
rsob.royalsocietypublishing.org
Research
Cite this article: Tinti M, Dissanayake K,

Synowsky S, Albergante L, MacKintosh C. 2014

Identification of 2R-ohnologue gene families

displaying the same mutation-load skew

in multiple cancers. Open Biol. 4: 140029.

http://dx.doi.org/10.1098/rsob.140029
Received: 19 February 2014

Accepted: 9 April 2014
Subject Area:
bioinformatics/genomics/biochemistry

Keywords:
cancer, mutations, 2R-ohnologue families,

signal multiplexing, vertebrates
Author for correspondence:
Carol MacKintosh

e-mail: c.mackintosh@dundee.ac.uk
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsob.140029.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Identification of 2R-ohnologue
gene families displaying the
same mutation-load skew
in multiple cancers
Michele Tinti1, Kumara Dissanayake1, Silvia Synowsky2,

Luca Albergante1,3 and Carol MacKintosh1

1Division of Cell and Developmental Biology, College of Life Sciences, 2MRC Protein
Phosphorylation and Ubiquitylation Unit, and 3Division of Computational Biology,
College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
1. Summary
The complexity of signalling pathways was boosted at the origin of the vertebrates,

when two rounds of whole genome duplication (2R-WGD) occurred. Those genes

and proteins that have survived from the 2R-WGD—termed 2R-ohnologues—

belong to families of two to four members, and are enriched in signalling com-

ponents relevant to cancer. Here, we find that while only approximately 30% of

human transcript-coding genes are 2R-ohnologues, they carry 42–60% of the

gene mutations in 30 different cancer types. Across a subset of cancer datasets,

including melanoma, breast, lung adenocarcinoma, liver and medulloblastoma,

we identified 673 2R-ohnologue families in which one gene carries mutations at

multiple positions, while sister genes in the same family are relatively mutation

free. Strikingly, in 315 of the 322 2R-ohnologue families displaying such a skew

in multiple cancers, the same gene carries the heaviest mutation load in each

cancer, and usually the second-ranked gene is also the same in each cancer. Our

findings inspire the hypothesis that in certain cancers, heterogeneous combi-

nations of genetic changes impair parts of the 2R-WGD signalling networks and

force information flow through a limited set of oncogenic pathways in which

specific non-mutated 2R-ohnologues serve as effectors. The non-mutated

2R-ohnologues are therefore potential therapeutic targets. These include proteins

linked to growth factor signalling, neurotransmission and ion channels.
2. Introduction
Over 500 million years ago, the vertebrates emerged from their invertebrate ances-

tor via an evolutionary leap involving two rounds of whole genome duplication

(2R-WGD) [1–5]. Most of the resulting quadruplicated genes and proteins,

termed 2R-ohnologues, were lost. However, the few thousand families of two

to four 2R-ohnologues that still survive in modern humans are remarkably

enriched in signalling molecules. These include families of growth factors, recep-

tors, protein kinases, GTPases and their regulators, ion channels, transcription

factors, developmental regulators and proteins that interact transiently with

multi-protein complexes, and many of these are also 14-3-3-binding phosphopro-

teins [6,7]. By contrast, core components of stable multi-protein complexes such as

RNA polymerases and the proteasome, and genes that were duplicated by small-

scale genomic events after the 2R-WGD, tend not to be 2R-ohnologues [8,9]. These
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findings indicate that the 2R-WGD provided a selective boost

to regulatory systems, which enabled vertebrate life to evolve.

However, there appears to be a downside to the vertebrate

style of signalling complexity: several studies have highlighted

that 2R-ohnologue dysregulations are highly linked to neurode-

velopmental and metabolic disorders, and to cancers [7,10,11].

Most cancers rely on a restricted number of ‘driver’

mutations, which confer cells with selective advantages that pro-

mote cancer initiation, progression and metastasis. Some driver

mutations inactivate tumour suppressors such as p53, which nor-

mally induces growth arrest or apoptosis in stressed cells. Other

drivers involve specific gene fusions, or point mutations such as

B-RafV600E, K-RasG12D and N-RasQ61R, which activate oncogenic

signalling pathways [12–14]. At the biochemical level, oncogenic

signalling stimulates multiple intracellular changes that together

promote the cancer phenotype. Interestingly, many tumour sup-

pressors and oncogenic drivers, including p53, B-Raf and Ras

proteins, belong to 2R-ohnologue families [11].

In addition to drivers, cancers can accumulate heavy loads of

somatic mutations [15]. Most are considered to be ‘passengers’

that do not contribute to cancer progression [16]. However, we

reasoned that there must be constraints on which mutations

are compatible with any given oncogenic driver. If too many

of the proteins that enact the downstream functions of an onco-

genic driver were to suffer deleterious passenger mutations, the

driver would lose its efficacy. Then, the cancer cell lineage would

die out or become quiescent unless it acquired a different driver

mutation that operates via a different mechanism, which might

help explain cancer heterogeneity [17–19].

This study investigates how somatic mutations in cancers

are distributed within families of 2R-ohnologue signalling

genes. A general characteristic of 2R-ohnologues is that the

domain architectures of the encoded proteins are conserved

across each family. Therefore, the broad expectation is for mem-

bers of a given family to share a high degree of overlap in their

core functions. On the other hand, owing to localized sequence

changes, family members may differ in their expression pat-

terns, post-translational modifications, regulation by protein

kinases, kinetic rates, binding affinities and substrate selectiv-

ities [8,20–23]. We therefore conceptualize each 2R-ohnologue

protein family as a multiple-input multiple-output (MIMO)

system that integrates different input signals to produce a

combined functional output [7,24]. The phenotype of a cell

will depend on which combinations of 2R-ohnologues from

each family are expressed and engaged by the signalling

pathways that operate in any physiological context [7,24].

Stemming from the MIMO signal-multiplexing concept, we

hypothesized that 2R-ohnologues that are positive effectors

of an active oncogenic driver should be kept free of loss-

of-function mutations in a cancer. By contrast, mutations may

accumulate in sister 2R-ohnologues that are components of sig-

nalling networks that are irrelevant or inhibitory to the cancer.

Finding the putative non-mutated 2R-ohnologues would need

cumulative data from multiple samples, because each cancer

cell lineage might have only a few of the allowed mutations

spread among many 2R-ohnologue families. The recent avail-

ability of large datasets of mutations in a variety of cancer

types [15,25] therefore provided the first opportunity to explore

this hypothesis. We reveal striking hierarchical patterns in

the distributions of mutations within 2R-ohnologue families

in cancers. Our findings support the concept of selected 2R-

ohnologues being maintained free of mutations as ‘effectors’

in certain cancers.
3. Results
3.1. 2R-ohnologues carry a higher relative mutation

load than non-ohnologues in every cancer
type examined

Alexandrov et al. [15] validated almost 5 million somatic

mutations identified in the genome sequences of 7042 samples

from 30 different cancer types, but not in matched DNA from

normal cells. We used the Alexandrov data to examine the dis-

tribution of mutations in 2R-ohnologue versus non-ohnologue

genes (electronic supplementary material, table S1). A striking

imbalance was revealed (figure 1). Although 2R-ohnologues

comprise only approximately 30% of protein-coding genes in

the human genome (figure 1a), they carry a higher proportion

of the somatic mutations in transcript-coding genes in every

cancer examined (figure 1b; statistics in the electronic

supplementary material, figure S1). The proportions range

from 42% of gene mutations located in 2R-ohnologues in

kidney clear cell carcinoma to 60% in liver cancer and in

B-cell lymphoma. The greater prevalence of mutations

among 2R-ohnologues is not due to differences in gene sizes:

2R-ohnologue genes average 2400 nucleotides in length and

non-ohnologues 2200 nucleotides (electronic supplementary

material, figure S2).
3.2. Identification of 2R-ohnologue families in which
one gene carries most of the mutations

We next investigated how the somatic mutations are distribu-

ted among members of each 2R-ohnologue family, analysing

each cancer type separately. To this aim, each 2R-ohnologue

gene was given a mutation load (ML) score (electronic sup-

plementary material, table S2). A gene that accumulates most

of the mutations for its 2R-ohnologue family scores close to

1, while genes that are clear of mutations relative to their

sister genes score close to 0. Repeats of mutations at the same

position were scored as a single mutation because we did not

wish to rediscover, nor have the analysis dominated by, recur-

rent driver mutations. Also, we included only families for

which at least one gene carried 10 or more different mutations

in the cancer type. This method therefore captured genes with

broad patterns of mutations at multiple positions.

The ML distributions for the melanoma dataset are

graphed in figure 2a and for other cancers in the electronic sup-

plementary material, data file S1 (with statistical note in

legend). In melanoma and other tumour types, there were

2R-ohnologue families in which the MLs were evenly distribu-

ted among family members, such as the HECW family of two

E3 ubiquitin ligases (figure 2b). However, in most cancers,

including melanoma, there were also 2R-ohnologue families

with a ‘skewed ML’, meaning that one gene carried most of

the ML. For example, in the melanoma dataset PAK7 carries

95 of the 114 mutated sites in the family of three type II PAK

protein kinases (figure 2b).

By contrast, there were no 2R-ohnologue families with

skewed MLs in cervical, thyroid, myeloma and kidney papil-

lary cancers (electronic supplementary material, tables S1

and S2). This was likely to be due to insufficient data for

these cancer types; there were 10 or more mutations in only

23 2R-ohnologue genes in the cervical cancer samples, seven
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Figure 1. Distributions of cancer mutations between 2R-ohnologue and non-ohnologue transcript-coding genes in 30 different cancers. (a) The bar shows the
percentage of 2R-ohnologue and non-ohnologue transcript-coding genes in the Ensembl 72 dataset, based on the provisional 2R-ohnologue list compiled by
Makino & McLysaght [10]. Note that assignment of which human genes are 2R-ohnologues is still undergoing revision. (b) For each cancer type analysed
[15], the graph on the left side reports the percentage of mutations that map on 2R-ohnologue and non-ohnologue genes. The right side reports the log10

value of the total number of mutations identified in each cancer type in this dataset.
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in thyroid, one in myeloma and nine in kidney papillary

cancer samples. This may also be indicative of particular

tumourigenesis mechanisms acting in these cancers.

3.3. In 315 2R-ohnologue families, the same
gene carries the highest mutation load in
multiple cancers

A total of 673 2R-ohnologue families displayed highly skewed

MLs in one or more cancers (electronic supplementary

material, table S3). This dataset was visualized in a VisANT

network graph in which each cancer type is assigned a hexago-

nal blue node, connected to circular nodes (green, red or

orange) that each represent a 2R-ohnologue family with a

skewed ML in that cancer (figure 3). The ‘elegant relaxing’
VisANT rule was applied [27], which means that 2R-

ohnologue families with a skewed ML in only one cancer fan

to the outside of the graph, while those with a skewed ML in

multiple cancers are pulled towards the centre (figure 3). The

layout of the graph therefore reflects patterns in the data.

Cancers around the top and sides of the graph, namely mel-

anoma, breast, lung adenocarcinoma, liver, pancreatic, B-cell

lymphoma and chronic lymphocytic leukaemia (CLL), are

characterized by relatively high numbers of ML-skewed families

(figure 3). Each of these cancers has 2R-ohnologue families for

which ML skews were identified only in the individual cancer,

which may be ‘signatures’ reflecting the tissues of origin of

these cancers. However, these cancers are also highly interlinked

by the many other ML-skewed 2R-ohnologue families that they

have in common. Paediatric medulloblastoma is also highly

interlinked, being central on the graph because it shares 120
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Figure 2. MLs of 2R-ohnologue genes in melanoma. (a) For the melanoma dataset [15], the figure plots the ML distribution for 2R-ohnologues within families of 2,
3 and 4 members. Only families in which at least one gene carries carried 10 or more different mutations are included. The ML is computed by summing the total
number of mutations identified for a gene divided by the total number of mutations in all members of the same 2R-ohnologue family. The y-axes give the number
of genes, with the ML scores indicated on the x-axes. Each histogram set indicates the medians (red lines), interquartile ranges (rectangular boxes) and outliers
(green diamonds) for the ML distributions. Note that for families of 2 members, the median will always be 0.5 by construction, regardless of the ML distribution
profile. Data file S1 in the electronic supplementary material presents the corresponding histograms for 30 cancer types, and its legend contains a discussion note
about statistics. (b) The distribution of mutations in melanoma is given for the HECW E3 ubiquitin ligase family (as an example of even ML distribution) and the
type II PAK family (an example with a skewed ML where the PAK7 gene accumulates most of the family mutations). Illustrations were created with DOMAIN GRAPH,
v. 1.0.5 [26]. CDS is coding sequence, UTR refers to 30 and 50 UTRs, and mutations are indicated by vertical black lines. Data file S2 in the electronic supplementary
material gives similar diagrams for the distributions of mutations in other 2R-ohnologue families in melanoma.
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ML-skewed families with other cancers, while only 20 ML-

skewed families are unique to medulloblastoma (figure 3;

electronic supplementary material, table S3).

Overall, 322 2R-ohnologue families displayed a ML skew

in two or more cancers (electronic supplementary material,
table S3). Remarkably, in 315 of these 322 families, the

same gene carried the highest ML in each of the linked

cancer types (figure 3; electronic supplementary material,

table S3 with statistical note in legend, and data file S2). Fur-

thermore, in most of these 322 families, the same gene carried



Figure 3. VisANT map of 2R-ohnologue families that display skewed MLs in different cancer types; graph created using VisANT (visant.bu.edu [27]) from the data in the
electronic supplementary material, table S3. Each cancer was assigned a node in blue and lines connect these cancers to the 2R-ohnologue families (in green, red or
orange) that display a skewed ML in that cancer. For a line to join a cancer and a 2R-ohnologue family, at least one gene in the family had to carry at least 10 different
mutations in that cancer. Also, we plotted only those families with ML skew above the thresholds of at least 0.9 for families containing two genes (that is one gene carried
more than or equal to 90% of the mutated positions for its family), at least 0.8 for families with three genes and at least 0.7 for families of four genes. The red node
labelled ‘P53-F’ is the p53/p63/p73 family, and the orange node marked ‘FOG-F’ represents FOG1/FOG2.
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the second highest ML for each family in each of the linked

cancer types (table 1; electronic supplementary material,

table S3, and statistical note in legend). For example, in the

cumulative data for nine cancer types, the protein receptor

tyrosine phosphatase PTPRD has many more mutated sites

than PTPRS, while PTPRF is rarely mutated; in seven cancers,

the Discs large homologue DLG2 is by far the most often

mutated, DLG1 second, and DLG3 and DLG4 rarely mutated;

the EGF receptor family member ERBB4 carries far more

mutations than EGFR, while ERBB2 (HER2) and ERBB3

have relatively few nucleotides mutated in seven cancers

(table 1; electronic supplementary material, table S3). Thus,

the relative MLs in such 2R-ohnologue families are under

selection pressures that act in a quantitative manner.

We checked whether any of the genes with low ML scores

in these 322 families had recurrent mutations in the same pos-

ition, indicative of potential drivers. However, there were few

repeated mutations in these low-ML genes.
3.4. A distinct group of cancers in which p53 is
the most mutated member of the p53/63/73
family has low connectivity to other mutation
load-skewed families

The ML skew characteristics of cancers in different regions of

figure 3 are summarized in table 2. Interestingly, a distinct
cluster of cancers at the bottom of the graph is characterized

by a high ML skew in the p53/63/73 family (red node on

figure 3). Green nodes are relatively sparse in this region of

the graph, meaning that these cancers have ML skews in rela-

tively few other 2R-ohnologue families. Furthermore, the ML-

skewed families associated with this cancer cluster are generally

not shared by cancers in the upper region of the graph.

The p53 gene has a higher ML than p63 and p73 in most

of the cancers in this lower cluster, namely acute myeloid leu-

kaemia (AML), acute lymphoblastic leukaemia (ALL),

bladder, colorectal, esophageal, glioblastoma, low-grade

glioma, head-and-neck, chromophobe renal cell carcinoma,

small cell lung carcinoma and lung squamous cancers

(electronic supplementary material, figure S3; figure 3).

However, the p53/63/73 family was one of only seven 2R-

ohnologue families whose ML skew switched according to

cancer type, and p63 has a far higher ML than p53 and p73

in medulloblastoma (electronic supplementary material,

table S3 and figure S3). Medulloblastoma has a low incidence

of p53 mutations associated with poor prognosis in subtypes

with activated Wnt signalling and polyploid cases with acti-

vated hedgehog signalling, but p53 mutations are generally

not in Group 3 and 4 subtypes [28–30]. However, p63

mutations were found in every medulloblastoma subtype

(electronic supplementary material, table S4).

Cancers in the upper region of figure 3, such as mela-

noma, breast and liver cancer, are not linked to the p53/

63/73 family node because, while these cancers can carry

visant.bu.edu


Table 1. Rank orders of ML scores within ML-skewed families. Electronic supplementary material, table S3, and figure 3 contain data for all the 2R-ohnologue
families that have extreme ML skews. This table shows only those families of three and four members with high ML skews in at least four cancers. The table
shows which 2R-ohnologues carry the highest number and second highest number of different mutations for its family. The last column indicates how many
cancers have that same rank order of MLs for each family. The ML scores for the 2R-ohnologue families of two members can be viewed in the electronic
supplementary material, table S3. The family identifier is an arbitrary number assigned to each 2R-ohnologue family in [7].

2R-ohnologue family identifier number
and family description

most mutated
member of the
2R-ohnologue
family

second most
mutated
family
member

least mutated
family
member(s)

no. cancers where the
proteins indicated to the
left are ranked first and
second most mutated in
the family

60 P53 tumour suppressor family P53 P63 P73 13 of 14

177 cyclic nucleotide-gated ion

channels

HCN1 HCN4 HCN2, HCN3 10 of 10

309 receptor tyr phosphatases PTPRD PTPRS PTPRF nine of nine

904 low-density lipoprotein

receptors

LRP1B LRP2 LRP1 nine of nine

724 N-acetylglucosaminyltransferases MGT4C MGT4A MGT4B eight of eight

1621 bHLH transcription factors NPAS3 SIM1 NPAS1, SIM2 seven of eight

66 Ca2þ-binding cadherin-like CSTN2 CSTN1 CSTN3 seven of seven

170 very long chain acyl-CoA

synthetases

S27A6 S27A2, S27A3 seven of seven for first;

others equal

219 phosphatidylserine receptors BAI3 BAI1 BAI2 seven of seven

289 RNA-binding proteins RALYL RALY HNRPC, HNRCL seven of seven

689 Kv channel-interacting proteins KCIP4 KCIP1 CSEN, KCIP2 seven of seven

785 EGF receptor family ERBB4 EGFR ERBB2, ERBB3 seven of seven

1117 Discs large homologues DLG2 DLG1 DLG3, DLG4 seven of seven

1547 transmembrane proteins TM14B TM14C TM14A seven of seven for first;

five of seven for second

1706 autism susceptibility AUTS2 FBSL FBRS six of seven

1727 engulfment and cell motility

proteins

ELMO1 ELMO2 ELMO3 seven of seven for first;

six of seven for second

61 Kv channel subunits KCAB1 KCAB2 KCAB3 six of six

89 synaptophysin-like proteins SYNPR SYPL1, SYPL2, SYPH six of six for first, others

equal

157 leucine-rich repeat proteins LRRC7 LAP2 SCRIB, LRRC1 six of six for first, five of six

for second

246 choline transporter-like CTL5 CTL2 CTL4 six of six for first, five of six

for second

277 Kv channel subunits KCND2 KCND3 KCND1 six of six

482 liprin family LIPA2 LIPA1 LIPA3, LIPA4 six of six

725 guanine exchange factors for

ARF GTPases

PSD3 PSD2 PSD1, PSD4 six of six for first, three of

six for second

948 protein kinase D family KPCD1 KPCD3 KPCD2 six of six

1327 Dickkopf-related, Wnt

antagonists

DKK2 DKK4, DKK1 six of six for first, others

equal

2105 C2-containing calcium sensors RP3A DOC2A DOC2B six of six

2215 type II cdc42-interacting protein

kinases

PAK7 PAK4, PAK6 six of six for first, others

equal

(Continued.)
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Table 1. (Continued.)

2R-ohnologue family identifier number
and family description

most mutated
member of the
2R-ohnologue
family

second most
mutated
family
member

least mutated
family
member(s)

no. cancers where the
proteins indicated to the
left are ranked first and
second most mutated in
the family

2275 RNA-binding splicing regulators RFOX1 RFOX3 RFOX2 six of six for first, five of six

for second

28 zinc transporters ZNT8 ZNT4 ZNT2, ZNT3 five of five for first, four of

five for second

47 histone lysine

N-methyltransferases

SMYD3 SMYD1 SMYD2 five of five for first, three of

five for second

139 PI 3-kinase regulatory subunits P85A P85B P55G five of five for first, four of

five for second

287 muscarinic acetylcholine

receptors

ACM2 ACM3 ACM1, ACM5 four of five for first, four of

five for second

479 a synaptotagmin family SYT1 SYT2 SYT5 five of five

515 hypoxia-inducible prolyl

hydroxylases

EGLN3 EGLN1 EGLN2 five of five

525 protein kinase B family AKT3 AKT2 AKT1 five of five for first, four of

five for second

649 single-stranded DNA/RNA

interacting

RBMS3 RBMS1 RBMS2 five of five

806 type II histone deacetylases HDAC9 HDAC4 HDAC5, HDAC7 five of five

872 integrin alpha family ITA8 ITAV ITA2B, ITA5 five of five for first, four of

five for second

882 accessory to TGFbeta assembly LTBP1 LTBP2 LTBP3, LTBP4 five of five

941 serotonin receptors 5HT2C 5HT2A 5HT2B five of five

1085 diacylglycerol kinases DGKB DGKG DGKA five of five

1443 zinc-finger DNA-binding

proteins

ZMAT4 ZMAT1 ZN346 five of five for first, three of

five for second

1996 localization of receptors

and ion channels

LIN7A LIN7C LIN7B four of four for first, three of

four for second

106 voltage-gated calcium channel

subunits

CAC1C CAC1D CAC1S, CAC1F four of four

140 Rab3 GTPase in exocytotic

vesicle fusion

RAB3C RAB3B RAB3D, RAB3A four of four for first, three of

four for second

193 transcription factors RUNX1 RUNX2 RUNX3 four of four

196 regulator in Ras signalling

pathway

CNKR2 CNKR3 CNKR1 four of four for first, three of

four for second

254 deubiquitylating enzymes OTU7A OTU7B TNAP3 four of four

386 dynamin vesicle trafficking

proteins

DYN3 DYN1, DYN2 four of four for first, others

equal

541 RNA-splicing protein CELF4 CELF5 CELF3, CELF6 four of four for first, three of

four for second

632 poly(rC)-binding proteins PCBP3 PCBP2 PCBP1, PCBP4 four of four

915 RNA-binding zinc-finger

proteins

Z385D Z385B Z385A four of four

(Continued.)
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Table 1. (Continued.)

2R-ohnologue family identifier number
and family description

most mutated
member of the
2R-ohnologue
family

second most
mutated
family
member

least mutated
family
member(s)

no. cancers where the
proteins indicated to the
left are ranked first and
second most mutated in
the family

1103 cell adhesion molecules CD166 MUC18 BCAM four of four for first, two of

four for second

1909 exocytosis, regulated by

diacylglycerol

UN13C UN13B UN13A four of four for first, two of

four for second

2301 vesicle regulators alcohol

dehydrogenase family

VAT1L ZADH2 VAT1 four of four

2377 histone demethylases KDM6A UTY KDM6B four of four for first, three of

four for second
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various mutations in p53 and p63, they do not display

a strong ML skew in this gene family (table 2; electronic

supplementary material, figure S3).
3.5. The p53/63/73 and FOG1/2 mutation
load-skewed families together link to
22 of the 30 cancers examined

The p53/63/73 family has an ML skew in 14 cancer types (red

nodes in figures 3 and 4a). Also linked to many cancers is the

FOG1/2 (Friend of GATA 1/2) family in which FOG2 is

more commonly mutated than FOG1 (orange node on figures 3

and 4a; electronic supplementary material, table S3). Between

them, the p53/63/73 and FOG1/2 ML-skewed families link

to 22 of the 30 cancers examined, with an overlap of only

three cancer types (figure 4a). Other 2R-ohnologue families

displaying high ML skews in 10 or more cancers are those

with the following proteins most mutated: potassium/

sodium hyperpolarization-activated cyclic nucleotide-gated

channel 1 (HCN1), tectorin alpha (TECTA), receptor-type

tyrosine-protein phosphatase delta (PTPRD), low-density

lipoprotein receptor-related protein 1B (LRP1B), MAM

domain-containing glycosylphosphatidylinositol anchor pro-

tein 2 (MDGA2) and protein phosphatase 1 regulatory

subunit 9A (neurabin-1) (electronic supplementary material,

table S3).
3.6. 2R-ohnologue families with skewed mutation loads
in cancer samples that carry activating driver
mutations in B-Raf and N-Ras

We hypothesized that cancers with drivers that activate

different signalling pathways may depend on different sub-

sets of non-mutated 2R-ohnologue effectors. Therefore, from

the 7042 samples in the dataset [15], we selected those with

activating mutations in either B-Raf or N-Ras (electronic sup-

plementary material, table S5). Generally, these two

mutations are mutually exclusive. A subset of skewed-ML

families co-occurred with either B-RafV600E or N-RasQ61K/R

in melanoma (figure 4b). Of these, a smaller subset of families
had ML skews in both the Raf- and Ras-mutated melanoma

samples; these included the type II PAK kinases (PAK7

most mutated) and FOG1/2 family (FOG2 most mutated)

(figure 4b; electronic supplementary material, table S5).

By contrast, in colorectal cancer the p53 family was one of

seven families whose ML skew (p53 most mutated) coincided

with B-RafV600E mutations, while the adenomatous polyposis

coli family (APC more mutated than APC2) had ML skews

in colorectal cancers with either B-RafV600E or N-RasQ61K/R

(figure 4b). Thus, our unbiased analysis rediscovered the

well-known dominance of APC driver mutations in these

tumours, which can also acquire Ras and p53 driver muta-

tions as they progress [31]. We note that as well as the V600E

driver mutation, B-Raf acquired 107 different mutations

in the colorectal cancer samples (electronic supplementary

material, table S3). Finding that many different B-Raf

mutations are allowed to occur in colorectal cancer (as well

as the fact that APC mutation dominates) is consistent

with findings that B-RafV600E inhibitors are generally not

therapeutically useful in this tumour type [31–33].
3.7. The relative mutation load of a 2R-ohnologue
is moderately predictive of its altered mRNA
expression in melanoma

An important question is whether the 2R-ohnologues that are

relatively free of mutations are expressed in the cancers.

While we cannot answer this question for the Alexandrov

et al. [15] dataset, other available data record differences in

mRNA levels between samples of malignant cancers compared

with benign or normal controls. We found a moderate, but

statistically significant tendency for 2R-ohnologues with low

ML scores (mutation-free relative to sister 2R-ohnologues) to

have their mRNA levels strongly upregulated in melanoma

in the E-GEOD-3189 dataset [34] (figure 5; electronic sup-

plementary material, figure S4 and table S6). A similar trend

was observed in the E-GEOD-32867 dataset, which reports

gene expression levels in lung adenocarcinoma relative to adja-

cent non-tumour tissue (electronic supplementary material,

figure S5 and table S7). These results indicate the existence of

selection pressures that affect the expression levels of certain



Table 2. Characteristics of cancers in different regions of the VisANT graph in figure 3. In this table, cancers are loosely clustered according to the indicated
characteristics. The data for mutations in p53, p63 and p73 for all cancers (from electronic supplementary material, table S2) are summarized in the electronic
supplementary material, figure S5. Note that for all cancers with at least 10 mutations in at least one member of the p53/p63/p73 family, p73 always carries
the lowest number of mutations in this dataset (electronic supplementary material, figure S3).

position on
graph in
figure 3 cancers in cluster connected to ML-skewed families

above-threshold ML skew within
p53/63/73 family?

top and sides melanoma, B-cell lymphoma, breast,

CLL, liver, lung adenocarcinoma,

pancreatic, stomach, uterus

highly connected. Each cancer has both

unique and shared ML-skewed

families

no: melanoma, liver and B-cell

lymphoma have most mutations in

p63, while the other cancers have

p53 as the most mutated protein,

but these trends are below the

skew thresholds for these cancers

to be linked to the p53/p63/p73

in figure 3

centre medulloblastoma highly connected, with 120 ML-skewed

families shared with other cancers

and 20 ML-skewed families unique

to medulloblastoma

yes: p63 is the most mutated

member of this family

bottom ALL, AML, bladder, colorectal,

esophageal, glioblastoma, glioma

(low grade), head-and-neck, lung

squamous, ovary, prostate, kidney

chromophobe

relatively few ML-skewed families are

linked to each cancer in this cluster

yes: p53 is the most mutated

member of this family

unconnected cervical, kidney papillary, kidney clear

cell carcinoma, myeloma, thyroid

unconnected to any ML-skewed families no: cancers have fewer than nine

mutations in p53/p63/p73 family

in this dataset

neuroblastoma only one ML-skewed family, namely

ALK/LTK (ALK most mutated,

including well-known mutations)

no: only one p53 mutation and two

p63 mutations in dataset

pilocytic astrocytoma connected to only three ML-skewed

families, two of which are also

highly connected to other cancers

(LRP1B-most mutated, PTPRD-most

mutated), the third being the Raf

family (B-Raf most mutated)

no: only two mutations in the

p53/p63/p73 family in dataset;

one in p63 and one in p73
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2R-ohnologues in cancer cells. The 2R-ohnologues whose

expression is altered in the cancer have a greater tendency to

be maintained with a low ML.
3.8. 2R-ohnologues with low mutation loads can be
isolated by 14-3-3-affinity capture from lysates
of melanoma cells

We also wished to assess whether 2R-ohnologues with low MLs

are expressed as proteins in the relevant cancers. To this end,

we took advantage of the fact that Ras–Raf and certain other

oncogenic signalling pathways stimulate the phosphoryla-

tion of many proteins that consequently dock onto the

phosphoprotein-binding 14-3-3 proteins [35–37]. Moreover,
the 14-3-3-binding phosphoproteome is enriched in

2R-ohnologues [7,38–41].

14-3-3-affinity capture was therefore used to isolate (phos-

pho)proteins from lysates of SKMEL13 melanoma cells that

carry B-RafV600E and also SBCL2 N-RasQ61K melanoma cells

(electronic supplementary material, figure S6, and tables S8

and S9). Of the 1007 proteins that were 14-3-3-affinity captured

and identified in a total of two experiments from both

cell lysates, 68 were previously reported 14-3-3-binding

phosphoproteins (gold standards), and 480 proteins were 2R-

ohnologues. Of these, 62 had ML scores of less than 0.2 in the

melanoma dataset of 2R families in which at least one

member had 10 or more mutations (electronic supplementary

material, table S10). These results indicate that at least some

2R-ohnologues with low ML scores are expressed as proteins

in relevant cancer cells.
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Figure 4. Associations between specific cancers and specific mutation-load-skewed 2R-ohnologue families. (a) Data extracted from figure 3, showing the cancers
for which there are ML skews in the p53/p63/p73 and FOG1/FOG2 protein families. (b) A graph showing those 2R-ohnologue families that display a skewed ML
in the cumulative data from those melanoma and colorectal cancer samples that have either a B-RafV600E or N-RasQ61K/R mutation (data in the electronic sup-
plementary material, table S5). ‘Common’ indicates 2R-ohnologue families that have a skewed ML in the data from both the B-RafV600E-mutated and the
N-RasQ61K/R-mutated samples.
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Further analysis identified candidate ‘lynchpin’ 14-3-3-

binding phosphosites in 286 of the melanoma 14-3-3-affinity

captured 2R-ohnologues [42]. Lynchpins are 14-3-3-binding

phosphosites whose positions are conserved across mem-

bers of a given 2R-ohnologue family [7]. From the overall

analysis, we assembled a stringent list of 235 known and

candidate 14-3-3 binding partners (electronic supplemen-

tary material, table S10). Interestingly, 143 proteins from
this stringent list could be mapped to the E-GEOD-3189

melanoma transcriptome dataset and were moderately over-

represented among 2R-ohnologues with low ML scores

(figure 5). Specifically, 111 of these 143 (78%) 14-3-3-affinity

captured proteins were among the 66% of this dataset that

had ML scores of less than 0.5 (electronic supplementary

material, table S6). In summary, these pilot experiments

indicate the potential of 14-3-3-affinity capture for isolating
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Figure 5. Relationships among ML of 2R-ohnologues in melanoma, cancer/
control mRNA expression in melanoma and proteins identified in 14-3-3-
affinity capture experiments using melanoma cell lysates. Each cross rep-
resents a gene in the E-GEOD-3189 transcription profiling dataset [34]. The
log2 ratio of mRNA expression in malignant melanoma versus benign mela-
nocytic lesions in the E-GEOD-3189 dataset is plotted on the y-axis against
the ML score of the gene calculated from the Alexandrov et al. [15] data
on the x-axis. The genes whose mRNA levels are most strongly up- or down-
regulated in melanoma are in red and blue, respectively. Also plotted (circles)
are the proteins that were isolated by 14-3-3-affinity capture of cell lysates
from both SKMEL13 and SBCL2 melanoma cells, and identified by mass spec-
trometric analyses. The data used for this figure are in the electronic
supplementary material, table S6.
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2R-ohnologue proteins to dissect their biochemical regulation

in cancers.
3.9. Overexpression of protein kinase 2R-ohnologues
with low mutation load scores decreased the
sensitivity of B-RafV600E-mutant melanoma cells
to PLX4720

One further observation is consistent with the notion that 2R-

ohnologues with low ML scores are functionally relevant for

cancer: Wood et al. [43] screened for protein kinases whose

overexpression rendered B-RafV600E-melanoma cells resis-

tant to the B-RafV600E inhibitor, PLX4720. We noted that

2R-ohnologue protein kinases with low ML scores in mela-

noma (this study) tended to be better at rendering cells

resistant to PLX4720 [43], compared with their sisters that

have high ML scores (table 3). The trend of ‘highest viability

score ¼ lowest ML score’ was observed even within protein

kinase families that display moderate ML skews in melanoma

(table 3). This finding suggests that the protein kinases with

low ML scores may contribute to melanoma progression by

a mechanism that is linked to B-RafV600E.
4. Discussion
Here, knowledge of the evolutionary history of the human

genome was used to unlock patterns in a heterogeneous data-

set of somatic mutations from many cancers. Our findings

cannot be accommodated within the conventional binary

driver/passenger model [16,32].
In every cancer type examined, somatic mutations are

more prevalent in 2R-ohnologues than in non-ohnologue

genes. Because 2R-ohnologues are enriched in signalling pro-

teins [6,7], this finding is consistent with cancer being a

disease in which regulatory processes go awry.

A second finding was that in a subset of cancers—particu-

larly melanoma, lung adenocarcinoma, breast and liver

cancers, B-cell lymphoma and medulloblastoma—there are

2R-ohnologue families in which one gene carries multiple

mutations in the cumulative data, while sister genes in the

same family are relatively mutation-free. Most notably, in 315

out of the 322 2R-ohnologue families displaying a high skew

in multiple cancers the same gene carries the heaviest ML in

each cancer, and for families of more than two members,

usually the second-ranked gene is also the same in each cancer.

Generally, each gene in a 2R-ohnologue family is on a

different chromosome, and the non-mutated 2R genes in

the ML-skewed families are widely distributed in the

genome. It therefore seems unlikely that all of these are in

genomic regions that are protected from mutation, though

this possibility must be formally tested.

Rather, we favour a conceptually simple working model

(figure 6). The invertebrate ancestor of the vertebrates is

depicted as having cells controlled by linear regulatory

pathways. Via the 2R-WGD leap, these pathways were quadru-

plicated, generating the complex networks that transmit

multiple regulatory signals in vertebrate cells. In certain cancers

such as melanoma and breast cancer, heterogeneous patterns of

multiple mutations (black crosses in figure 6) result in the shut-

down of certain routes through these communication networks.

Information flow is therefore forced through a limited number

of ‘open’ network pathways, which are driven by activating

oncogenic driver mutations (star symbols in figure 6) and also

depend on specific non-mutated 2R-ohnologues as effectors.

In this model, driver mutations that activate the ‘open’

oncogenic pathways will be under positive selection, whereas

essential effectors of these drivers will be under purifying

selection to be maintained mutation-free. By contrast, 2R-

ohnologues in the ‘shut down’ part of the signalling network

will experience different selection pressures that vary with

time. Our findings indicate quantitative hierarchies in how

mutation burdens are distributed across 2R-ohnologue

families in cancers that conform to our model. We therefore

suggest that mutations that block tumour-suppressing path-

ways through the network will be under positive selection

until these routes are closed, at which time these pathways

will join the ones that are irrelevant to the cancer, where

further mutations will be under neutral selection.

The heterogeneity of so-called passenger mutations is

generally taken to imply that these represent clinically incon-

sequential ‘noise’. However, in our model such heterogeneity

reflects the possibility that there are multiple ways to disable

parts of the 2R-WGD networks, while still leaving the onco-

genic pathways open. These findings raise challenging

questions of redundancy and essentiality of family members

at the biochemical level. Why are certain 2R genes quantitat-

ively more important to a cancer than their sisters? As more

cancer mutation data are collected, it will be fascinating to see

how the overall ML rankings resolve.

Through this study, we realize that recurrent oncogenic

driver mutations, genes with multiple mutations and non-

mutated genes can each occur within the same 2R-ohnologue

family, or even in the same gene, in different cancer contexts.



Table 3. Overexpression of protein kinase 2R-ohnologues with low mutation scores decreased the sensitivity of B-RafV600E-mutant melanoma cells to PLX4720.
The viability score assigned by Wood et al. [43] refers to the ability of the protein kinase, when overexpressed, to enhance the viability of B-RafV600E-mutant
melanoma (A375) cells exposed to the B-RafV600E inhibitor, PLX4720. Seven 2R-ohnologue families of protein kinases had least one member among the top hits
of the Wood dataset [43] and at least one member with at least 10 mutations in melanoma in the Alexandrov dataset [15]. The cell viability scores [42] and
ML scores (this study) are shown for each member of these seven families. The family Id is an arbitrary number assigned to identify each 2R-ohnologue family
in [7]. n.a., data not available.

2R-ohnologue
family Id

protein
name

UniProt
Id

viability
score [42]

ML score in melanoma
(electronic supplementary
material, table S2)

is ML skew in melanoma above
threshold for inclusion in figure 3
and the electronic supplementary
material, table S3?

378 NTRK2 Q16620 1.23 0.0777 no

378 NTRK1 P04629 1.07 0.3932 no

378 NTRK3 Q16288 n.a. 0.2621 no

378 MUSK O15146 0.76 0.2670 no

1058 MST1R Q04912 1.13 0.2923 no

1058 MET P08581 1.03 0.7077 no

1085 MAPK8 P45983 1.18 0.1563 no

1085 MAPK9 P45984 0.93 0.3438 no

1085 MAPK10 P53779 0.79 0.5000 no

1548 SRPK3 Q9UPE1 1.16 0.2195 no

1548 SRPK1 Q96SB4 0.95 0.3415 no

1548 SRPK2 P78362 0.86 0.4390 no

1666 PIM2 Q9P1W9 1.15 0.3182 no

1666 PIM1 P11309 1.11 0.5000 no

1666 PIM3 Q86V86 n.a. 0.1818 no

1780 LIMK1 P53667 1.17 0.3103 no

1780 LIMK2 P53671 0.94 0.6897 no

2215 PAK6 Q9NQU5 1.21 0.0877 yes

2215 PAK4 O96013 0.97 0.0789 yes

2215 PAK7 Q9P286 0.86 0.8333 yes

rsob.royalsocietypublishing.org
Open

Biol.4:140029

12
For example, neuroblastoma presented with only one ML-

skewed gene family (the ALK/LTK receptor tyrosine kinases),

which includes driver mutations known to activate ALK in this

disease [44]. However, the cumulative data for lung adenocar-

cinoma, breast and liver cancers contain a few hundred

different mutations in ALK, but few in its sister LTK, an imbal-

ance that is inconsistent with ALK being an activated driver in

these cancers.

An important question arising from our model is whether

the mutation-free 2R-ohnologues that are putative effectors

of oncogenic drivers will be good targets for therapeutic inter-

vention. While a logical proposition, unfortunately these

mutation-free genes are largely understudied. For example,

there is intense focus of research on the inactivating mutations

in APC in colorectal cancers [31]. However, it is conceivable

that the loss of APC renders these cancers dependent on

APC2, and to our knowledge this hypothesis has not been

tested. Similarly, many FOG2 mutations, but few in FOG1,

were found in 11 cancer types. Therefore, targeting FOG1 for

inactivation seems logical. Furthermore, the FOG family

(FOG2 most mutated) was among several 2R families whose

skewed MLs coincided with activating B-RafV600E and N-Ras

driver mutations in melanoma. Targeting aberrant Raf

signalling is therapeutic in melanoma [31,33], so it will be
important to define the biochemical relationships between

Ras–Raf signalling and FOG proteins in melanoma. Interest-

ingly, FOG1 interacts with the GATA transcription factors,

which include GATA2, which is essential for proliferation of

cancer cells carrying oncogenic K-Ras [45]. The type II PAK

kinases (PAK7 most mutated) also showed a ML skew in

melanomas with B-RafV600E and N-Ras driver mutations. Fur-

thermore, PAK4 and PAK6 have much lower MLs than PAK7

in six cancers; PAK4, PAK6 and PAK7 are 14-3-3-binding

phosphoproteins [42,46]; PAK4 was 14-3-3-affinity captured

here from melanoma cell lysates; and overexpressed PAK4

and PAK6 were more effective than PAK7 in enhancing the via-

bility of B-RafV600E-mutant melanoma cells exposed to

PLX4720 [43]. These findings suggest that, for unknown

reasons, the PAK4/PAK6 kinases are more important than

PAK7 in melanoma.

STRING analysis [47] revealed that the protein families with

ML skews in multiple cancers include regulatory proteins in

growth factor signalling (families whose most multiply-

mutated members are ERBB4, AKT3, GSK3B, ALK, KPCD1,

PAK7, KCC1D, AAKG2, KPCT, FER, PTPRD, LIPA2, PTPRR,

P2R3A, P85A, P3C2G, INP4B, PPM1H, IRS1, GRB2, RHEB,

OTU7A), chromatin function (FOG2, RUNX1, ANM8, TREF1,

SMYD3, HDAC9), membrane and cytoskeletal dynamics



hypothesis: in certain
cancers, heterogeneous

mutations   
disconnect parts of the
2R-WGD networks,

forcing information to
flow via restricted routes

that are activated by
specific driver

mutations      and
operated by non-
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Figure 6. Simplified model that depicts cancer as a disorder of signal multiplexing in the cellular 2R-WGD networks of vertebrate animals. (a) The ancestor of all the
vertebrates was an invertebrate chordate whose cells are depicted as being under the control of simple linear regulatory pathways. The image is of amphioxus (Bran-
chiostoma), regarded as the best modern-day proxy for the ancestor. (b) 2R-WGD at the evolutionary origins of the vertebrate animals boosted communication networks
inside our cells. Variations in these networks may underpin variety of vertebrate cell types, species and behaviours. (c) We hypothesize that certain cancers arise when
different heterogeneous combinations of mutations (crosses) disconnect certain parts of the 2R-WGD regulatory networks and force too much communication flow via a
restricted number of oncogenic pathways. These ‘open’ oncogenic pathways are activated by specific driver mutations (stars) and also require effector proteins that must
remain mutation-free. If these effectors acquire too many deleterious mutations, the cancer cell will be lost. Though the model only depicts 2R families with high ML
skews, it could be extended to include other patterns. For example, 2R families whose members carry an even ML may be in parts of the network where any member can
perform the family function for the cancer, or represent functions whose total elimination gives a selective advantage to the cancer. In its simple form, the model assumes
that when genes are hit by a number of different mutations (crosses) these will include loss-of-function mutations. However, it is appreciated that this may not always be
so, in which case the rules of the model would change. The model highlights that the contribution of both mutated and non-mutated 2R-ohnologues to the overall
function of each family in the cancer should be considered.
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(UN13C, ELMO1, RAB3C, RB11A, TSNA1, RBG1L, MTUS2,

RASF9, GAS2, RHG06, RRAS2, EXT1, SYT1), neurotrans-

mission (AUTS2, DLG2, AMMR1, HIP1, CBLN2, NPAS3,

CABP8, BAI3, DAB1, SYNPR, DCC, 5HT2C, LIN7A, CRUM1,

ACM3, neurabin-1), ion channels (HCN1, KCIP4, KCAB1,

KCND2), protein glycosylation (XYLT1, MDGA2, MGT4C,

LARGE), extracellular matrix (TECTA, FREM2), angiogenesis

and responses to hypoxia (BAI3, EDIL3, EGLN3). While the

most mutated family members are listed here for linguistic

ease, we propose the least-mutated members for attention as

potential therapeutic targets. Many of these protein families

have known functional links with cancer and metastases, but

this dataset is also rich in ion channels and neurotransmitter

systems; this is intriguing, since most of the analysed cancers

are not in excitable nervous tissues. Interestingly, tumours exhi-

bit bioelectric changes and ion channel modulation is being

explored for cancer therapy [48,49].

A distinct subset of cancers (ALL, AML, bladder, colorec-

tal, glioblastoma, glioma, head-and-neck, ovary, kidney

chromophobe) was characterized by an ML skew towards

mutations in p53, and not p63 or p73. These cancers have

relatively few other 2R-ohnologue families with high ML

skews, and the ones that they did have generally differed

from the ML-skewed families in breast, melanoma, lung ade-

nocarcinoma and liver cancers. These ‘p53-mutated, but not
p63/p73-mutated’ cancers may therefore require a tailored

version of the model (figure 6) to be developed.

Finally, it has been considered paradoxical that ‘dangerous’

cancer genes from the 2R-WGD were selectively retained

during vertebrate evolution [11]. An alternative view is that

the robustness of 2R-ohnologue signal-multiplexing networks

enables vertebrates to survive long enough to develop

cancer. Mutating one 2R-ohnologue may not be lethal if

other members of the family can at least partially compensate.

However, if such mutations disconnect that protein family

from certain signalling networks, cells will get stuck in one sig-

nalling mode, generating the cancer phenotype. It is fascinating

to discover how an ancient evolutionary leap left its mark on

the genomes of vertebrate animals, on signalling complexity

and on the diseases of modern humans.
5. Material and methods
5.1. Mapping mutations to genes and computing

mutation load scores of 2R-ohnologues
The chromosomal locations of single and double nucleotide

substitutions, small insertions and deletions within the Alexan-

drov et al. [15] dataset were mapped onto nucleotide positions
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within protein-coding and pseudogene-RNA genes in the

Ensembl 72 dataset. Briefly, the BioMart service of Ensembl

(www.ensembl.org) was used to retrieve the gene positions,

and a Python script was compiled to identify the mutations

that map within a given gene. Mutations involving more than

one nucleotide were mapped to the first nucleotide change.

Each mutation that maps onto the same starting nucleotide

was considered only once. For example, for the B-Raf gene,

the V600L and V600K amino acid substitutions start on the

same nucleotide (1798G . C and 1798_1799GT . AA, respect-

ively) and would count as one, whereas the V600E substitution

starts one base after (1799T . A) and would be counted separ-

ately. Gene copy number changes and changes involving more

than one gene were not considered. Genes annotated as pseudo-

genes were included in our analysis, because functions have

been identified for many such genes.

The ML for each gene was computed by summing the

total number of different mutations identified for a gene

(PROT ML) divided by the sum of all mutations identified

in the 2R-ohnologue family components of the gene under

analysis. This number scores from 1 to 0 and identifies the

genes in any 2R-ohnologue family that are prone to accumu-

late mutations (score close to 1) or are clear of mutations

(score close to 0).

The genomic nucleotide positions of mutations were trans-

lated with a Python script into the transcript nucleotide position

of a protein-coding gene for making pictures of the MLs of the

different family members. The BioMart service of Ensembl was

used to retrieve the transcript genomic coordinates, and the

longest transcript for each gene was used for this analysis.

5.2. Lack of mutations: biological reality or
missing data?

The mutation data were derived from 507 whole genome and

6535 exome sequencing studies, and further sequencing vali-

dation experiments performed by Alexandrov et al. [15], the

Cancer Genome Atlas, International Cancer Genome Consor-

tium and other laboratories [15]. For our study, it was critical

that genes that record few mutations represent biological reality

and not false negatives due to lack of sequence coverage. There

is unevenness in the dataset because, while the exome enrichment

platforms that were used (Agilent, Nimblegen and Illumina) cap-

ture mainly protein-coding regions of genes, the Illumina

platform gives reads in 30 and 50 untranslated regions (UTRs)

[50] (figure 2b; electronic supplementary material, data file S2).

However, we did not exclude UTRs from our analysis, after

checking that this would not have a general effect on which

2R-ohnologue families were designated to display an ML skew.

Each exome sequencing platform misses certain ‘difficult’ regions

[50]. However, with the possible exception of pseudogenes, the

raw data in the primary studies cited in [15] give no indication

of technical biases that would result in specific genes being

systematically missed in the cumulative data.

5.3. Melanoma cell culture, 14-3-3-affinity
chromatography and mass spectrometric
identification of proteins

SKMEL13 (B-RAFV600E) and Sbcl2 (N-RASQ61K) melanoma

cells were cultured in RPMI and Dulbecco’s modified
eagle medium, respectively. Media were supplemented

with 10% (v/v) fetal calf serum (Thermo Scientific), 2 mM

L-glutamine, 50 units ml21 penicillin G and 50 mg ml21

streptomycin (Life Technologies), and cells cultured under

5% CO2 at 378C. Lysates were prepared as in [51] and subject

to 14-3-3-affinity chromatography. Briefly, proteins were

bound to 14-3-3-Sepharose, and specifically bound proteins

eluted by competition with the 14-3-3-binding synthetic

phosphopeptide, ARAApSAPA, as in [35] except that the

high salt wash was only 500 ml and the mock peptide elution

was omitted. The eluted proteins were denatured in 4� LDS

sample buffer (Life Technologies) containing 10% sample

reducing agent at 708C for 10 min, cooled and alkylated

with 50 mM iodoacetamide for 30 min in the dark at

room temperature. Proteins were separated on NuPAGE

4–12% gradient gels and stained with colloidal Coomassie

Blue (Life Technologies). Gel lanes were cut into 20 sections

(electronic supplementary material, figure S6), which

were washed successively with 50 mM triethylammonium

bicarbonate; 50% acetonitrile, 50 mM triethylammonium

bicarbonate (twice); and acetonitrile (15 min each wash),

before drying in a SpeedVac (Eppendorf). Trypsin

(5 mg ml21 trypsin gold; Promega) in sufficient 25 mM

triethylammonium bicarbonate to cover the gel pieces was

added for 12 h at 308C. Supernatant was transferred to a

fresh tube, to which two 50% acetonitrile washes of the gel

pieces were also added. The digested samples were dried,

and each digest was redissolved in 2 ml of 25 mM sodium

acetate buffer, pH 5.5, 30 mM sodium cyanoborohydride

containing 0.2% (v/v) formaldehyde and incubated at

room temperature for 15 min. Tryptic digests were analysed

using Ultimate 3200 nanoflow chromatography (LC Packings)

coupled to an LTQ-Orbitrap (Thermo Finnigan) mass spec-

trometer equipped with a dynamic NanoSpray source

(Optron). For protein identification, mass spectra were acquired

using the LTQ-Orbitrap programmed to perform two FT

scans (60 000 resolution) on 300–800 and 800–1800 amu mass

ranges with the top five ions from each scan selected for

LTQ-MS/MS. FT spectra were internally calibrated using a

single lock mass (445.1200 atomic mass units). Raw files

were converted to peak lists in Mascot generic format

(MGF) files using RAW2MSM v. 1.7 software (Matthias Mann)

using default parameters and without any filtering, charge

state deconvolution or deisotoping. MGF files were searched

using a Mascot 2.2 in-house server against the Internatio-

nal Protein Index human 3.26 database (57 846 sequences;

26 015 783 residues).
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