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Abstract: Numerous reports have proven that dialysis patients experience disturbances in the
levels of elements in biological fluids. Disturbances in the homeostasis of essential elements or the
appearance of highly toxic elements are serious problems also in clinical ophthalmology. The purpose
of this study was to investigate the influence of hemodialysis (HD) on the elemental composition of
anterior chamber aqueous humor (AH) in patients undergoing cataract surgery. The study involved
22 patients. The control group enrolled 16 patients (age 75.68 ± 9.67, female 54.55%, male 45.45%)
with cataract and normal kidney function (control), and the second group included six patients (age
70.33 ± 12.74, female 33.33%, male 66.67%) with cataract undergoing HD treatment. The elements
quantification was established using an inductively coupled plasma optical emission spectrometer
(ICP-MS). In the eye fluid of dialysis patients, there were increased levels of manganese (Mn) and
mercury (Hg) and decreased levels of vanadium (V) and zinc (Zn). In addition, a statistically
significant increase in the Hg/Zn and Hg/selenium (Se) ratios and a lowering of the iron (Fe)/Mn
ratio were observed in the studied group in comparison to the control. The obtained results indicated
the need for Zn and Se supplementation in order to eliminate the hazards caused by Hg toxicity.
A lower level of V in the eye fluid of dialysis patients may have a positive effect on maintaining
a calcium and phosphorus homeostasis. Our study gives a deep insight into changes of elements
concentrations in AH induced by HD.

Keywords: hemodialysis; aqueous humor; trace elements; cataract; ICP-MS

1. Introduction

Cataract surgery is a procedure that can improve or even restore patients’ vision.
However, complications such as vitreous hemorrhage (VH), retinal detachment, intraocular
lens dislocation, dropped nucleus, and wound dehiscence may occur as a consequence
of this procedure [1]. Many reports have demonstrated that, for patients with end-stage
renal disease (ESRD), the risk of cataract [2], as well as postoperative complications, is
significantly higher [3–7]. The first retrospective case–control study that undertook a risk
assessment of cataract surgery in patients with ESRD was reported in 2020 [8]. The study
covered 352 cases and 1760 controls who underwent cataract-removal surgery between 2002
and 2013 in Taiwan. Complications following cataract surgery were the main measures
of the outcome. Patients with ESRD were found to be more likely to experience VH,
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reoperation for dropped nucleus or vitreous complications, and corneal edema within
3 months of cataract surgery.

The homeostasis of macro and microelements is ensured by the processes of absorption,
storage, and excretion. These steps, however, are not universal and differ depending on
the kind of trace elements and the degree of ionic valency [9]. Homeostasis is regulated
mostly by absorption from the gastrointestinal tract and excretion through the urine. The
majority of toxic elements are eliminated from the body by the kidneys. Due to the
impaired glomerular filtration, metals are actively reabsorbed from the blood, causing
systemic effects and further kidney damage [10–13]. In renal failure, in addition to causing
a deficiency of essential elements, an accumulation of toxic elements may be expected as a
result of reduced excretion, as well as the interdependent relationship between the elements.
The concentrations of the elements in the population of dialyzed patients are determined
mainly in the blood serum (aluminum (Al), silicon (Si), copper (Cu), selenium (Se), nickel
(Ni), zinc (Zn), strontium (Sr), and chromium (Cr)). However, it should be emphasized that
presented results differ depending on the dialysis center, which indicates the environmental
aspect of bioaccumulation. The accumulation of Cr, vanadium (V), Ni, and Cu has been
described in patients with chronic kidney disease (CKD) [14]. Children with CKD have
increased levels of toxic elements such as cadmium (Cd) and lead (Pb) [9,15]. The levels of
essential elements are also disturbed in CKD. Reduced levels of Zn, Se, Fe, and calcium
(Ca) have been reported [16,17]. At some stage of CKD, nephrologists must consider renal
replacement therapy (RRT) in the form of hemodialysis (HD) to purify the patient’s blood,
remove water excess, and keep the electrolyte balance. Tonelli et al. [17] conducted a
meta-analysis to summarize the trace element status of adult HD patients. The authors
proved that the blood levels of Cd, Cr, Cu, Pb, and V were significantly higher, whereas Se,
Zn, and Mn were lower in HD patients, concerning the controls. Thus, this kind of RRT can
lead to a dangerous accumulation of toxic elements, as well as the deficiency of Zn and Se.
The reasons for the observed changes result from possible contamination and insufficient
elimination, as well as the excessive removal of essential trace elements. Without a doubt,
some of them can be attributed to dialysis treatment, which causes not only the removal of
waste products but, also, chemical contamination [12]. As it turns out, the contamination of
dialysis fluids with trace metals from water or chemical concentrates, although extremely
rare nowadays due to system control, cannot be ruled out [18].

The main ions, such as sodium (Na), potassium (K), and Ca, are routinely monitored
in dialysis patients. The trace element levels have been determined mostly in the whole
blood, serum, or plasma [17–21] of patients undergoing HD in comparison with healthy
controls. However, some authors have suggested that elemental blood levels are not
reliable markers. First of all, because many elements are bound to intracellular proteins [22]
and, secondly, because of the compartmentalization of the trace elements [23]. Clinical
studies have revealed the disturbances of the trace element levels in different tissues, blood,
and urine. It was proven that strontium (Sr), molybdenum (Mo), Cd, and tin (Sn) may
accumulate in tissues of the liver and bones of HD patients [24]. In the scalp hair of HD
patients, the concentrations of beryllium (Be), arsenic (As), magnesium (Mg), Cr, Mn, Fe,
Se, Mo, iodine (I), V, and cobalt (Co) were found to be significantly higher than those in
healthy subjects [25]. The length of dialysis and dialysis efficacy, estimated through the
Kt/V parameters, appeared to be not without significance for chronic exposure to these
elements. The authors suggested that increased levels of Mg, Mn, Zn, and Se may be
affected by these factors.

Disturbances in the homeostasis of essential elements or the appearance of highly toxic
elements in AH are serious problems in clinical ophthalmology. The clinical significance
of trace element accumulation, deficiency, or ratios is still the subject of much research
and is not yet fully understood. Although the levels of macro- and microelements, both
essential and toxic, in AH taken from cataract patients suffering from various coexisting
diseases, like glaucoma, age-related macular degeneration (AMD), diabetes, retinopathy, and
hypertension [26–33], were extensively investigated, the AH of cataract patients undergoing
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HD treatment has not yet been examined. The AH is considered sometimes as an ultrafiltrate
of blood plasma [34]. However, there is evidence that some kind of differences can be found,
especially in the concentration of ions, such as hydrogen carbonate (HCO3

−), chloride
(Cl−), Na+, and K+, which are higher in AH in comparison to plasma. The presence of
these osmotically active elements is responsible for the osmotic pressure and the fluidity
of the AH, which plays an important role in the nutrition of intraocular tissues [35]. It
has been known since 1964 [36] that there is a link between the changes in intraocular
pressure (IOP) and HD. IOP is believed to be caused by a decrease in plasma osmolality or
a relative increase in the concentration of urea in the AH as a result of fluid displacement
from the blood into the anterior chamber, due to the so-called “reverse urea effect” [37,38].
Nowadays, thanks to improved dialysis techniques, which ensure stable serum osmolality,
the observed changes in IOP are much smaller [39]. In a recent meta-analysis by Chen et al.,
it was highlighted that the use of acetate dialysate can be responsible for IOP elevation,
whereas dialysate substitution with bicarbonate prevents IOP variability [40]. Interestingly,
Kalayci et al. reported in a study on 112 patients a mean decrease in IOP 1.4 ± 2 mm Hg
after HD [41]. Dehydration and lowering body fluids’ osmolarity are considered the main
mechanisms responsible for the IOP-lowering effect of HD.

Although, in some studies, no changes in ocular parameters following HD were
shown, most researchers observed that HD modifies the ocular surface, visual acuity, IOP,
retinal thickness, and refraction [42]. HD treatment may provoke pathologies of the cornea,
conjunctiva, and lens and lead to retinal disturbances in the retrobulbar circulation [43–47].
Considering the changes that may occur in the eyes due to HD, comparative elemental
studies are needed for the identification and evaluation of the risk of this kind of RRT.
However, no one has yet tested the eye fluid in dialysis patients.

This study aimed to evaluate the influence of the HD treatment on the elemental
composition of the anterior chamber fluid. All study participants underwent cataract
surgery. The patients with ESRD who underwent HD were enrolled in an examined group,
while the control group was constituted by patients without CKD.

2. Materials and Methods
2.1. Ethics Statement and Patients

The research material consisted of the AH from the anterior chamber of the eye taken
from the subjects undergoing cataract surgery in the Chair and Department of General
and Pediatric Ophthalmology, Medical University of Lublin, who were all Polish. The
patients with ESRD were hemodialyzed three times a week in the Chair and Department of
Nephrology, Medical University of Lublin, Poland. Each HD session lasted 4 h (12 h of HD
a week for each patient). The study was approved by the Local Bioethical Committee of
the Medical University of Lublin (approval no. KE-0254/245/2020). The work was carried
out in adherence to the tenets of The Declaration of Helsinki. Of all patients undergoing
surgery in 2020 to 2021, 6 HD patients with cataracts fulfilled the inclusion criteria (age
49.67 years; SD: 12.674, 8 females, 4 males), and 16 patients with cataracts (age 49.67 years;
SD: 12.74, females 7, males 4) were matched to these patients. Sampling of the AH was
done during surgical procedures, namely, cataract phacoemulsification. Aqueous fluid
extraction was performed at the microscope through paracentesis at the first stage of the
cataract removal procedure. A 27- or 30-gauge needle was used, with extraction of 0.1
to 0.2 mL of AH followed by injection of a balanced salt solution. After collection, the
samples were immediately frozen and stored in 1.5-mL polypropylene tubes at −80 ◦C
until analysis.

2.2. Sample Preparation Procedure

The wet mineralization of each sample (50–160 µL) was performed via the addition
of 2 mL of 69% suprapur nitric acid, BAKER ANALYZED™ A.C.S. Reagent, J.T.Baker™,
Thermo Fisher Scientific (Hampton, NH, USA), followed by heating to 180 ◦C in close
Teflon containers in the microwave mineralization system TOPEX (Preekem, Shanghai,
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China). After mineralization, 0.5 mL of hydrochloric acid (Merck, Darmstadt, Germany)
was added to stabilize some elements (As, Hg, Se, Mo, Tl, and Ag). Finally, the samples
were diluted up to 10 mL by ultrapure water obtained from the purification system Milli-Q
(Millipore, Darmstadt, Germany). The obtained results were recalculated, taking into
account varied volumes of the AH sample, the volumes of mineralizates, and sample
dilution factors. Thus, the collected data express the concentrations of elements in the real
AH sample. The concentrations were expressed using analytical units common in trace
analysis, such as parts-per-million (ppm, 10−6) and parts-per-billion (ppb, 10−9) (m/v).

2.3. Analytical Procedures

The inductively coupled plasma mass spectrometer Agilent 8900 ICP-MS Triple Quad
(Agilent, Santa Clara, CA, USA) was employed for an elemental analysis. Most of elements
were analyzed in helium (He) mode (5.5-mL/min helium flow); Se and As were analyzed in
oxygen (O2) mode (gas O2, flow rate—30%). The plasma was used in general purpose mode
with 1.550-kW RF power, the nebulizer gas flow was 1.07 L/min, the auxiliary gas flow
was 0.9 L/min, and the plasma gas flow was 15 L/min. The acquisition time was from 0.1
to 2 s, depending on the predicted concentration of the element. ICP commercial analytical
standards (Agilent Technologies, Santa Clara, CA, USA) were used for the calibration.

2.4. Statistical Analysis

The normality tests (the Shapiro–Wilk test) and tests of homogeneity of variance
(the Levene test) were performed for the studied groups in the context of element con-
centrations [48–50]. In most cases, the normality and homogeneity of the variance did
not meet the requirements. For intercorrelations, the Wilcoxon Mann–Whitney test was
applied [51,52]. The effect sizes were evaluated by a biserial rank correlation coefficient [53].
The effect size interpretation was based on the literature data [54–58]. Statistical analyses
were performed in the R statistical environment (R Core Team 2016) [59], using a number
of libraries that extend the capabilities of the core version of the program [60–63].

3. Results and Discussion
3.1. Elemental Intercorrelations

Inter-elemental correlation was conducted in both groups for all examined elements.
Figure 1 presents the obtained correlation matrices. On the correlation matrices, the
formation of clusters of the elements correlating with each other positively, negatively,
or not correlated at all (red, blue, and white respectively) is observed. In the control
group, there were distinct clusters of elements strongly correlated positively. The following
red clusters can be distinguished: (V, Co, Be, gallium (Ga), As, Se, praseodymium (Pr),
gadolinium (Gd), terbium (Tb), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb),
uranium (U), antimony (Sb), cesium (Cs), thorium (Th), europium (Eu), hafnium (Hf),
zirconium (Zr), titanium (Ti), dysprosium (Dy), neodymium (Nd), Al, and cerium (Ce0);
Pb, Cu, and barium (Ba); lanthanum (La), Sr, Mn, Sn, Fe, bismuth (Bi), and samarium
(Sm); silver (Ag), Mo, platinum (Pt), and palladium (Pd); phosphorus (P), K, Na, Mg,
and rubidium (Rb); and Ni, Ca, Zn, and P. The strength of the negative correlations is
not significant. In the group of cataract patients undergoing HD, the clusters, which are
strongly positively correlated with each other, are reduced to the following: Fe, V, Co, Be,
As, Se, Sb, Cs, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Th, U, Sn, Al, Sm, Mo, Ba, and Zn; La,
Mn, and Bi; Pt, Pd, Ag, and Cr; Hf, Zr, Pb, and Ga; and K, Na, Rb, and Mg. Additionally,
there are stronger negative correlations, i.e., P/La and Mn; La/Na and K; Bi/Mg; Bi/Na
and K; Ag/P, Mg, Rb, Na, and K; and Pt, Pb/Mg, Rb, and K. In the group of negative
correlations, it is noteworthy that toxic elements such as Bi and Pb affect the levels of the
essential elements, such as Na, K, and Mg. Therefore, this confirms the belief that these
toxic elements disturb the homeostasis and the absorption of key macronutrients. It turns
out that noble metals (Ag and Pt) and some metals from the lanthanide group may also
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play such a role. The above dependencies in patients undergoing dialysis have not been
reported so far.
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Figure 1. Correlation matrices prepared for the controls (a) and cases (b).

3.2. Statistically Significant Differences between Cases and Controls

In most cases, there are no significant differences between the concentrations of the
elements in both groups. The exceptions are statistically significant elevated levels of Cs,
Eu, Hf, Nd, Rb, V, and Zr in the control group and a higher level of Hg and Mn in the cases
group, assuming the significance level at α = 0.1. The descriptive statistics of the studied
groups are summarized in Table 1. The results of the statistically significant differences
between the patient groups using the Wilcoxon Mann–Whitney test are collected in Table 2.

Table 1. Descriptive statistics of the studied groups of patients undergoing cataract surgery: the case group of HD patients
undergoing hemodialysis (n = 6) and the control group of patients without hemodialysis (n = 16). Elemental mean
concentrations expressed in µg L−1 are presented, together with spread measurements such as the variance coefficient (cv),
standard deviation (sd), the first quartile (q1), and the third quartile (q3).

Variable Group Min Max Median q1 q3 Mean sd cv

Cs
control 0.29 0.87 0.43 0.369 0.607 0.493 0.177 35.9

case 0.25 0.63 0.3 0.27 0.33 0.347 0.143 41.21

Eu
control 0.07 0.29 0.125 0.108 0.23 0.158 0.07 44.3

case 0.08 0.21 0.1 0.09 0.11 0.115 0.048 41.74

Hf
control 39.559 246.908 73.745 65.628 131.714 102.083 58.829 57.63

case 32.367 69.748 51.287 39.848 65.169 51.753 15.635 30.21

Nd
control 0.41 1.958 0.795 0.651 1.314 1 0.468 46.8

case 0.5 1.207 0.562 0.501 0.62 0.658 0.275 41.79

Rb
control 16.852 90.826 68.346 61.255 80.744 68.181 17.633 25.86

case 8.05 38.819 30.752 21.876 33.54 26.96 11.283 41.85

V
control 3.093 9.873 4.906 4.022 6.636 5.55 2.161 38.94

case 0.93 5.822 2.093 1.209 2.81 2.483 1.814 73.06

Zn
control 65.368 825.881 240.597 178.358 444.86 317.323 209.009 65.87

case 102.284 659.523 252.261 142.43 320.648 285.932 204.407 71.49

Mn
control 8.88 341.835 21.919 13.149 39.837 46.73 80.514 172.3

case 13.282 142.479 75.839 39.219 114.46 76.964 51.141 66.45

Hg control 1.417 32.018 5.307 3.846 11.114 9.485 9.063 95.55
case 11.077 39.5 20.761 17.212 21.855 21.725 9.612 44.24
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Table 2. Results of statistically significant differences between the patient groups enrolled in the
study (n = 22) in the nonparametric Mann–Whitney U test. Abbreviations: r—the rank-biserial
correlation, CI—a confidence interval, and p—the probability value (p-value).

Element p loge
W(Mann–Whitney)

r CI95%

Cs 0.030 4.36 0.62 0.18; 0.96
Eu 0.095 4.26 0.48 0.04; 0.94
Hf 0.025 4.37 0.65 0.30; 0.96
Nd 0.050 4.32 0.56 0.16; 0.94
Rb 0.002 4.51 0.90 0.62; 1.00
V 0.007 4.44 0.77 0.25; 1.00
Zr 0.043 4.33 0.58 0.20; 0.90
Mn 0.051 3.04 −0.56 −1.00; −0.16
Hg 0.011 2.56 −0.73 −0.92; −0.28

Among the elements whose concentration decreases in a statistically significant man-
ner in the ocular fluid after HD is cesium (Cs). The accumulation of this element in the eye
fluid of patients undergoing cataract surgery was demonstrated in a previous work [31].
Health hazards due to Cs accumulation arise, among others, from the chemical similarity
of Cs to K. Serious heart problems, loss of consciousness, convulsions, and electrolyte
disturbances (Na/K imbalance) have been associated with Cs overdose. Lowering the
Cs level after HD (Figure 2a) seems to be a beneficial effect. If possible, this observation
should be confirmed on a larger group of patients.

Based on the hierarchical grouping presented in a previous work [31], five clusters
were created, taking into account the homogeneity of variance for individual elements,
which were quantified in the eye fluid of patients undergoing cataract surgery. Taking into
account the concentrations of the elements, the clusters were ranked in the following order:
cluster 3 < cluster 1 < cluster 4 < cluster 2 < cluster 5.

The present study showed that some of the highest concentration elements in cluster
number 5, such as the rare earth elements Eu, Nd, and V belonging to the transition
metals, are eliminated during dialysis (Figure 2c,d,g). While the health importance of
lanthanides is not widely acknowledged, a few reports have described the detection of V
in the form of vanadium oxide (V2O3) in human endo- and epithelial lung cells or in the
bones [64]. It is known that V is an element necessary for metabolic processes, including
phospholipids, cholesterol and triglyceride metabolism, hepatic glucose oxidation, and
glycogen synthesis [65]. However, excessive concentration of this metal causes irreversible
damage to various tissues and organs, including the liver and kidneys. V is easily taken up
in the gastrointestinal tract [66]. Vanadate (H2VO4

−) is partially reduced in the stomach
and precipitated in the form of VO(OH)2 in the slightly alkaline medium of the intestines.
V can also enter the bloodstream by injection or infusion when present as a ‘contaminant’
in infusion solutions [67]. The dominant forms of V found in the blood are vanadate
(V) and vanadyl (IV). These forms are stabilized by interactions with a plasma protein,
namely transferrin (65%). The action of V in the water compartment is related to, among
others, phosphate–V antagonism. This similarity causes phosphatase-dependent enzyme
inhibition and kinases activation [9]. Based on the results obtained, it can be concluded
that HD prevents a dangerous accumulation of V in the eye fluid.

Zr, previously classified as cluster 1, also undergoes a statistically significant elimina-
tion during dialysis. This is definitely a positive effect, taking into account the toxicity of
this element, especially for the respiratory system, and the possibility of immunization. Zr
compounds are commonly added to cosmetics, and so far, only a few countries, such as the
USA and Canada, qualify them as non-recommended ingredients.
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Additionally, a significant decrease in Hf and Rb was observed in dialysis patients
(Figure 2b,e). However, it seems dangerous that the levels of highly toxic elements such
as Mn and Hg not only do not change but even increase statistically in the AH of dialysis
patients (Figure 2h,i). Mn belongs to the group of essential trace elements, as it is a cofactor
of enzymes, i.e., arginase and superoxide dismutase [22]. The level of Mn in whole blood
was set at 10–12 ppb. Exposure to environmental pollution, particularly dust and fumes, can
cause excessive Mn toxicity known as manganism. The symptoms of this disease resemble



J. Clin. Med. 2021, 10, 5485 8 of 14

those associated with Parkinson’s disease and trigger impaired motor skills and cognitive
disorders [23]. Mn in water is especially dangerous because of its higher bioavailability
compared to other dietary sources. Due to the Mn content in high-purity water, which is
0.703 ppb, the dialysis feed water may be a potential source of Mn contamination, which
may accumulate due to high exposure during the HD procedure [5]. Since the volumes of
dialysate to which patients are exposed exceed 300 L/week [17], even small amounts of
toxic substances can lead to their accumulation in various tissues and body fluids. In our
study, the median Mn concentration in AH of HD patients with cataracts was 75.839 ppb
and was statistically significantly higher (p = 0.051) compared to the control (21.919 ppb).

Ultrastructural changes in the kidneys progress as a result of aging and stress, which
can also include exposure to toxic substances. An important environmental toxin that has
a nephrotoxic effect is Hg. It is known that exposure to Hg ions leads to glomerular and
tubular damage. It has been shown that older adults with renal failure are more sensitive
to Hg [68]. A previous study [31] measured the levels of chemical elements in the AH
of patients undergoing cataract surgery. The pilot study included 115 patients. In this
test, fairly high levels of Hg, ranging from 0 to 4.303 ppm, were detected. In the present
study, it was found that there is a statistically significant increase in the Hg level in HD
patients compared to the controls (p = 0.011). In the control group, Hg ranged from 1.417 to
32.018 ppb, while, in the group of cataract dialysis patients, the concentration range was
from 11.077 to 39.5 ppb.

3.3. Relationships between Elements’ Ratios

Exposure to Cd has been shown to be related to renal dysfunction [69–71]. The
symptoms that accompany renal tubular damage are proteinuria and hypercalciuria [72].
In severe conditions, complications such as glucosuria, aminoaciduria, hyperphosphaturia,
polyuria, and reduced buffering capacity may occur [73]. The Cd-induced release of
calcium from bone tissue may affect the skeletal system through its demineralization [74].
Cd can accumulate in tissues for a long time due to its long half-life (30 years). The
half-life of Cd in the blood (three to four months) is short and is indicative of the current
exposure [69]. There were no differences in the level of this element in the eye fluid of both
studied groups. However, a more reliable comparison, allowing the detection of a possible
hazard, is the comparison of the ratios of the elements that affect the bioavailability of Cd.
As can be seen in Table 3, there were no statistically significant differences in the ratios of
Cd to Ca, Cu, Fe, P, Se, and Zn in both patient groups. However, this did not prove the Cd
safety level in patients suffering from ESRD but, rather, the effectiveness of HD treatment
with the aim of balancing the levels of compared elements. Although, nowadays, many
countries report decreased exposure to Cd [75], due to its long half-life, future studies
should be conducted on the bigger cohorts.

Other toxic elements, such as Pb or Cd, affect the bioavailability of calcium and
phosphorus, impeding proper bone mineralization. In turn, Hg works by attaching to
proteins and blocking enzymes important for life. It has been proven that Hg complexes
readily with cysteine residues, supplanting Zn and reducing its reabsorption [76]. Large
amounts of Hg come from amalgam fillings; seafood; fish (salmon, tuna, and swordfish);
coal incinerators; paints; and fluorescent bulbs. The rations of Hg/Se and Hg/Zn differ
significantly in both groups, with p < 0.02. They are higher in the case group, suggesting not
only an elevated level of Hg in the eye fluid of HD patients but, also, insufficient levels of
Zn and Se (Figure 3). Metal ion transporters like divalent metal ion transporter-1(DMT-1) or
ZIP-8 are nonselective for divalent metal ions. Their Fe- or Zn-binding preferences change
when exposed to Cu, Mn, Co, Ni, Pb, and Cd. Thus, the low level of Fe is nonbeneficial, as
it induces the overexpression of transporters, increasing the uptake of toxic metals. Our
study found that dialysis patients have an underestimated Fe/Mn ratio. This result may be
influenced by a low Fe level, insufficient to prevent Mn uptake.
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Table 3. Differences between the control (group I, n = 16) and HD patients (group 2, n = 6) considering the selected elemental
ratios. Statistically significant correlations are marked in red.

Element Ratios Group 1 Group 2 n1 n2 Statistic p

cadmium elimination
Cd/Ca control case 16 6 37 0.449
Cd/Cu control case 16 6 44 0.802
Cd/Fe control case 16 6 45 0.858
Cd/P control case 16 6 41 0.641
Cd/Se control case 16 6 38 0.494
Cd/Zn control case 16 6 54 0.693

iron balancing
Fe/Co control case 16 6 39 0.541
Fe/Cu control case 16 6 50 0.914
Fe/Mn control case 16 6 82 0.010
Fe/Ni control case 16 6 36 0.407

phosphorous balancing
P/Fe control case 16 6 46 0.914
P/Mg control case 16 6 26 0.115
P/V control case 16 6 16 0.017
P/Ca control case 16 6 36 0.407

sodium/potassium balancing
Na/K control case 16 6 64 0.261

mercury elimination
Hg/Se control case 16 6 13 0.008
Hg/Zn control case 16 6 13 0.008

lead, strontium elimination
Pb/Ca control case 16 6 50 0.914
Pb/Cu control case 16 6 51 0.858
Pb/Fe control case 16 6 47 0.971
Pb/Se control case 16 6 45 0.858
Pb/Zn control case 16 6 49 0.971
Sr/Ca control case 16 6 31 0.231
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In 1972, Summers and Moran presented the original hypothesis that V may influence
Ca and P metabolism [77]. The residence time of V in the bones, where it replaces P in the
hydroxyapatite Ca5(PO4)3OH, is about one month [70,78]. In our experiments, the P/V
ratio is significantly higher in HD patients, which is the result of lowering the level of V in
the eye fluid but, also, indicates that the HD processes did not worsen this ratio.
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Summarizing, the obtained results revealed substantial variations in the elemental
compositions between the HD group in comparison to the control group with normal kid-
ney functions. However, only a relatively small number of elements exhibited statistically
significant variations. The cataract patients in the HD group had significant differences in
the levels of Mn, Hg, Zn, Eu, Rb, V, Cs, Hf, and Nd and the ratios of Hg/Zn, Hg/Se, P/V,
and Fe/Mn in comparison to the control group (p < 0.05). It turned out that, in the eye
fluid of dialysis patients, there were increased levels of Mn and Hg and decreased levels of
V and Zn. A statistically significant increase in the interrelationships between Hg/Zn and
Hg/Se was observed, suggesting the need for Zn and Se supplementation in order to elimi-
nate the hazards caused by Hg toxicity. The increased level of Mn influenced the Fe/Mn
ratio, which was significantly lower in patients undergoing HD. HD does not change the
systemic status of Fe and does not eliminate Mn from the eye. The supplementation of
dialysis patients with Fe can affect the elimination of Mn. This study showed a statistically
significant lower level of V in the eye fluid of dialysis patients, which may have a positive
effect on maintaining the Ca and P homeostasis. However, any final conclusions regarding
the supplementation of patients undergoing HD require further studies on larger groups
of patients. We cannot exclude differences in the elemental composition of AH determined
by other research groups, because the accumulation of toxic metals is strongly connected
with the environment. The limitations of the above study cover the possible contamination
of dialysis fluids as a source of trace metals responsible for patient poisoning.

Our study may have practical implications. Since micronutrients deficiency is an
essential complication of RRT, especially in continuous methods, to modify element con-
tents in body fluids, a change in the RRT mode can be helpful. In a study described by
Wu et al. [79], it was shown that double-filtration or dialysate-recycling methods may
significantly reduce the loss of some elements, like Cu or Zn. Another technical issue
related to the RRT and body fluid compositions was raised by Bogye et al. [80]. In a
study on 28 hemodialyzed patients, the loss of selenium through polysulfone membrane
pores was suggested, indicating the role of different types of membranes in element-level
disturbances. Additionally, the Se deficiency in HD patients was shown to not be related
to their nutritional status but, rather, with the form of RRT, indicating that food supple-
mentation may have a lower impact on element compositions in body fluids than the HD
parameters [81]. Another possible method to modify AH element concentrations is the
administration of eye drops containing deficient agents, as reported by Wang et al. in a
study with zinc diethyldithiocarbamate [82]. Since Se and Zn are well-known antioxidants,
their deficiencies in AH may have a tremendous impact on cataract surgery outcomes.
Despite that we did not observe any complications in the analyzed groups, further studies
are needed to clarify this aspect of cataract treatment in HD patients. The conducted
research showed that the compensation of deficiencies of elements such as Zn, Fe, and Se
by supplementation or, especially, the modification of the hemodialysis mode may have
one more benefit in the form of the elimination of Mn and Hg. Our observations require
confirmation in new groups recruited among patients of nephrology and ophthalmology
clinics who meet the inclusion and exclusion criteria.

4. Conclusions

The first step in understanding trace element metabolism and its role in the patho-
genesis of diseases is to establish their distribution in different compartments, identifying
the sites of accumulation, deficiency of trace elements, or disturbances in the element
ratios. Since active secretion represents an important part of AH production from the
ciliary epithelium, besides diffusion and ultrafiltration, it should be considered as an
independent compartment. Many published reports have shown that dialysis patients
experience disturbances in the levels of trace elements in biological fluids and tissues. This
work presented, for the first time, the elemental composition of the anterior chamber fluid
in cataract patients undergoing HD. The study identified a significant factor that poses a
threat to the human eye, which is the increased level of Hg and Mn in patients undergoing
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HD. However, it should be emphasized that HD also has a beneficial effect on the elemental
composition of the eye fluid. A significant decrease in Cs and V was detected, which had a
positive effect on the Ca–P and Na–K balances of the body fluids.
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