a and b in our model to the true false

positive and negative rates, respectively, we can estimate the

remaining coverage c and impurity d parameters using the EM

algorithm (Methods). This estimation is very precise for simulated

datasets with five genes, and sample sizes 200 or 1000 (Table S1,

Figure S5). Figure 4 shows that such precise estimates can be used

to rank the patterns by their estimated true quality, first sorting by

the estimated impurity and second by their estimated coverage.

We ranked the erroneous datasets simulated in Figure S1 by their

estimated true quality. Next, we evaluated the fraction of dataset

pairs which were ordered the same way as when their true

impurity and coverage were used for sorting. This fraction of

correctly ranked pairs was compared to the fraction that is ranked

the same way by the observed weight as compared to the true

weight. For data containing false negatives both the quality

ranking and the observed weight perform very well in correct

ranking. The estimated true quality significantly outperforms the

observed weight in the presence of false positives.

Modeling mutual exclusivity with unknown error rates
Finally, we consider the scenario, where the observed data

contains errors that occur at unknown rates. In this case we need

to estimate all four model parameters, and we proved the model to

be identifiable from the data (Text S1). As expected, Table S1

shows that for realistic sample and gene set size (200 or 1000

patients and five genes), and for typical parameter settings (with

small impurity d and error rates a and b), parameter estimation is

more difficult than in the case where a and b are given (compare

Figure S5). The estimated parameter values start approaching the

true ones only for prohibitively large sample sizes (Figure S6). In

particular, for realistic sample numbers, the parameter b is largely

underestimated. Since in case of mutual exclusivity and small d
values, there are in total not many true positive cases, the actual

false negatives should be very rare. Thus, without much loss of

generality of our approach for realistic datasets, we further assume

that the false negative rate b is zero, and account only for the false

positives. With this assumption, our approach is still very useful in

Figure 5. Power of the mutual exclusivity model accounting for false positives. The ME test p-values for A data generated from the full
mutual exclusivity model with b~0 given, and B generated from the independence model, in comparison to a permutation test applied in previous
studies. Again, the ME test is more powerful (compare Figure 2).
doi:10.1371/journal.pcbi.1003503.g005

Figure 4. Improved ranking of erroneous patterns. In contrast to the observed weight, which was applied in previous studies, and ignores
errors and scores observed coverage and impurity, our approach to estimate true quality, using known error rates, estimates the true parameters and
ranks the patterns correctly. The data was simulated from the mutual exclusivity model with parameter values fixed to c[f0:2,0:4:0:6,0:8g,
d[f0:02,0:05,0:08g, with error rates A a[f0,0:025,0:05,0:075,0:1g (x-axis), b~0, as well as B b[f0,0:025,0:05,0:075,0:1g (x-axis), a~0. 20 datasets with
5 genes and 1000 patients were simulated per each parameter setting.
doi:10.1371/journal.pcbi.1003503.g004
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mutual exclusivity analysis: Figure S1 and Figure 4 show that in

terms of ranking there is a pressing need to account for the false

positives rather than for false negatives.

Table S1 and Figure S7 illustrate that with this assumption,

already for 1000 samples (but not 200) a much more accurate

estimation of the remaining parameters c, d, and a is possible. Still,

for impurity d too similar to false positive a, the d parameter is

overestimated, and a underestimated. Thus, in some cases, the

true impurity d may be smaller than its estimated value, making

our evaluation of patterns over-conservative. Again, this problem

diminishes for larger datasets. Figure 5 shows, that for realistic

dataset sizes and parameter sizes, the ME test is able to detect

mutual exclusivity in data with false positives, and is more

powerful than the permutation test.

We applied our approach accounting for false positives to pan-

cancer genomic alteration data [15], a data collection from twelve

distinct cancer types. Combining cancer datasets enables to mine

for mutually exclusive patterns that are universal for the disease,

but can be a problem for the search of patterns that are specific for

one of the combined types. A gene set which has mutually

exclusive alterations in only one cancer type and not others will

most likely not be detectable in the combined dataset. The pan-

cancer dataset is much larger than the glioblastoma data, thus

allowing more accurate parameter estimation. Somatic point

mutations, copy number variants, and methylations were compiled

into a single binary data matrix. Duplicated columns from the

compiled matrix were removed, yielding a matrix with 428

columns, some of which represent not one, but several genes

(Methods).

We aimed to collect universal, low-impurity mutual exclusivity

patterns for gene sets of size five that cover multiple cancer

samples, accounting for possible false positives. We first pre-filtered

the immense set of all possible subsets, starting with fitting the

reduced model (assuming no errors in the data) for all 15,504

subsets of 20 measured genes that were selected by their large

individual alteration frequency (§200; c.a. 0.6%). Next, we chose

the 2039 subsets that had estimated coverage larger than 0.3,

impurity lower than 0.2, and ME statistic larger than 0, indicating

the reduced mutual exclusivity model fits the data better than the

independence model (not necessarily significantly). Figure 3E

shows the pattern that in the pre-filtered dataset has the largest

weight, which is largely dominated by alterations of TP53. Finally,

we applied the model accounting for false positives to the pre-

filtered subsets, and identified 476 high quality patterns (Table S5)

with estimated coverage larger than 0.3, impurity lower than 0.2,

selecting by significance (Benjamini-Hochberg adjusted ME p-

value ƒ0:05), and sorting by impurity (lowest on top; examples in

Figures 3F–H). Three out of all columns in the visualized patterns

correspond not to one, but a set of genes, and are denoted META

1-3 (see Table S4 for individual genes). A possible reason for a

large number of significant and high quality gene sets (Table S5) is

the fact that the identified gene sets overlap. Such overlapping

gene sets may either share strongly mutually exclusive subsets of

smaller size, or may all be subsets of a single, larger mutually

exclusive gene set.

Findings for various cancers for pairs of genes support that the

top patterns are indicative of coexistence in a common cancer

pathway. For instance, for the pattern in Figure 3G, the protein

products of the genes PTEN and MYC (element of META 2) are

co-regulators of p53 in control of differentiation, self-renewal,

and transformation in glioblastoma [19]. The gene copy ratio of

MYC and CDKN2A in the same pattern has a prognostic value in

squamous cell carcinoma of the head and neck [20]. Finally,

PTEN and VHL are both known regulators of the HIF-1

pathway [21]. PTEN and APC, common to two identified gene

sets, are tumor suppressors that are known to interact in cancer

[22].

Table S6 compares the p-values and estimated parameters,

obtained for the top identified patterns, using the model

accounting for false positives to the reduced model. As a rule,

the former p-values are smaller, while the values of the coverage

and impurity parameters estimated by the two models are similar.

In one case however (Figure 3G), the estimated false positive rate is

0.037, yielding the estimated coverage accordingly smaller (0.45)

than the estimate from the reduced model (0.55). This is why this

pattern, although with larger observed coverage, in our true

quality ranking would score lower than the pattern in Figure 3H.

In general, for all pre-filtered subsets the ME test based on the

model that accounts for false positives was more flexible, and

returned a larger number of significant p-values (1397; adjusted

ME p-value ƒ0:05), than the test based on the reduced model

(1171).

Discussion

This work brings two main contributions. First, a probabilistic,

generative model of mutual exclusivity, with readily interpretable

parameters that represent pattern coverage and impurity, as well

as parameters that account for false positive and false negative

rates. In the case when the data is clear of errors, we give closed-

form expressions for maximum likelihood coverage and impurity

estimates. For erroneous data, we propose an EM algorithm for

parameter estimation. We prove analytically that the model

parameters are identifiable, and show the limits of parameter

estimation in practice, where the sample sizes are small. These

limits allow accurate estimation of the most troublesome false

positive rate, as well as the coverage and impurity parameters,

which are most useful for pattern ranking. Second, we develop the

ME test, which assesses the significance of mutual exclusivity

patterns by comparing the likelihood of the dataset under the

mutual exclusivity model to the null model assuming independent

alterations of genes. The proposed test proves to be more powerful

than a permutation test applied previously.

Our approach was first applied to identify mutually exclusive

patterns that are specific for glioblastoma, with the assumption

prevalent in the literature that the data does not contain errors.

The genes that show the top identified patterns are involved in

canonical glioblastoma signaling pathways, with addition of two

novel genes, RPL5 and TRAT1. Next, we applied the model that

accounts for false positives, and detected universal patterns with

high coverage and low impurity, found significant by the ME test

across a collection of samples from twelve different cancers.

Although both these cancer cohorts were already analyzed in

detail with cutting-edge tools [1,3–7,15], our new testing

procedure provides new, significant, and biologically relevant

patterns that were not identified previously.

The proposed mutual exclusivity model could be extended in

several ways. For instance, the current model explicitly assumes

that the mutually exclusive mutations occur equally likely in all

genes in the dataset. This assumption has two important

advantages. First, the ME test finds most evidence for mutual

exclusivity for balanced patterns, where the genes contribute

similarly to the coverage. Second, with this assumption our EM

algorithm is very efficient (Methods) and dropping it would

increase its time complexity. The model may be extended to allow

different mutually exclusive mutation rates of genes as parameters,

which would be estimated from the data. Another possible

extension of the model would allow for multiple gene sets, each
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with own coverage and impurity parameters, and the same error

rates. Such a model, in contrast to previous work in this direction

[7], would correct for errors and prioritize patterns with balanced

mutually exclusive mutations. Finally, this work, focusing on

modeling, evaluation, and testing for mutual exclusivity, does not

deal with efficient search for mutual exclusivity patterns. Instead,

we browse all possible, small gene subsets measured in glioblas-

toma, or all gene sets with high coverage in the pan-cancer data.

Integration of the model into existing [4,5] or a new search

procedure is one direction of our future research. Ideally, the

objective optimized in the search would be a single measure that

reflects preferred impurity, coverage, and significance in the ME

test. These three evaluation criteria could be combined using

appropriate priors in the ME model. The results presented here

indicate that already now, the proposed approach is a step forward

in the demanding task of mining cancer genomic data for the

mechanistic principles of this disease.

Materials and Methods

Preprocessing of genomic cancer data
The TCGA provisional glioblastoma data for 236 patients in 83

genes includes somatic point mutations (identified as significant by

MutSig [23]), amplifications and deletions (called by GISTIC

[24]). The combined analyzed dataset is filled with zeros, and has

entry 1 whenever there was a significant point mutation, or a copy

number variant that is concordant with expression in the data. For

each gene, concordance of its copy number variants (amplifica-

tions and deletions) with expression data was assessed using the

Wilcoxon test, comparing medians of the gene expression in the

samples with the variant to expression in diploid samples.

Specifically, amplifications were tested to have expression median

higher, and deletions to have the median lower than the diploid

cases. Only significantly concordant (p-value 0.05) variants were

recorded in the analyzed dataset. The pan-cancer TCGA data has

3299 samples and records somatic point mutations, amplifications,

deletions and methylations. Pre-processed data was downloaded

from the cBioPortal [25] and combined into a single binary matrix

with altered genes as columns, separately for the GBM and for the

pan-cancer data collection. In the combined pan-cancer matrix

some columns were identical, with different genes having

alterations in exactly the same patients. Since such genes are

undistinguishable with respect to mutual exclusivity patterns, they

were combined into ‘‘meta’’ sets of genes, and represented with a

single column in the matrix.

Generative mutual exclusivity model
Let h~fc,d,a,bg be the set of model parameters, with coverage

c, impurity d, false positive rate a and false negative rate b. We

define the mutual exclusivity model on a set of random variables:

hidden binary random variable C that indicates patient coverage,

hidden binary vector variable H that specifies the single

exclusively mutated gene in a covered patient, a set of hidden

binary variables T~(T1,:::,Tn) that represent the true alterations

of genes, and a set of observed variables Y~(Y1,:::,Yn) that

correspond to the alteration status of genes recorded in the data.

The model is defined by:

P(C~1Dh)~c

P(H~eg)~
1

n

P(Tg~1DC~1,H~eg,h)~1

P(Tg~1DC~1,H=eg,h)~d

P(Tg~0DC~1,H=eg,h)~1{d

P(Tg~0DC~0,H)~1

P(YgjTg,h)~

aYg(1{Tg)(1{a)(1{Yg)(1{Tg)b(1{Yg)Tg (1{b)YgTg ,

for all g[f1, . . . ,ng, where eg~(0, . . . ,0,1,0, . . . ,0) is a unit vector

of length n with a single entry 1 at position g. Thus, H=eg means

that some other gene than g is selected as mutually exclusively

mutated. With this distribution of H , our model is tailored for

balanced patterns, where the mutually exclusive alterations occur

on average equally frequently for each gene in the pattern. The set

of of hidden binary random variables T indicates true alterations

in the genes. Tg has value 1 either when gene g is selected as

mutually exclusive (for H~eg), or, otherwise, when the entry for

gene g is impure, and it was mutated in addition to another gene

(for H=eg). In this model, the observed likelihood P(yDh) for a

given observation y depends only on the number of values 1 in the

observation, denoted k, and observation length n, and is thus

denoted fh(k,n) (Text S1). For d~d(1{b)z(1{d)a we have:

fh(k,n)~(1{c)ak(1{a)n{kz
c

n
dk{1(1{d)n{k{1

(k(1{b)(1{d)z(n{k)bd):

ð1Þ

The likelihood of the whole dataset Y~fy1,:::,ymg reads:

P(YDh)~ P
m

p~1
P(ypDh)~ P

n

k~0
fh(k,n)qk , ð2Þ

where qk is the number of observations with k values 1 in Y. Thus,

after pre-computation of qk values in mn steps, the likelihood can

be computed efficiently in only nz1 steps of constant time

complexity.

Parameter estimation in the model without errors. In

the reduced model we know a~0 and b~0 and we are interested

only in estimating c and d. In this case, Tpg~Ypg for all

p[f1,:::,mg, g[f1,:::,ng, and the log likelihood reads

log(ffc,d,0,0g(k,n))~q0 log(1{c)z
Xn

k~1

qk(log(c)zlog
k

n

� �

z(k{1)log(d)z(n{k)log(1{d)):

ð3Þ

The maximum likelihood parameter estimates are given by

ĉc~1{
q0

m
and d̂d~

Pn
k~1 kqk{mĉc

(n{1)mĉc
.

Parameter estimation in the model with errors. By

Proposition (1), we have that for n§3 the parameters in the full

model are identifiable (Text S1). For maximum likelihood
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estimation, we propose an EM algorithm (Box 1 and Text S1). In

our analysis, we set the input arguments to p~0:1, r~0:01, i~50,

J~104 and e~10{5. The algorithm utilizes the estimates of the c

and d parameters from the reduced mutual exclusivity model

(assuming no errors) as educated guesses for initialization. In the

E-step, five expected values are computed in constant time for

Box 1. EM for Mutual Exclusivity Model.
Input: initialization parameters p, r, i,

iteration parameters e, J ;

Output: Parameter estimates ĥh

Estimate ĉc0 and d̂d0 from the reduced mutual exclusivity model

Draw at random i initial parameter settings: c[½ĉc0{p,ĉc0zp�, d[½d̂d0{r,d̂d0zr�, a,b[½10{6,0:1�
j~1; l~?;

while jƒJ & lwe{
E-step: for k[f0,::,ng

�cck~cdk{1(1{d)n{k{1(k(1{b)(1{d)z(n{k)bd)=(nf
h(j) (k,n))

t0
k~cbdk{1(1{d)n{k{2(d(1{d)zkd(1{b)(1{d)z(n{k{1)dbd)=(nf

h(j) (k,n))

t1
k~c(1{b)dk{2(1{d)n{k{1(d(1{d)z(k{1)d(1{b)(1{d)z(n{k)dbd)=(nf

h(j) (k,n))

�hh0
k~cbdk(1{d)n{k{1=(nf

h(j) (k,n))

�hh1
k~c(1{b)dk{1(1{d)n{k=(nf

h(j) (k,n))

M-step:

c~
X

k
qk�cck=m

d~
X

k
qk(�ssk{�cck)=((n{1)

X
k

qk�cck)

a~
X

k
qkk 1{t1

k

� �
=(mn{

X
k

qk�ssk)

b~
X

k
qk(n{k)t0

k=(
X

k
qk�ssk)

h(jz1)~fc,d,a,bg

l~
X

k
qk(log(f

h(jz1) (k,n)){log(f
h(j) (k,n)))

j~jz1

}

ĥ~h
(j)
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nz1 values of k. One reason for this computational efficiency is

the assumption that P(H~eg)~
1

n
(Text S1). The M-step is

performed in constant time. After mn initial pre-computing steps,

computation of l is only O(nz1), and therefore the complexity of

the entire algorithm is O(mnziJ(nz1)). We expect that, as for all

mutually exclusive patterns so far observed in the literature, n%m
holds. Thus, our algorithm gives a significant reduction in run time

of EM in the usual case, where computations need to be

performed for all observations, and where mn would replace

nz1 in the complexity. Increasing difficulty of the estimation

problem (from both error rates given to unknown, Table S7) for

the same n and fixed J, increases the run time, due to larger

number of iterations performed (from 21 to 1033 on average). In

the case where the data is generated with errors, and the error

rates a or b are known, we use the same EM algorithm for

estimating the remaining parameters but fix the given values in the

M-step.

Independence model. The independence model assumes all

genes are mutated independently. Each gene g has individual

alteration probability pg, and the vector p~fp1, . . . ,png param-

etrizes the model (Figure 1C). Let kg denote the number of

patients with alteration in gene g. With log likelihood

log(P(YDp))~
X

g

(kg log(pg)z(m{kg)log(1{pg)), ð4Þ

the maximum likelihood parameter values are given by p̂pg~kg=m.

Testing for mutual exclusivity. The mutual exclusivity and

independence models are not nested. To compare their likelihoods

for a given dataset Y, we compute the Vuong’s statistic [16] V ,

defined by the standardized and corrected log-likelihood ratio:

V (Y)~
1ffiffiffiffi
m
p

s
log

P(YDĥh)

P(YDp̂p)

 !
{

log(m)

2
(4{n), ð5Þ

where P(YDĥh) (equation 1) and P(YDp̂p) (equation 4) are the

observed log likelihoods of the data Y for the maximum likelihood

parameter estimates ĥh and p̂p under the mutual exclusivity and

independence model, respectively, and s is the standard deviation

of the log likelihood ratios across observations. The second term is

a correction for the difference in the numbers of free parameters in

the models. For non-nested models [16], their V (Y) has normal

distribution f (v; 0,1) with mean 0 and variance 1, and equals 0
when the models have equal Kullback-Leiber divergence from the

true model generating the data Y. Thus, the ME test p-value is

given by 1{f (V (Y); 0,1).

Compared methods
For a given set of genes M, the mutual exclusivity weight [4] is

defined as

W (M)~2DC(M)D{
X
g[M

DC(fgg)D,

where C(M) is the number of samples with at least one alteration

in M. To assess significance of the weight, a permutation test is

performed with the weight as test statistic, and the null distribution

is obtained by independently permuting alterations 1000 times for

each gene (each column in the dataset), preserving its alteration

frequency.

Supporting Information

Figure S1 Computation of mutual exclusivity weight
can be severely biased by errors in the data. Left plot:

mutual exclusivity weight, proposed by Vandin and colleagues [4],

for datasets simulated from the mutual exclusivity model without

errors. In this case, the observed weight (weight computed on

observed data) is the same as the true weight (weight computed on

true data, i.e., with true alteration status recorded), and increases

with coverage and decreases with impurity. Arrow points at one

example pair of datasets, indicating how they are ranked by the

true weight. Middle: addition of false negatives decreases the

observed weight (here, computed on the observed, erroneous

dataset, and not based on the true alteration status), but has a

consistent effect and does not disturb the ranking. Right: addition

of false positives has most severe effect on ranking using the

observed weight. An arrow points at two datasets, which based on

the true weight (i.e. computed on data recording true alteration

status, as in the left plot) were ordered increasingly, and which are

now reverse-ordered by the observed weight.

(PDF)

Figure S2 Both our mutual exclusivity (ME) test and a
permutation test, which was applied previously do not
support mutual exclusivity in data generated from the
independence model with independent frequencies
distributed as in the glioblastoma dataset. Shown are

log p-values for simulated data with 1000 patients, 20 datasets per

each gene set size (n[f3,5,10g).
(PDF)

Figure S3 Imbalance of patterns identified with the ME
approach is much lower than of patterns identified
using the previously proposed weight. Box-plots summarize

the imbalance distribution for 11 patterns called significant with

ME p-value ƒ0:05, high coverage (§0:3) and low impurity

(ƒ0:2; red), as well as the 10, 100, and 1000 top patterns with the

largest weight, called significant with permutation test (p-value

ƒ0:05). Median imbalance of patterns prioritized using our

approach is around three times lower than of patterns with top,

significant weights, regardless of how many of the top ones are

considered.

(PDF)

Figure S4 Parameter estimation in the reduced mutual
exclusivity model can be severely biased by errors in the
data. Left column: the difference between the true and the

estimated parameter values for datasets simulated from the mutual

exclusivity model without errors. In this case, both impurity (delta;

top) and coverage (gamma; bottom) estimation is very accurate,

regardless the impurity (marked with colors). The true coverage

values are indicated on the x-axis. Middle column: addition of false

negatives results in underestimation of the coverage parameter.

Right column: addition of false positives results in underestimation

of both the impurity and coverage parameters, and most strongly

affects estimation of low coverage values.

(PDF)

Figure S5 Efficient parameter estimation of the cover-
age parameter c and the impurity parameter d, using the
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c[f0:2,0:4:0:6,0:8g, and d[f0:02,0:05,0:08g (20 datasets with 5

genes and 1000 patients were simulated per each parameter

setting). There are different box plots of estimated parameter

values for different true values. The medians of the estimated

values are close to the true values, marked with red dashed lines.

(PDF)

Figure S6 Difficulties in estimating the full set of
parameters. We applied our EM algorithm to estimate the

coverage parameter c, the impurity parameter d, as well as false

positive a and false negative rate b, from data generated from the

mutual exclusivity model with error rates that were not given to

the model, using increasing sample size. The tested parameter

values were fixed to realistic values c~0:6, d~0:05, a~0:05 and

b~0:05. 20 datasets with n~5 genes and m from 1000 (1 K) to

100000 patients (100 K) were simulated. Estimation accuracy

increases with sample size.

(PDF)

Figure S7 More accurate parameter estimation assum-
ing false negative rate b~0. A Estimation of parameters c, d,

and a from data generated from the mutual exclusivity model

accounting for false positives (false positive rate was not given to

the model). The tested parameter values were fixed to

c[f0:4:0:6,0:8g, d[f0:1,0:2,0:3g, and a[f0:02,0:05g. B The

estimation is more difficult when d and a are similar (for

d[f0:02,0:05,0:08g). C Similarity of a and d is less of a problem

for larger gene sets (here, 10 genes), as well as when more samples

are used (not shown). All plots: results on simulations of 20 datasets

with 5 genes and 1000 patients per each parameter setting.

(PDF)

Table S1 Root mean squared error (RMSE) of param-
eter estimation for different model variants and sample
sizes. To determine a reasonable dataset size for the different

model variants, we tracked the RMSE of parameter estimates for

sample sizes 200 and 1000, with typical parameter settings:

c[ 0:4,0:6,0:8f g, d[ 0:05,0:05,0:08f g and error rates as indicated

in the column ‘‘True error rates’’. 20 datasets with 5 genes and the

number of patients indicated in column ‘‘m’’ were simulated from

the models per each parameter setting. RMSE was chosen to

represent the difficulty of the estimation task as a function of the

sample size. For example, for the reduced model that assumes no

errors, we have derived closed-form expressions for the maximum

likelihood parameter values. Thus, in this case, RMSE of

parameter estimates depends only on random variation in the

data and defines the best you can get reference for the remaining

models, where parameter estimation is more difficult and

performed using EM. Since both the ME model likelihood and

the test largely depend on how accurately the parameters are

estimated, RMSE defines the applicability of the approach.

(PDF)

Table S2 List of high quality, significant gene sets of
size four identified in the GBM dataset.

(TXT)

Table S3 Results for mutually exclusive patterns iden-
tified in the glioblastoma dataset by previous studies.
Analyzed genes are written in bold, to distinguish from genes that

were filtered out in preprocessing steps. Publication: the study in

which the gene set was identified as mutually exclusive. Other

results are given as in Table 1. *from this gene set, only TP53

passed the pre-filtering step, and thus no results are available.

(PDF)

Table S4 Sets of genes that had identical columns in the
combined pan-cancer data matrix and their short names
used in the main text. Genes with identical columns in the

combined and binarized pan-cancer data matrix were merged into

sets and represented by a single column. The table lists those

merged gene sets that are involved in top mutually exclusive

patterns identified for the pan-cancer data.

(PDF)

Table S5 List of high quality, significant gene sets of
size five identified in the pan-cancer dataset.

(PDF)

Table S6 Summary of top patterns identified for the

pan-cancer dataset assuming false positives. ĉc0, d̂d0, ME0

p-value: coverage and impurity estimates, and the p-value from

the reduced mutual exclusivity model, assuming no errors in the

data. ĉc, d̂d, âa, ME p-value: parameter estimates and p-value from

the mutual exclusivity model accounting for false positives.

(TXT)

Table S7 Average runtime of the EM algorithm in CPU
seconds. The table presents average runtimes of parameter

estimation using the EM algorithm averaged over the datasets

simulated and summarized in Table S1. The runtime increases

with the difficulty of the parameter estimation problem.

(PDF)

Text S1 Supplementary Methods. Likelihood in the mutual

exclusivity model, identifiability of the mutual exclusivity model,

and derivation of the Expectation Maximization algorithm.

(PDF)
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