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Simple Summary: To support health care providers in clinical decision-making for breast cancer (BC)
patients, profiles of gene activity patterns have previously been developed, where the majority have
been based on messenger RNAs (mRNAs), molecules coding for proteins. However, we and others
have recently developed profiles based on functional molecules that do not code for proteins—e.g.,
long non-coding RNAs (lncRNAs)—demonstrating great prognostic potential. Unfortunately, studies
comparing such profiles for predicting relapse in BC patients are very scarce. Therefore, we aimed
to compare these two types of molecules (mRNAs and lncRNAs) to forecast relapse in low-risk BC
patients using advanced machine learning methods with two different approaches. Regardless of
approach, our data suggested that profiles based on lncRNAs improved prediction of relapse and
demonstrated potential advantages for future profile development.

Abstract: Several gene expression signatures based on mRNAs and a few based on long non-coding
RNAs (lncRNAs) have been developed to provide prognostic information beyond clinical evaluation
in breast cancer (BC). However, the comparison of such signatures for predicting recurrence is very
scarce. Therefore, we compared the prognostic utility of mRNAs and lncRNAs in low-risk BC
patients using two different classification strategies. Frozen primary tumor samples from 160 lymph
node negative and systemically untreated BC patients were included; 80 developed recurrence—i.e.,
regional or distant metastasis while 80 remained recurrence-free (mean follow-up of 20.9 years).
Patients were pairwise matched for clinicopathological characteristics. Classification based on
differential mRNA or lncRNA expression using seven individual machine learning methods and a
voting scheme classified patients into risk-subgroups. Classification by the seven methods with a
fixed sensitivity of ≥90% resulted in specificities ranging from 16–40% for mRNA and 38–58% for
lncRNA, and after voting, specificities of 38% and 60% respectively. Classifier performance based
on an alternative classification approach of balanced accuracy optimization also provided higher
specificities for lncRNA than mRNA at comparable sensitivities. Thus, our results suggested that
classification followed by voting improved prognostic power using lncRNAs compared to mRNAs
regardless of classification strategy.
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1. Introduction

In breast cancer (BC), clinical inter-tumor heterogeneity is represented by staging
systems, whereas histopathologic and molecular classification reflect morphologic and
genetic inter-tumor heterogeneity [1–3]. Intra-tumor heterogeneity also occurs at the
genomic, transcriptomic, proteomic, and morphologic level [4–6], causing BC patients to
possess varying risk for recurrence development [7,8]. For instance, to guide treatment
decision, patients are routinely classified based on lymph node status, tumor size, and the
positivity or negativity of the tumor for various receptors, such as hormonal receptors or
human epidermal growth factor receptor 2 (HER2) (as reviewed by Cardoso et al. [9]).

Due to lack of optimal clinical classification methods, and ability to identify patients
with low risk of experiencing recurrence, adjuvant systemic treatments are provided for
more than 90% of all current BC patients as they are classified as high-risk. This is despite
the fact that up to 40% most likely do not benefit from it, as surgical removal of the primary
tumor and radiotherapy often are sufficient to prevent recurrence [10,11]. These patients are
thus subjected to unnecessary side effects while increasing the expenditures for the health
care system. Research focus has, in the past years, shifted from intensifying treatment to also
consider reducing overtreatment, as the BC prognosis due to early diagnosis and advanced
treatments has improved over the years. Therefore, it is crucial to predict recurrence
at time of diagnosis and determine which patients most likely will never experience
recurrence after surgery. By identifying of patients with indolent tumors, we would have
the confidence to alleviate the treatments while achieving similar outcomes [12–15].

Since the demonstration of the prognostic role of gene expression profiling in primary
breast tumors by van’t Veer et al., several mRNA-based signatures have been developed to
provide prognostic information beyond clinical evaluation (e.g., MammaPrint, Oncotype
DX, PAM50) [16–18]. Despite the focus on mRNAs, gene expression profiles based on
long non-coding RNAs (lncRNAs) have recently emerged, demonstrating great prognostic
potential in BC [19–21]. LncRNAs have become a research area of intensive focus and their
biology and roles in tumor development and progression are widely studied. Associations
between several lncRNAs and stage, as well as prognosis of multiple tumor types, have
been found and the therapeutic potential of lncRNAs has also been extensively studied (as
reviewed by Borkiewicz et al. [22]). It is however extremely difficult to generalize findings
from such studies across different tumor types due to distinct biology.

In continuation of this, it is also difficult to generalize biological insights into clinical
application. The clinical aspect of lncRNAs as biomarkers for prediction of clinical outcome
has been studied to a lesser degree [19–21]. Even more limited are studies comparing
the relative ability of mRNA and lncRNA-based signatures to predict recurrence. In this
study, we compared mRNA and lncRNA-based signatures using two different classification
strategies which furthermore were compared for clinical application. This study is, to the
best of our knowledge, the first to compare such signatures in systemically untreated
low-risk BC patients with very long follow-up.

2. Materials and Methods
2.1. Tumor Biopsies

The study included frozen tumor biopsies from lymph node negative (LNN) and
systemically untreated low-risk BC patients who were diagnosed from 1980 to 2003 on
the island of Funen, Denmark. A total of 160 frozen tumor biopsies were collected as
previously described [19]. Half of the patients developed recurrence that is, regional or
distant metastasis within 10 years after diagnosis while the remaining half were recurrence-
free (mean follow-up of 20.9 years). Patient biopsies were pairwise matched according to



Cancers 2021, 13, 4907 3 of 16

age (range: 33–88 years), tumor type, tumor diameter (range: 4–50 mm), year of surgery,
receptor status (ER, PR, n/a), and histological grade (grade 1–3 or n/a) (Table 1).

Table 1. Patient and tumor characteristics.

Characteristics Recurrence Development Recurrence-Free

No. of patients 80 (50) 80 (50)

Age at diagnosis
(range: 33–88 years)

≤50 years
>50 years

14 (8.8)
66 (41.3)

10 (6.3)
70 (43.8)

Tumor size

<2 cm 27 (16.9) 30 (18.8)

2–5 cm 53 (33.1) 49 (30.6)

n/a 1 (0.6)

Estrogen receptor status a

Positive 52 (32.5) 50 (31.3)

Negative 22 (13.8) 24 (15)

n/a 6 (3.8) 6 (3.75)

Tumor type

Invasive ductal carcinoma (IDC) 62 (38.8) 65 (40.6)

Invasive lobular carcinoma (ILC) 9 (5.6) 9 (5.6)

Mucinous carcinoma 2 (1.3) 2 (1.3)

Papillary carcinoma 3 (1.9) 2 (1.3)

Carcinoma with metaplasia 2 (1.3) 2 (1.3)

n/a 2 (1.3) -

Histologic grade

1 (good) 12 (7.5) 15 (9.4)

2 (intermediate) 28 (17.5) 25 (15.6)

3 (poor) 22 (13.8) 24 (15)

n/a 18 (11.3) 16 (10)

Median year of surgery
(range 1980–2003) 1993 1994

Mean time to recurrence (months) 58.5 n/a

Mean follow-up (months) 88.3 250.35

Alive at end of follow-up 1 48
n/a: not available/applicable; a as defined by immunohistochemistry. Values in parentheses indicate percentage
of patients in each category out of the whole sample size.

Independence of traditional prognostic markers was achieved by pairwise matching
the patients, increasing the power by enriching informative clinical endpoints while bias
related to sample retrieval, storage, and diagnostic procedures was reduced. All clinico-
pathological information used for sample matching was acquired from the Danish Breast
Cancer Cooperative Group (DBCG) database, the Funen pathology database, or the nation-
wide pathology database. The study was approved by the Danish National Committee on
Health Research (S-VF-20020142). The study was retrospective, and no informed consent
was obtained from the included patients as approved by the Ethical Committee [19].
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2.2. Microarray Analysis and Re-Annotation

Total RNA was extracted from freshly frozen tumor biopsies as previously described [23].
A modified standard design of the SurePrint G3 Human GE 8 × 60k oligonucleotide slides
(G4102A) by Agilent Technologies (Santa Clara, Santa Clara County, CA, USA) was applied
for gene expression analysis. The matched sample pairs were kept together during all
steps of RNA extraction, hybridization, and gene expression analysis. LncRNA and mRNA
expression data have previously been deposited in NCBI’s Gene Expression Omnibus [24]
and are accessible through GEO Series accession number GSE48408 [19]. To select the
probes covering mRNAs and lncRNAs, chromosomal positions of the probes in the anno-
tation file from Agilent were matched to the positions in the Human RNA catalog from
GENCODE v. 16 [25] as previously described [19,26].

Gene expression data were analyzed in 160 freshly frozen primary tumors from LNN
and systemically untreated low-risk patients with invasive BC. Re-annotation resulted in
identification of 21,858 and 4810 mRNA and lncRNA probes on the Agilent array. Further
analysis was performed using all mRNA probes and probes covering 2811 unique lncRNAs
(26). Comparing the two patient groups, recurrence development vs. recurrence-free
using paired t-tests identified 148 and 160 differentially expressed lncRNAs and mRNAs
(FDR ≤ 0.05). The lists of the differentially expressed RNAs are shown in Tables S1 and S2.

To avoid any bias, the input lists of RNA transcripts for the procedure of outcome
prediction using leave-one-pair-out cross-validation (LOPOCV) were applied unmodified,
i.e., with 21,858 and 2811 mRNAs and lncRNA probes.

2.3. Data Processing, Classification and Voting

Array scanning and data preprocessing were performed as previously described [23].
Seven of the most commonly used machine learning methods, found through literature
search on breast cancer classification were applied for sample classification: linear discrimi-
nant analysis (LDA), support vector machines based on a radial kernel (R-SVM) or linear
kernel (L-SVM), random forest (RF), naïve Bayes (NB), COX risk score (COX-RS), and
logistic regression (LR). LOPOCV was applied to provide an unbiased estimate of classifier
performance (Figure A1). This approach has proven to be optimal for analysis of smaller
datasets [27,28]. We applied a voting scheme for gene expression-based classification of BC
patients, which previously has been shown to improve classification performance [29].

All classification procedures and statistical analyses were performed using the R open-
source environment (version 4.0.2, https://cran.r-project.org/, accessed on 23 June 2020).
For SVM and NB based classification, we used the e1071 R-package (https://cran.r-project.
org/web/packages/e1071/index.html, accessed on 23 June 2020 for e1071 and the follow-
ing R-packages), while the RF, COX-RS, LDA, and LR based classification procedures were
performed using the randomForest (https://cran.r-project.org/package=randomForest, ac-
cessed on 23 June 2020), survival (https://cran.r-project.org/package=survival, accessed on
23 June 2020), MASS (https://cran.r-project.org/package=MASS, accessed on 23 June 2020),
and stats (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html,
accessed on 23 June 2020) R-packages, respectively. We performed classification according
to the differentially expressed RNA molecules with above mentioned machine learning
methods, applying two different approaches which: (1) provided ≥90% sensitivity while
maximizing specificity; and (2) optimized balanced accuracy (bAcc). Both optimization
strategies were followed by voting with a final sensitivity of 90% (Figure 1). Balanced
accuracy is the arithmetic mean of two metrics: sensitivity, which is the proportion of truly
affected subjects who are correctly classified as positive; and specificity, which measures
the proportion of truly unaffected subjects who are correctly identified as negative [30].

The integrated voting results were obtained using seven distinctive cutoffs ranging
from 1–7, representing different degrees of classification agreement between the seven
methods in terms of recurrence votes. A cutoff of 1 meant that one or more votes for
recurrence, placed the patient as high-risk whereas zero votes classified the patient as

https://cran.r-project.org/
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=MASS
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html
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low-risk, while a cutoff of 7 meant that if all votes were assigned for recurrence, the patient
was placed as high-risk, while six or less votes corresponded to low-risk.

A more detailed description of the applied procedures is provided in the Appendix A.
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Figure 1. Overview of the two applied classification strategies. Classification was performed accord-
ing to the differentially expressed mRNAs or lncRNAs using seven machine learning methods: linear
discriminant analysis (LDA), support vector machines based on a radial kernel (R-SVM) or linear
kernel (L-SVM), random forest (RF), naïve Bayes (NB), COX risk score (C-RS), and logistic regression
(LR). The individual methods were optimized using two different approaches: one that provided
≥90% sensitivity while maximizing specificity and one that optimized balanced accuracy where both
were followed by voting with a final sensitivity of 90%.

2.4. Statistical Analysis

Paired Student’s two-tailed t-tests were performed for analysis of differential mRNA
and lncRNA expression where a false discovery rate (FDR) ≤0.05 was considered signifi-
cant. Furthermore, a one-sided two-proportion z-test was used to compare the estimated
significance between each of the seven methods using lncRNA or mRNA as explanatory
variables (HA: lncRNA performance > mRNA performance) by application of the prop.test
function embedded in the stats R-package.

3. Results

Gene expression data were analyzed in 160 freshly frozen primary tumors from LNN
and systemically untreated low-risk patients with invasive BC. Re-annotation resulted
in identification of 21,858 and 4810 mRNA and lncRNA probes on the Agilent array.
Further analysis was performed using all mRNA probes and probes covering 2811 unique
lncRNAs [26]. Comparing the two patient groups, recurrence development vs. recurrence-
free using paired t-tests identified 148 and 160 differentially expressed lncRNAs and
mRNAs (FDR ≤ 0.05).

3.1. Classification with ≥90% Sensitivity Threshold Followed by Voting

A cumulative risk of recurrence of ≥10% within 10 years is defined as high-risk and in
Denmark adjuvant systemic therapy is offered to patients with high risk of recurrence [31].
Classification was therefore conducted with a threshold that provided ≥90% sensitivity
to identify patients eligible for systemic treatment. Applying this criterion for the seven
methods, classification based on mRNA or lncRNA divided our patients into subgroups
with high or low risk of recurrence.

An overall classification accuracy for mRNA data ranged from 53% (90% sensitivity,
16% specificity) using LR to 66% (91% sensitivity, 40% specificity) using RF. For lncRNA-
based classification, the overall accuracy ranged from 64% (91% sensitivity, 38% specificity)
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using both the NB and COX-RS methods to 74% (90% sensitivity, 58% specificity) using LDA
(Table 2). The specificities obtained by the seven classification methods were consistently
higher when using lncRNA compared to mRNA. The classification results with associated
p-values are shown in Table 2.

Table 2. Classification with ≥90% sensitivity threshold using seven individual machine learn-
ing methods.

mRNA lncRNA

Method Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

LDA 90 30 60 90 58 74 0.0055

R-SVM 90 32 61 90 53 71 0.038

L-SVM 91 32 62 90 50 70 0.082

RF 91 40 66 90 52 71 0.20

NB 91 31 61 91 38 64 0.33

COX-RS 90 21 56 91 38 64 0.089

LR 90 16 53 90 50 70 0.0013
Classification was conducted with a threshold that provided at least 90% sensitivity while maximizing specificity
and performances assessed by leave-one-pair-out cross-validation using linear discriminant analysis (LDA),
support vector machines based on a radial kernel (R-SVM) or linear kernel (L-SVM), random forest (RF), naïve
Bayes (NB), COX risk score (COX-RS), and logistic regression (LR). a Mean of sensitivity and specificity. All
measures are specified in percent. b p-value determined by a one-sided two-proportion z-test comparing the
estimated significance between the seven machine learning methods using mRNA or lncRNA.

In the clinically most relevant classification scheme, both mRNA and lncRNA-based
voting obtained a sensitivity of 91% at a voting cutoff of 5 where the corresponding
specificity was 38% when mRNA was used and 60% for lncRNA. The difference between
lncRNA and mRNA performance was significant at a p-value of 0.013 (Table 3). The
individual voting decisions are summarized in Tables S3–S6.

Table 3. Integrated voting results following classification with ≥90% sensitivity threshold.

mRNA lncRNA

No. of
Rec. Votes Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

≥1 100 0 50 98 19 58 0.093

≥2 100 10 55 92 29 61 0.17

≥3 99 20 59 92 41 67 0.086

≥4 96 28 62 92 50 71 0.056

≥5 91 38 64 91 60 76 0.013

≥6 83 45 64 88 64 76 0.013

7 65 64 64 80 75 78 0.0042
The voting results were obtained using seven distinctive cutoffs ranging from 1–7, representing different degrees
of classification agreement between the seven machine learning methods in terms of recurrence (rec.) votes.
A cutoff of 1 meant that one or more votes for recurrence, placed the patient as high-risk whereas zero votes
classified the patient as low-risk and likewise for the rest of the cutoffs. a Mean of sensitivity and specificity. All
measures are specified in percent. b p-value determined by a one-sided two-proportion z-test comparing the
estimated significance between the seven machine learning methods using mRNA or lncRNA. .

3.2. Classification with Balanced Accuracy Optimization Followed by Voting

Using optimized bAcc for class assignment by each machine learning method pro-
vided an overall classification accuracy for mRNA data ranging from 64% (69%, 68%, 65%
sensitivity; 60%, 60%, 64% specificity) using COX-RS, LDA, and LR to 70% (75% sensitivity,
65% specificity) using the NB method. For lncRNA-based classification, the accuracy
ranged from 70% (69% sensitivity, 71% specificity) using NB to 78% (79% sensitivity, 76%
specificity) using the LR method (Table 4). For six of out seven machine learning methods,
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the bAcc were higher when classification was based on lncRNA compared to mRNA, while
using NB provided equal performance. The classification results with associated p-values
are shown in Table 4.

Table 4. Classification with optimized balanced accuracy using seven individual machine learn-
ing methods.

mRNA lncRNA

Method Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

LDA 68 60 64 75 74 74 0.035

R-SVM 70 66 68 76 68 72 0.26

L-SVM 72 61 67 72 71 72 0.20

RF 71 65 68 75 71 73 0.20

NB 75 65 70 69 71 70 0.50

COX-RS 69 60 64 68 74 71 0.11

LR 65 64 64 79 76 78 0.0042
Classification was conducted with optimized balanced accuracy and performances assessed by leave-one-pair-out
cross-validation using linear discriminant analysis (LDA), support vector machines based on a radial kernel
(R-SVM) or linear kernel (L-SVM), random forest (RF), naïve Bayes (NB), COX risk score (COX-RS), and logistic
regression (LR). a Mean of sensitivity and specificity. All measures are indicated in percent. b p-value determined
by a one-sided two-proportion z-test comparing the estimated significance between the seven machine learning
methods using mRNA or lncRNA.

For the integrated voting results, a sensitivity of 92% was obtained at a voting cutoff
of 1 when mRNA was applied where the corresponding specificity was 29%. At the same
cutoff, lncRNA-based voting resulted in a sensitivity of 88% and specificity of 51%. The
voting results with associated p-values are shown in Table 5.

Table 5. Integrated voting results following classification using balanced accuracy optimization.

mRNA lncRNA

No. of
Rec. Votes Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

≥1 92 29 61 88 51 69 0.083

≥2 82 46 64 84 59 71 0.11

≥3 78 62 70 80 65 73 0.32

≥4 69 66 68 75 72 74 0.14

≥5 62 74 68 70 76 73 0.20

≥6 53 85 69 65 88 76 0.10

7 38 95 66 53 94 73 0.11
The voting results were obtained using seven distinctive cutoffs ranging from 1–7, representing different degrees
of classification agreement between the seven machine learning methods in terms of recurrence (rec.) votes. A
cutoff of 1 meant that one or more votes for recurrence, assigned the patient to the high-risk group whereas zero
votes classified the patient as low-risk and similarly for the rest of the cutoffs. a Mean of sensitivity and specificity.
All measures are indicated in percent. b p-value determined by a one-sided two-proportion z-test comparing the
estimated significance between the seven machine learning methods using mRNA or lncRNA.

3.3. Classification of ER Positive Breast Cancer Patients Followed by Voting

To make our patient group more homogeneous, we considered merely concordant
pairs of estrogen receptor (ER) positive patients, retaining a total of 55 patient pairs. Eight
hundred and thirty-six mRNAs and 208 lncRNAs were significantly differentially expressed
among the ER positive patients (FDR ≤ 0.05). Classification of ER positive BC patients
conducted with ≥90% sensitivity, resulted in an overall classification accuracy for mRNA
data ranging from 51–68% whereas the accuracy for lncRNA-based classification ranged
from 55–68% (Table A1). Voting based on mRNA obtained a sensitivity of 96% at a voting
cutoff of 5 where the corresponding specificity was 38%. At the same cutoff, lncRNA-based



Cancers 2021, 13, 4907 8 of 16

voting resulted in a sensitivity of 95% with specificity of 44%. The voting results with
associated p-values are shown in Table A2.

Classification conducted with optimized bAcc for class assignment resulted in an
overall classification accuracy for mRNA data ranging from 62–70%, whereas the accuracy
for lncRNA-based classification ranged from 60–69% (Table A3). Voting using mRNA data
obtained a sensitivity of 85% at a cutoff of 1 where the corresponding specificity was 45%.
LncRNA-based voting at the same cutoff resulted in a sensitivity of 91% with specificity of
36%. The voting results with associated p-values are shown in Table A4.

4. Discussion

Our primary objective was to compare the relative ability of mRNA and lncRNA-based
signatures to predict recurrence in systemically untreated BC patients using two different
classification strategies (Figure 1), which additionally were compared for clinical appli-
cation. Microarray gene expression analysis identified differentially expressed mRNAs
and lncRNAs between matched patient pairs with and without recurrence development
where classification subsequently was performed according to these. As the samples were
hybridized simultaneously on the same platform, it markedly reduced inter-platform
differences when evaluating differential RNA expression and thus strengthened the results.

4.1. Classification Using lncRNA Compared to mRNA Improved Prognostic Power

For both mRNA and lncRNA data, and regardless of classification strategy, each of
the seven machine learning methods achieved an overall classification accuracy of >50%,
indicating an above random distinction between recurrence developing and recurrence-free
patients (Tables 2 and 4). Classification conducted with ≥90% sensitivity, resulted in an
overall accuracy for mRNA ranging from 53–66%, whereas the accuracies using lncRNA
were noticeably higher, ranging from 64–74% (Table 2). The same tendency was observed
using classification with bAcc optimization, where accuracies for mRNA ranged from
64–70% and 70–78% for lncRNA (Table 4). Thus, applying either classification strategy
supported the same finding: using the seven machine learning methods, lncRNA compared
to mRNA-based signatures improved prognostic accuracy.

For decades, mRNA turnover has been a subject of intensive research and with the
characterization of lncRNAs, some similarities and differences between their turnovers
have been described. As mature lncRNAs like mRNAs are modified with 5′ caps and 3′-poly
adenosine (poly(A)) tails, many mechanisms involved in post-transcriptional mRNA decay
are believed to also modulate lncRNA degradation [32]. Other similarities include RNA-
binding proteins (RBPs) and microRNAs which have been shown to drive the turnovers
of both RNA molecules [33–36]. However, unlike mRNAs, the majority of lncRNAs are
not translated into proteins and therefore it is likely that degradation processes associated
with the translation machinery are different, leading to individual rates of turnover [32].
Interestingly, some lncRNAs have furthermore been found to form conserved triple-helix
complexes which protect them from exonucleases, averting rapid degradation [37,38]. The
rate of transcription and degradation of mRNAs and lncRNAs ultimately enables their
immense impact on gene regulation and their distinct turnover rates might be reflected in
our findings of lncRNAs as seemingly better prognostic predictors compared to mRNAs.
However, many additional aspects and features of lncRNA turnover still await exploration
and characterization by future studies.

4.2. Classification Followed by Voting Supports lncRNAs as Better Prognostic Predictors

To improve classification performance, we applied a voting scheme that allowed the
seven methods to vote on whether a sample belonged to the patient group with or without
recurrence development. mRNA-based accuracies derived from the integrated voting
results following classification with ≥90% sensitivity threshold, ranged from 50–64%,
whereas higher accuracies of 58–78% were obtained for lncRNA (Table 3). The integrated
voting results after classification using the alternative strategy of bAcc optimization also
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supported lncRNAs as better prognostic predictors with accuracies ranging from 69–76%
for lncRNA while mRNA-based voting obtained 61–70% (Table 5).

The number of studies comparing the relative ability of mRNA and lncRNA-based
signatures to predict recurrence are very limited. However, a study by Xu et al., aimed
to identify biomarkers that could improve prognostic predictions [39]. By comparing the
expression of lncRNA, mRNA, microRNA, and DNA methylation, they found lncRNAs
to be the best prognostic predictors in validated cohorts of four cancer types including
BC [39], supporting our findings. However, of the breast tumors included in their study
(with comprehensive clinicopathological information), more than half were lymph node
positive. Furthermore, they had a short median overall follow-up of 17 months and a small
fraction of overall survival events (93 out of 818 patients). To the best of our knowledge, no
other studies have performed these comparisons in LNN and systemically untreated BC
patients with very long follow-up.

4.3. Comparison of the Two Voting Strategies for Clinical Signature Development

If we could improve prediction of recurrence at time of diagnosis, a more accurate
prognosis could be established for low-risk BC patients and we would thereby achieve
substantial reduction of adjuvant systemic therapy application [12–15]. To elucidate and
compare clinical application of the two classification strategies for future signature devel-
opment, we considered the amount of correctly classified patients in the two groups. We
would consistently spare more recurrence-free patients unnecessary adjuvant systemic
therapy using lncRNA compared to mRNA-based voting following classification with
≥90% sensitivity. Applying this threshold for lncRNA-based voting with a cutoff of 5, we
correctly spare 48 out of 80 (60%) recurrence-free patients adjuvant systemic therapy while
correctly classifying 73 out of 80 (91%) patients with recurrence development. Compared
to mRNA-based voting, it is 18 additional patients that possibly could have been taken off
treatment today (60% vs. 38% specificity) while maintaining a similar sensitivity of 91%
(p-value of 0.0013, Table 3).

Making the strategy of optimized bAcc for lncRNA-based voting equally relevant
in terms of clinical application, thus, applying a cutoff of 1, we correctly spare 41 out of
80 (51%) recurrence-free patients unnecessary therapy while correctly classifying 70 out of
80 (88%) recurrence developing patients. Compared to mRNA-based voting, it is similarly
18 additional patients which possibly could have been taken off treatment today (51% vs.
29% specificity), although at a slight cost of sensitivity (88% vs. 92% sensitivity, p-value of
0.083, Table 5).

In a clinical situation, the goal would be a final sensitivity after voting of close to
90%, i.e., nearly all patients who develop metastases need to be classified as high-risk. For
which of the two initial classification schemes in the individual machine learning methods:
(1) Optimization of specificity with sensitivity set at 90% (Table 2); or (2) Optimization of
bAcc (Table 4), can we obtain the highest final specificity (correct classification of patients
as low-risk)? By comparing results shown in Tables 3 and 5, it can be seen that highest
specificity (with final sensitivity fixed at 90%) can be obtained when the sensitivity was
fixed at 90% in the seven initial classifiers.

4.4. Comparison of the Two Voting Strategies for Clinical Application in ER Positive Patients

For ER positive BC patients, classification followed by voting conducted with ≥90%
sensitivity could likewise spare more recurrence-free patients unnecessary adjuvant sys-
temic therapy using lncRNA compared to mRNA while achieving almost similar sensitivity
(Table A2). As our patient group became more homogeneous and as the classification
models were developed in a majority of ER positive samples, we could expect this finding.
The increased sample homogeneity was also reflected in identification of a larger amount
of differentially expressed RNA molecules in ER positive patients.

The potential advantages of lncRNAs compared to mRNAs was however not as
distinctive when applying the alternative strategy of bAcc optimization, indicating that the
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fewer ER negative samples contributed to a more heterogeneous data structure, leading to
better distinction between the two patient groups when using lncRNA data compared to
mRNA. LncRNA-based voting was still favored for clinical application when using this
strategy as it, unlike mRNA, enabled a sensitivity of ≥90% (Table A4).

4.5. LncRNAs and Their Countless Roles

Although we have more than seven times as many unique mRNA than lncRNA probes
on the array (21,858 vs. 2811), paired Student’s two-tailed t-tests identified almost the same
number of differentially expressed mRNAs and lncRNAs (160 and 148) and thus, a much
higher percentage of lncRNAs were found to be statistically significant. Considering this,
along with the mentioned findings of lncRNAs as seemingly better prognostic predictors
of recurrence in low-risk BC patients, lncRNAs are suggested to be far more informative
than mRNAs, indicating that they must have crucial roles in BC progression.

Several links between lncRNAs and cancer are now known where alteration of lncRNA
expression in cancer cells have been demonstrated in multiple cancers besides BC, e.g.,
prostate and non-small cell lung cancer [23,40–43]. It is however very difficult to generalize
findings across different cancer types in different clinical settings.

The roles of lncRNAs are vast and intricate as they interact with DNA elements, mR-
NAs, microRNAs, and proteins where their multifunctional regulatory roles are exerted on
multiple levels: epigenetic, peptide-mediated, transcriptional, and post-transcriptional [44].
The diversity of their regulatory roles also includes crucial functions throughout the
steps of the metastatic cascade. Different lncRNAs—e.g., H19 and PTAR—have been
described in the step of epithelial-mesenchymal transition whereas others—e.g., NORAD
and MALAT1—are involved in the promotion of invasion and colonization, respectively
(as reviewed by Liu et al. [45]). Exciting lncRNA discoveries hold for future studies where
a profound comprehension of the functional roles and mechanisms of lncRNAs along with
their complex regulatory network will be explored.

5. Conclusions

The majority of gene expression signatures providing prognostic information in BC
have primarily been developed on mRNAs with a few on lncRNAs. The lack of studies
comparing such signatures in low-risk BC patients make this study highly relevant.

In the clinically most relevant classification scheme both mRNA and lncRNA-based
voting obtained a sensitivity of 91% at a voting cutoff of 5 where the corresponding
specificity was 38% when mRNA was used and 60% for lncRNA. The difference between
lncRNA and mRNA performance was significant at a p-value of 0.013 (Table 3).

Classification with a fixed sensitivity of ≥90% for the individual machine learning
methods followed by voting with a final sensitivity of 90%, obtained consistently higher
overall accuracies when based on lncRNAs compared to mRNAs. Similar findings were ob-
served using the alternative strategy of bAcc optimization and thus, classification followed
by voting suggested improved prognostic power using lncRNAs compared to mRNAs.
Comparing the two classification strategies for clinical application, suggested that develop-
ment of future RNA-based signatures for assisting clinical decision-making, could gain
prognostic power using lncRNA-based classification with ≥90% sensitivity followed by
voting with a final sensitivity of 90%.

In summary, our data suggest that in a group of BC patients, lncRNAs are more
informative than mRNAs in prediction of recurrence. We additionally propose a favorable
optimizing and classification strategy and thus, we hope that these data encourage other
research groups to at least include lncRNAs for their signature development in low-risk BC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13194907/s1, Table S1: Significant mRNAs. Table S2: Annotated significant lncRNAs.
Table S3: mRNA-based classification decisions. Table S4: LncRNA-based classification decisions.
Table S5: Classification decisions based on mRNAs and lncRNAs, sorted by lncRNAs. Table S6: Clas-
sification decisions based on mRNAs and lncRNAs, sorted by mRNAs.

https://www.mdpi.com/article/10.3390/cancers13194907/s1
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Cancers 2021, 13, 4907 11 of 16

Author Contributions: Conceptualization, T.A.K. and M.T.; Methodology, T.A.K., M.T., Q.T. and
M.B. (Mark Burton); Software, M.B. (Mark Burton); Formal analysis, M.B. (Mark Burton); Resources,
M.B. (Martin Bak), S.C.; Data curation, M.B. (Mark Burton), M.J.L., I.B. and K.P.S.; Writ-ing—original
draft preparation, T.T.N.D. and I.B.; Writing—review and editing, T.T.N.D., M.B. (Mark Burton), I.B.,
M.T. and T.A.K.; Visualization, T.T.N.D. and I.B.; Supervision, T.A.K. and M.T.; Project administration,
T.A.K.; Funding acquisition, T.A.K., M.T. and K.P.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Danish Cancer Society, the Danish Council for Independent
Research (grants: 7016-00346B/FSS and 09-061677/FSS), the Danish Ministry of the Interior, the
University of Southern Denmark (Horizon2020, grant: DAWN2020), the Danish Council for Strategic
Research (grant: DBCG-TIBCAT) and Regionernes Medicinpulje, Dansk Kræftforskningsfond, Breast
Friends, Fonden til Lægevidenskabens Fremme, Meta & Håkon Baggers Fond, A. J. Andersen &
hustrus Fond, Inge & Jørgen Larsens Mindelegat, Overlægerådets Legatudvalg, Direktør Jacob
Madsens & Hustru Olga Madsens Fond, Fru Ingeborg Anna Albinus Larsens Mindelegat, Fonden
af 1870, Harboefonden, the Odense University Hospital Fund for Free Research, Lundbeckfonden
(grant: Center of Excellence NanoCAN), and Frimodt-Heineke Fonden.

Institutional Review Board Statement: The study was approved by the Danish National Committee
on Health Research (S-VF-20020142).

Informed Consent Statement: Patient consent was waived because the tumor samples included in
the study were collected from established biobanks at Odense University Hospital, Denmark where
utilization of these surplus samples has been approved by the Danish National Committee on Health
Research Ethics. Patients who objected to the use of their tumor material via the Danish Tissue
Utilization Register were excluded from the study.

Data Availability Statement: The data presented in this study are openly available in the National
Center of Biotechnology Information’s Gene Expression Omnibus [24] and are accessible through
GEO Series accession number GSE48408 [19].

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Appendix Methods

Classification

We performed classification according to the differentially expressed RNA molecules
using seven machine learning methods and applying two different approaches in which the
first provided ≥90% sensitivity while maximizing specificity whereas the other optimized
balanced accuracy. Both strategies were followed by voting with a final sensitivity of
90%. For the first approach, the optimal model during training was selected based on
a fixed sensitivity of ≥90% while the specificity was maximized, assessed by leave-one-
pair-out cross-validation (LOPOCV). Using the second approach, the optimal model was
determined based on mean sensitivity and specificity maximization, likewise assessed
by LOPOCV.

In brief, LOPOCV is a procedure that evaluates how well a machine learning method
performs by using a single pair of matched samples as test samples, while the remaining
samples serve as a training set. Each single pair of matched samples was thus tested
individually, and the procedure was repeated until all pairs of matched samples had been
left out once. The accuracy of the machine learning methods was determined by the
amount of correctly classified samples. An unbiased performance estimate is provided by
this procedure, and this approach has furthermore proven to be optimal for analysis of
smaller datasets [27,28].

Feature selection is required in the training set to avoid a small sample-per-feature
ratio and it has been shown to provide better classification [28]. In this study, the feature
selection process comprised of three steps: 1) Testing the mRNAs and lncRNAs in the
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training set for significant differential expression using paired Student’s two-tailed t-test
(FDR ≤ 0.05); 2) Ranking the differentially expressed mRNAs and lncRNAs according to
their random-forest importance value which describes the standardized drop in prediction
accuracy when the class levels are permuted [46]; 3) By subsequently adding one mRNA or
lncRNA at a time in a top-down forward-wrapper approach starting with top two mRNAs
or lncRNAs from the ranked list followed by classification accuracy assessment. The
optimal number of mRNAs and lncRNAs were determined by each of the seven machine
learning methods. At each addition, the classification accuracy of the training samples
was evaluated using LOPOCV in a nested inner loop [29]. To calculate the significance
of the classification results, a one-sided two-proportion z-test was applied, comparing
the estimated significance between the seven machine learning methods using mRNA or
lncRNA. The pipeline for these classification steps is shown in Figure A1.
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Figure A1. Outcome prediction using leave-one-pair-out cross-validation. In this procedure, a
single pair of matched samples served as test samples while the remaining 79 sample pairs served
as a training set. For feature selection in the training set, Student’s two-tailed t-test was used to
identify differentially expressed mRNAs and lncRNAs (FDR ≤ 0.05) where these subsequently were
re-ranked according to their random forest-based variable importance value. Using leave-one-out-
cross-validation (LOPOCV), each of the seven machine learning methods identified the optimal
mRNA and lncRNA set by using the highest ranked mRNAs/ lncRNAs in a top-down forward-
wrapper approach where outcome in one selected pair was predicted using the remaining 78 pairs as
training set (inner loop, blue). The inner loop procedure was repeated until each pair had been left
out once. The final optimal mRNA or lncRNA set was used to predict outcome in the initially left out
test pair. The entire procedure was repeated until all pairs had been left out as a test pair and their
outcome independently predicted by the inner training loop.



Cancers 2021, 13, 4907 13 of 16

Table A1. Classification of ER positive BC patients with ≥90% sensitivity threshold using seven
individual machine learning methods.

mRNA lncRNA

Method Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

LDA 98 16 57 95 31 63 0.22

R-SVM 96 40 68 91 35 63 0.74

L-SVM 91 42 66 91 38 65 0.51

RF 91 31 61 93 44 68 0.17

NB 91 35 63 93 36 65 0.43

COX-RS 91 11 51 91 35 63 0.048

LR 91 15 53 93 16 55 0.44
Classification was conducted with a threshold that provided at least 90% sensitivity while maximizing specificity
and performances assessed by leave-one-pair-out cross-validation using linear discriminant analysis (LDA),
support vector machines based on a radial kernel (R-SVM) or linear kernel (L-SVM), random forest (RF), naïve
Bayes (NB), COX risk score (COX-RS), and logistic regression (LR). a Mean of sensitivity and specificity. All
measures are indicated in percent. b p-value determined by a one-sided two-proportion z-test comparing the
estimated significance between the seven machine learning methods using mRNA or lncRNA.

Table A2. Integrated voting results for ER positive BC patients following classification with ≥90%
sensitivity threshold.

mRNA lncRNA

No. of
Rec. Votes Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

≥1 100 0 50 100 2 51 0.49

≥2 100 2 51 100 9 55 0.32

≥3 98 13 55 98 18 58 0.38

≥4 98 18 58 98 33 65 0.18

≥5 96 38 67 95 44 69 0.43

≥6 87 49 68 87 60 74 0.20

7 69 69 69 71 73 72 0.37
Voting was conducted using seven distinctive cutoffs ranging from 1–7, representing different degrees of classifi-
cation agreement between the seven machine learning methods in terms of recurrence (rec.) votes. A cutoff of
1 meant that one or more votes for recurrence, allocated the patient to the high-risk group whereas zero votes
classified the patient as low-risk and likewise for the rest of the cutoffs. a Mean of sensitivity and specificity. All
measures are indicated in percent. b p-value determined by a one-sided two-proportion z-test comparing the
estimated significance between the seven machine learning methods using mRNA or lncRNA.

Table A3. Classification of ER positive BC patients with optimized balanced accuracy using seven
individual classifiers.

mRNA lncRNA

Method Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

LDA 62 62 62 56 65 61 0.51

R-SVM 75 65 70 69 69 69 0.51

L-SVM 67 71 69 60 73 66 0.63

RF 67 64 65 65 67 66 0.49

NB 62 76 69 62 71 66 0.63

COX-RS 62 76 69 58 62 60 0.90

LR 60 75 67 56 75 65 0.56
Classification was conducted with optimized balanced accuracy and performances assessed by leave-one-pair-out
cross-validation using linear discriminant analysis (LDA), support vector machines based on a radial kernel
(R-SVM) or linear kernel (L-SVM), random forest (RF), naïve Bayes (NB), COX risk score (COX-RS), and logistic
regression (LR). a Mean of sensitivity and specificity. All measures are specified in percent. b p-value determined
by a one-sided two-proportion z-test comparing the estimated significance between the seven machine learning
methods using mRNA or lncRNA.
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Table A4. Integrated voting results for ER positive BC patients following optimized balanced
accuracy classification.

mRNA lncRNA

No. of
Rec. Votes Sensitivity Specificity Accuracy a Sensitivity Specificity Accuracy a p b

≥1 85 45 65 91 36 64 0.51

≥2 84 53 68 85 56 71 0.37

≥3 75 67 71 76 62 69 0.57

≥4 65 71 68 64 73 68 0.50

≥5 60 78 69 53 80 66 0.63

≥6 56 85 71 36 85 61 0.92

7 27 95 61 22 89 55 0.78
The voting results were obtained using seven distinctive cutoffs ranging from 1–7, representing different degrees
of classification agreement between the seven machine learning methods in terms of recurrence (rec.) votes.
A cutoff of 1 meant that one or more votes for recurrence, placed the patient as high-risk whereas zero votes
classified the patient as low-risk and similarly for the rest of the cutoffs. a Mean of sensitivity and specificity. All
measures are indicated in percent. b p-value determined by a one-sided two-proportion z-test comparing the
estimated significance between the seven machine learning methods using mRNA or lncRNA.
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