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Abstract

The therapeutic landscape for advanced melanoma has expanded in recent years. This expansion 

has largely been driven by investigational work in melanoma tumor biology and immunology that 

has been successfully translated to the clinical setting. Molecular evidence generated through 

benchside experimentation identified BRAF and MEK as key molecular targets in melanoma. This 

commentary will highlight this work and provide a rationale for the continued importance of 

translational work in the field of targeted melanoma therapies.

Introduction

Recent progress in melanoma drug development highlights the critical impact that 

translational research plays in advancing patient care. Prior to 2011, dacarbazine, interleukin 

(IL)-2, and interferon (IFN)α-2b were the only Food and Drug Administration (FDA) 

approved treatment options for metastatic melanoma. These early therapies resulted in poor 

and inconsistent overall response rates (~10–15% (Eggermont and Kirkwood, 2004)). A 

renaissance in melanoma therapeutics occurred with the recognition that molecular 

aberrations in the mitogen-activated protein kinase (MAPK) pathway (Figure 1) were 

present in a majority fraction of melanomas. (Davies et al., 2002) These investigations 

resulted in the vigorous pursuit of small molecule kinase inhibitors and the eventual FDA 

approval of 3 novel MAPK pathway inhibitors for the treatment of advanced melanoma 

(Figure 1). Although key insights into immune checkpoint blockade have generated a similar 

number of recent immunotherapeutic breakthroughs (Brahmer et al., 2012; Hamid et al., 

2013; Hodi et al., 2010), this commentary will focus on the development of molecular 

targeted therapies.

Melanoma arises from the activation, or inactivation, of genes that regulate critical cellular 

functions including proliferation, cell cycle regulation, survival, angiogenesis, and cell 

migration. Efforts to systematically codify these changes have uncovered molecularly 
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discrete subsets of melanoma (Curtin et al., 2005). For instance, melanomas arising in the 

context of non-chronic sun-damaged (CSD) skin are associated with BRAF and NRAS 

mutations while lesions that arise from mucosal and acral surfaces are linked to KIT 

alterations (Curtin et al., 2005). Moreover, some melanomas that lack NRAS or BRAF 

mutations harbor deleterious lesions in NF1 or amplifications of CCND1 and CDK4 (Lin et 

al., 2008), which are downstream mediators of cell cycle progression in the MAPK pathway 

(Figure 1). These data suggests that inasmuch as melanomas ought to be classified 

histologically, molecular subtyping may provide a more pragmatic approach as specific 

therapies targeting receptor tyrosine kinases, downstream kinases, and other signaling 

molecules become available. Table 1 highlights key clinical trials that have expanded the 

treatment landscape of melanoma with targeted therapies.

BRAF inhibition

The rationale for targeting BRAF is evident since the Val-600-Glu mutation in the BRAF 

kinase domain is the single most common mutation in cutaneous melanoma (Davies et al., 

2002). This substitution constitutively activates BRAF and its attendant downstream MAPK 

pathway effectors such as MEK (Figure 1). Although 50% of melanomas harbor the BRAF 

V600E mutation, nearly 80% of benign nevi also contain the identical mutation (Pollock et 

al., 2003). Thus, it is an early genetic lesion that is neither necessary nor sufficient to fully 

induce melanoma. Preclinical work demonstrated that BRAF knockdown reduced tumor 

formation in murine xenograft models, and selective small molecule inhibitors of RAF 

suppressed BRAF-mutant melanoma cell lines (Hoeflich et al., 2006; Joseph et al., 2010). 

These translational studies show that BRAF is a well-validated target, and set the stage for 

the development of BRAF inhibitors for clinical use.

Early studies targeting RAF employed sorafenib, a multi-kinase inhibitor that has activity 

against BRAF and CRAF, but resulted in little to no clinical activity as monotherapy (Eisen 

et al., 2006; Ott et al., 2010). Selective BRAF inhibitors (i.e. those agents that specifically 

target mutant BRAF over wildtype BRAF), however, demonstrated impressive results in 

melanoma. The small molecule inhibitors vemurafenib and dabrafenib selectively bind the 

active conformation of BRAF and inhibit signal transduction between BRAF and MEK. A 

phase III trial, BRIM-3, of vemurafenib versus dacarbazine as first-line therapy for BRAF 

V600E mutated metastatic melanoma demonstrated improved median progression free 

survival (PFS; 5.3 vs 1.6 months) and better overall survival (OS; 84% vs 64%) at 6 months 

in the vemurafenib versus dacarbazine groups, respectively (Chapman et al., 2011). The 

most commonly detected toxicities of vemurafenib included cutaneous eruptions, 

arthralgias, photosensitivity reactions, and cutaneous squamous cell carcinomas that were 

observed in 26% of patients. These results led to the FDA approval of vemurafenib 

(Zelboraf) in August 2011 for the treatment of unresectable BRAF V600E mutant 

melanoma.

Another phase III trial, BREAK-3, compared dabrafenib to dacarbazine in the treatment of 

patients with unresectable, metastatic, BRAF V600E mutation positive melanoma. 

BREAK-3 demonstrated similarly impressive results as BRIM-3. Patients in the dabrafenib 

arm had improved median PFS when compared to those in the dacarbazine arm, 5.1 versus 
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2.7 months, respectively, with a hazard ratio (HR) for progression of 0.30 (95% CI 0.18 – 

0.51; p<0.0001) (Hauschild et al., 2012). However, one important distinction between the 2 

trials is that the primary endpoint for BREAK-3 was PFS, whereas the co-primary endpoint 

for BRIM-3 was PFS and OS. Dabrafenib also demonstrated remarkable efficacy in the 

treatment of intracranial metastases (Long et al., 2012). Though vemurafenib and dabrafenib 

appear to have similar efficacy with respect to overall response rates, patients in the 

vemurafenib trials had higher rates of cutaneous squamous cell carcinomas, 18 – 25%, when 

compared to those in the dabrafenib trials, 6 – 11% (Chapman et al., 2011; Hauschild et al., 

2012). BREAK-3 led to the FDA approval of dabrafenib (Tafinlar) in May of 2013 for the 

treatment of unresectable melanoma harboring BRAF V600E.

MEK inhibition

Solit et al. reported early pre-clinical results that melanoma sensitivity to MEK inhibition 

was also correlated with the presence of the BRAF V600E mutation (Solit et al., 2006). 

Thus, pharmacologic attenuation of MEK signaling represents another possible approach for 

BRAF-mutated tumors. Exome sequencing of metastatic melanoma specimens identified 

somatic mutations in MEK1 and MEK2 as potential clinically significant aberrations, 

characterizing MEK1 and MEK2 mutations in 8% of melanomas (Nikolaev et al., 2012). 

Moreover, pharmacological MEK blockade completely abrogated tumor growth in BRAF 

mutant xenografts (Solit et al., 2006). These data provided the rationale for a phase III trial, 

METRIC, which compared trametinib, a small molecule selective MEK1/2 inhibitor, to 

chemotherapy (dacarbazine or paclitaxel) in the treatment of patients with BRAF V600E/K 

mutant positive metastatic melanoma. Compared with patients receiving chemotherapy, 

patients treated with trametinib demonstrated significant improvement in median PFS (1.5 

versus 4.8 months; HR 0.45; 95% CI 0.33 – 0.63; p<0.001) and 6-month OS (67% versus 

81%; HR 0.54; 95% CI 0.32 – 0.92; p=0.01), despite being permitted to crossover to 

trametinib. Though cutaneous eruptions were observed as an adverse effect in 87% of 

patients, trametinib treatment was minimally associated with the development of cutaneous 

squamous cell carcinomas. Other toxic effects such as diarrhea and peripheral edema 

occurred in 35% and 27% of patients, respectively (Flaherty et al., 2012b). Trametinib 

(Mekinist) gained FDA approval in May 2013 for the first-line treatment of patients with 

unresectable, BRAF V600E/K mutant positive melanoma.

Combination BRAF and MEK inhibition

Despite the impressive levels of tumor shrinkage observed in BRAF mutant melanoma 

patients treated with small molecule BRAF inhibitors, responses are typically short-lived 

with a PFS of approximately 7 months (Chapman et al., 2011; Hauschild et al., 2012). 

Importantly, molecular studies characterized a number of potential mechanisms of resistance 

and demonstrated that combined BRAF and MEK inhibition effectively abrogated resistance 

mediated by MEK1 mutations, BRAF truncation, and acquired NRAS mutations (Paraiso et 

al., 2010; Poulikakos et al., 2011; Wagle et al., 2011). In order to “over-suppress” MAPK 

signaling, a phase I/II trial demonstrated that combination dabrafenib and trametinib at full 

monotherapy doses improved response rate (76% vs 54%, p=0.03) and PFS (10.5 versus 5.6 

months; HR 0.39; 95% CI 0.25 – 0.52; p<0.001) when compared to dabrafenib alone, 
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respectively (Flaherty et al., 2012a). Based on these results, both dabrafenib and trametinib 

received accelerated FDA approval in January of 2014 for use in the treatment of patients 

with metastatic melanoma with a BRAF V600E/K mutation. Three recent phase III trials 

corroborated these early results. The combination of vemurafenib and the MEK inhibitor 

cobimetinib improved PFS (9.9 versus 6.2 months; HR 0.51; 95% CI 0.39 – 0.68; p<0.001) 

and OR (68% versus 45%; p<0.001) when compared to vemurafenib alone (Larkin et al., 

2014). In another expanded study, the combination of dabrafenib and trametinib improved 

PFS (9.3 versus 8.8 months, HR 0.75; 95% CI 0.57 – 0.99; p=0.03) and OR (67% versus 

51%, p = 0.002) when compared to dabrafenib alone (Long et al., 2014). The much 

anticipated trial of the combination dabrafenib and trametinib demonstrated improved PFS 

(11.4 vs 7.3 months, HR 0.56, 0.46 – 0.69; p < 0.001) and OS (72% vs 65%, HR 0.69; 0.53 

– 0.89, p = 0.005) when compared to vemurafenib as monotherapy (Robert et al., 2014). 

Consistent with earlier studies, combination treatment led to lower rates of cutaneous 

squamous cell carcinoma formation compared to BRAF monotherapy. Thus, at this juncture, 

dual BRAF and MEK inhibition is quickly emerging as a standard-of-care for BRAF V600E 

mutated melanomas.

Looking forward

Indeed, molecular targeted therapy has proven successful in the treatment of melanoma. 

Future directions include optimizing the currently available drugs for maximal clinical 

benefit and also the identification of novel therapeutic targets in melanoma. The above 

discussion highlights the significant clinical benefit of selective BRAF inhibitors and the 

eventual relapse that occurs in patients treated with this modality. Combination therapy 

targeting BRAF and MEK is one potential avenue to abrogate this resistance that has been 

explored clinically. Work in human melanoma xeno-graft models suggests another approach 

to delay BRAF inhibitor resistance. These studies demonstrate that vemurafenib-resistant 

melanoma cells maintain dependency on BRAF V600E signaling via BRAF V600E 

overexpression. Intriguingly, the vemurafenib-resistant tumors in this model demonstrate 

dependency on vemurafenib for continued proliferation, such that cessation of the drug leads 

to tumor regression (Das Thakur et al., 2013). This suggests that a pulsed dosing strategy 

may forestall eventual vemurafenib-resistant tumors. As novel targeted therapies for 

melanoma emerge, one key clinical challenge will be developing optimal therapeutic 

regimens or combinations of therapies that will provide the most durable clinical response.

Inasmuch as the ideal treatment regimen of the existing melanoma drugs are being 

investigated, therapies targeting novel melanoma targets are in development. Given the 

genetic diversity of melanoma cells, there exist other attractive therapeutic targets including 

PI3K, CDK4, ERK, NF1, PPP6C, BCL-2, HSP90, mTOR, PDGF, Notch, MITF, and RAC1. 

Pre-clinical studies have begun to lay a foundation for further efforts to confirm clinical 

relevance.

PTEN/PI3K

Molecular aberrations in the PI3K pathway play an important role in the pathogenesis of 

melanoma (Figure 1). The tumor suppressor PTEN negatively regulates PI3K signaling and 

has emerged as the dominant genetic target in the PI3K pathway for melanoma therapies. 
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PTEN mutations were found in 40% of melanoma cell lines and 10% of primary melanomas 

(Guldberg et al., 1997; Tsao et al., 1998b). Moreover, PTEN forced expression of PTEN in 

PTEN-deficient melanoma tumor cells abrogate activation of the downstream PI3K effector 

molecule AKT and cell growth (Robertson, 2005). Mouse models have suggested that PTEN 

dysregulation acts in concert with BRAF V600E to promote melanoma tumorigenesis and 

that targeting both MEK and the PI3K pathway in these mice inhibits tumor growth 

(Dankort et al., 2009). These data strongly implicate PTEN and the PI3K pathway in the 

development of melanoma. Clinical trials targeting the PI3K pathway in combination with 

inhibiting the MAPK pathway in melanoma are currently underway (Table 2).

CDK4/6

Inappropriate CDK4/6 activity can result from rare activating mutations of CDK4 (Tsao et 

al., 1998a; Zuo et al., 1996), or more commonly, loss of p16 (Figure 1). Knock-in mice 

expressing CDK4 mutations display enhanced melanoma in response to carcinogen 

exposure (Sotillo et al., 2001). Thus, small molecule inhibitors targeting CDK4/6 may also 

be an effective strategy to target the cell cycle, and several agents are currently in clinical 

trials (Table 2).

The development of novel targeted therapeutic interventions in the treatment of advanced 

melanoma demonstrates the importance of translational studies. Characterization of the 

molecular aberrations present in different subsets of melanoma cells has driven the 

development of therapies targeted specifically at mutations proven to contribute to 

melanomagenesis. Pre-clinical and clinical efforts have led to the recent approval of a 

number of therapeutic agents that have improved the PFS and OS of advanced melanoma 

patients. Despite these successes, there remains much work to be done to characterize and 

exploit other molecular targets, to overcome resistance and adverse effects associated with 

the recently approved agents, and to evaluate how best to combine these new interventions 

to maximal benefit. The “bench to bedside” model provides an effective and efficient means 

to achieve these goals.
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Figure 1. 
Molecular targeting of the mitogen-activated protein kinase (MAPK), PI3K, and CDK4 

pathways and the associated mutation rates of potential molecular targets in advanced 

melanoma (Hodis et al., 2012). Activation of a receptor tyrosine kinase such as c-KIT 

results in the propagation of signal via the MAPK pathway leading to activation of RAS, 

RAF, MEK and ERK. This ultimately results in the gene expression and promotes cellular 

proliferation and survival. Mutated BRAF bypasses this ordered pathway and stimulates 

constitutive signaling, making it a prime target for vemurafenib and dabrafenib. Trametinib 

targets the downstream effector molecule MEK. Dysregulation of the PI3K pathway 

promotes melanoma progression. Small molecule inhibitors of the PI3K pathway are being 

clinically tested in combination with MAPK pathway inhibition. Similarly, CDK4 is an 

attractive candidate molecule to target in melanoma and is the focus of multiple clinical 

trials. Red=activated; gray=inactivated; green=normal function. Drugs (shown in boxes) that 

have been approved (bold), or in trial (non-bold, italics), are indicated.
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Table 2

Table of combined melanoma targeted therapies in progress.

Clinical trial number Description

NCT01512251 BKM120 (PI3K inhibitor) + vemurafenib in BRAF V600E/K advanced melanoma

NCT01616199 PX866 (PI3K inhibitor) + vemurafenib in advanced melanoma

NCT01363232 Safety and pharmacodynamics of BKM120 (PI3K inhibitor) + MEK162 (MEK1/2 inhibitor) in advanced solid tumors

NCT01673737 Phase I/Ib trial of SAR260301 (PI3K inhibitor) +/− vemurafenib in advanced cancers

NCT01820364 LGX818 (RAF inhibitor) + MEK162, BKM120, LEE011, BGJ398, or INC280 in advanced BRAF melanoma

NCT02065063 Safety, anti-cancer activity, and pharmacodynamics of trametinib + palbociclib (CDK4/6 inibitor) in solid tumors

NCT01777776 Safety and efficacy of LEE011 (CDK4/6 inhibitor) + LGX818 (RAF inhibitor) in BRAF melanoma

NCT01826448 Phase1b trial of PLX3397 (Kit inhibitor) + vemurafenib in BRAF melanoma

NCT01928940 Japanese Phase I/II trial of GSK2118436 (dabrafenib) + GSK1120212 (trametinib) in BRAF solid tumors and 
cutaneous melanoma

NCT01433991 E7050 (cMET + VEGF inhibitor) + E7080 (VEGF inhibitor) in glioblastoma or advanced melanoma

NCT01909453 LGX818 (RAF inhibitor) +/− MEK162 (MEK1/2 inhibitor) vs vemurafenib in BRAF melanoma

NCT01701037 Dabrafenib +/− trametinib before surgery in advanced melanoma that can be removed surgically

NCT01562899 MEK162 (MEK1/2 inhibitor) + AMG479 (IGFR-1 mAb) in solid tumors

NCT01519427 Selumetinib (MEK inhibitor) + MK2206 (AKT inhibitor) in advanced melanoma that failed vemurafenib or 
dabrafenib

NCT01271803 Vemurafenib + GDC0973 (MEK inhibitor) in BRAF advanced melanoma

NCT01380818 MEK inhibitor + PI3K/mTOR inhibitor in advanced solid tumors

NCT01781572 Phase Ib/II trial of LEE011 (CDK4/6 inhibitor) + MEK162 (MEK1/2 inhibitor) in NRAS melanoma
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