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Sulfatides are one of the major sphingoglycolipids in mammalian serum and are synthesized and secreted mainly from the liver as
a component of lipoproteins. Recent studies revealed a protective role for serum sulfatides against arteriosclerosis and hypercoagu-
lation. Although peroxisome proliferator-activated receptor (PPAR) α has important functions in hepatic lipoprotein metabolism,
its association with sulfatides has not been investigated. In this study, sulfatide levels and the expression of enzymes related to sul-
fatide metabolism were examined using wild-type (+/+), Ppara-heterozygous (+/−), and Ppara-null (−/−) mice given a control
diet or one containing 0.1% fenofibrate, a clinically used hypolipidemic drug and PPARα activator. Fenofibrate treatment increased
serum and hepatic sulfatides in Ppara (+/+) and (+/−) mice through a marked induction of hepatic cerebroside sulfotransferase
(CST), a key enzyme in sulfatide synthesis, in a PPARα-dependent manner. Furthermore, increases in CST mRNA levels were cor-
related with mRNA elevations of several known PPARα target genes, and such changes were not observed for other sulfatide-meta-
bolism enzymes in the liver. These results suggest that PPARα activation enhances hepatic sulfatide synthesis via CST induction and
implicate CST as a novel PPARα target gene.

1. Introduction

Sulfatides are sphingoglycolipids composed of sphingoid,
fatty acid, galactose, and sulfate [1] that are distributed in
various tissues such as the central nervous system, kidney,
liver, and gastrointestinal tract [1–4]. Glycolipids are also
present in the serum as one of the major components of lipo-
proteins [1]. Several studies have revealed a protective role
for serum sulfatides against arteriosclerosis and hypercoagu-
lation [5]. Serum levels of sulfatides are markedly decreased
in humans with end-stage renal failure [6] but normalize
after renal transplantation [7]. However, the precise mech-
anism regulating serum sulfatide concentrations in humans
remains unclear. Previously studies demonstrated that serum

sulfatide levels were strongly correlated with hepatic, but not
renal, sulfatide levels in mice with protein overload nephro-
pathy, and that decreased serum sulfatide levels were also
associated with the downregulation of hepatic expression of
cerebroside sulfotransferase (CST), a key enzyme in sulfatide
synthesis [8]. These and previous findings suggest the pos-
sible participation of hepatic peroxisome proliferator-acti-
vated receptor (PPAR) in the regulation of serum and liver
sulfatide metabolisms. To examine this possibility, serum and
liver sulfatide concentrations and hepatic expression of a ser-
ies of sulfatide-metabolizing enzymes were analyzed using
Ppara-homozygous (+/+), Ppara-heterozygous (+/−), and
Ppara-null (−/−) mice fed a control diet or one containing
fenofibrate, a typical PPARα activator.
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2. Materials and Methods

2.1. Mice and Treatment. All animal experiments were con-
ducted in accordance with animal study protocols approved
by the Shinshu University School of Medicine. Wild-type
(+/+), Ppara (+/−), and Ppara (−/−) mice on a 129/Sv
genetic background were generated as described previously
[9–11]. These mice were maintained in a pathogen-free envi-
ronment under controlled conditions (25◦C; 12 h light/dark
cycle) with tap water ad libitum and a standard rodent diet.
Twelve-week-old male wild-type (+/+), Ppara (+/−), and
Ppara (−/−) mice weighing 25–30 g were used for the fol-
lowing experiments. Mice of each genotype were randomly
divided into two groups (n = 6 in each group of the same
genotype). One mouse group was treated with a regular diet
containing 0.1% fenofibrate (Wako Pure Chemical Industr-
ies, Osaka, Japan), and the other group was continued on a
regular diet as a control. In an additional experiment, Ppara
(+/+), Ppara (+/−), and Ppara (−/−) mice were randomly
divided into two groups (n = 6 in each group of the same
genotype) and were treated with a regular diet with or with-
out 0.5% clofibrate (Wako Pure Chemical Industries). Seven
days after commencing treatment, the mice were sacrificed
under anesthesia for collection of blood and tissues.

2.2. Extraction and Measurement of Lipids. Total lipids in the
serum and liver were extracted using the hexane/isopropanol
method [12], and serum/liver sulfatides were determined as
forms of lysosulfatides (LS; sulfatides without fatty acids) by
matrix-assisted laser desorption ionization-time of flight
mass spectrometry (MALDI-TOF MS) as previously describ-
ed [13]. Sulfatides levels were calculated as the sum of the
levels of seven LS molecular species: LS-sphingadienine (LS-
d18 : 2), LS-(4E)-sphingenine (LS-d18 : 1), LS-sphinganine
(LS-d18 : 0), LS-4D-hydroxysphinganine (LS-t18 : 0), LS-
(4E)-icosasphingenine (LS-d20 : 1), LS-icosasphinganine
(LS-d20 : 0), and LS-4D-hydroxyicosasphinganine (LS-t20 :
0). Triglyceride (TG) levels in the serum and liver were mea-
sured using a Triglyceride E-test kit (Wako Pure Chemical
Industries).

2.3. Immunoblot Analysis. Liver nuclear and cytosolic frac-
tions were prepared from each mouse using NE-PER Nuclear
and Cytoplasmic Extraction Regents (Thermo Fisher Scien-
tific, Rockford, IL, USA) [14], and their protein concentra-
tions were determined with a BCA protein assay kit (Thermo
Fisher Scientific) [15]. Nuclear fractions (10 μg protein) were
used for immunoblot analysis of PPARs and TATA box-bind-
ing protein (TBP). For detection of other proteins, cytosolic
fractions (5 μg protein) were employed. Proteins were se-
parated using sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes.
After blocking, the membranes were incubated with primary
antibodies followed by alkaline phosphatase-conjugated sec-
ondary antibodies [16–18]. Primary antibodies against long-
chain acyl-CoA synthase (LACS), liver fatty acid-binding
protein (L-FABP), and medium-chain acyl-CoA dehydro-
genase (MCAD) were prepared as described previously

[19–21]. Antibodies against other proteins were purchased
commercially: cerebroside sulfotransferase (CST) from
Abnova (Taipei, Taiwan), arylsulfatase A (ARSA) from Ever-
est Biotech (Oxfordshire, UK), TBP from Abcam (Cam-
bridge, UK), and ceramide galactosyltransferase (CGT),
galactosylceramidase (GALC), microsomal transfer protein
(MTP), PPARα, PPARβ/δ, PPARγ, and actin from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). TBP and actin
were used as loading controls for nuclear and cytosolic pro-
tein extracts, respectively. Band intensities were measured
densitometrically, normalized to those of TBP or actin, and
then expressed as fold changes relative to those of Ppara
(+/+) mice treated with a control diet.

2.4. Analysis of mRNA. Total liver RNA was extracted using
an RNeasy Mini Kit (QIAGEN, Hilden, Germany), and sam-
ples of 2 μg of RNA were reverse-transcribed using oligo-dT
primers and SuperScript II reverse transcriptase (Invitrogen
Corporation, Carlsbad, CA, USA). Levels of mRNA were
quantified by real-time polymerase chain reaction (PCR)
using an SYBR Premix Ex Taq II (Takara Bio, Otsu, Japan) on
a Thermal Cycler Dice TP800 system (Takara Bio) [10, 16].
Specific primers were designed by Primer Express software
(Applied Biosystems, Foster City, CA, USA) as shown in
Table 1. The mRNA levels of glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) were used as an internal control.
Measurements of mRNA levels were normalized to those of
GAPDH and then expressed as fold changes relative to those
of Ppara (+/+) mice treated with a control diet.

2.5. Assays for DNA-Binding Activity of PPARs. The DNA-
binding activity of nuclear PPARαPPARβ/δ, and PPARγ was
determined using PPARα, PPARβ/δ, and PPARγ Transcrip-
tion Factor Assay kits (Cayman Chemical, Ann Arbor, MI,
USA) [22–24], respectively. These assays are based on an en-
zyme-linked immunosorbent assay using PPAR response
element (PPRE) immobilized microplates and specific PPAR
antibodies, thus offering similar results to those from the
conventional radioactive electrophoretic mobility shift assay.
DNA-binding assays were carried out according to the manu-
facturer’s instructions using nuclear extracts (50 μg protein)
prepared as described previously. Results are expressed as
fold changes relative to those of Ppara (+/+) mice treated
with a control diet.

2.6. Statistical Analysis. All data are expressed as mean ±
standard deviation (SD). Statistical analysis was performed
using one-way ANOVA with Bonferroni correction (SPSS
Statistics 17.0; SPSS Inc, Chicago, IL, USA). Correlation coef-
ficients were calculated using Spearman’s rank correlation
analysis. A probability value of less than 0.05 was considered
to be statistically significant.

3. Results

3.1. Fenofibrate Increased Serum/Liver Sulfatides in a PPARα-
Dependent Manner. Fenofibrate treatment increased serum,
and more notably liver, sulfatide concentrations in Ppara
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Table 1: Primer pairs used for the RT-PCR.

Gene GeneBank accession number Primer sequence

ARSA NM 009713 F 5′-ACCACCCCTAACCTGGATCAGT-3′

R 5′-ATGGCGTGCACAGAGACACA-3′

CGT NM 011674 F 5′-TGGGTCCAGCCTATGGATGT-3′

R 5′-GCAGCGTTGGTCTTGGAAAC-3′

CST NM 016922 F 5′-ATGGCCTTCACGACCTCAGA-3′

R 5′-CGGTCTTGTGCGTCTTCATG-3′

GALC NM 008079 F 5′-GAGTGAGAATCATAGCGAGCGATA-3′

R 5′-AGTTCCTGGTCCAGCAGCAA-3′

GAPDH M32599 F 5′-TGCACCACCAACTGCTTAG-3′

R 5′-GGATGCAGGGATGATGTTCTG-3′

LACS NM 007981 F 5′-TCCTACGGCAGTGATCTGGTG-3′

R 5′-GGTTGCCTGTAGTTCCACTTGTG-3′

L-FABP NM 017399 F 5′-GCAGAGCCAGGAGAACTTTGAG-3′

R 5′-TTTGATTTTCTTCCCTTCATGCA-3′

MCAD NM 007382 F 5′-TGCTTTTGATAGAACCAGACCTACAGT-3′

R 5′-CTTGGTGCTCCACTAGCAGCTT-3′

MTP NM 008642 F 5′-GAGCGGTCTGGATTTACAACG-3′

R 5′-GTAGGTAGTGACAGATGTGGCTTTTG-3′

PPARα NM 011144 F 5′-CCTCAGGGTACCACTACGGAGT-3′

R 5′-GCCGAATAGTTCGCCGAA-3′

PPARβ/δ XM 128500 F 5′-TCAACATGGAATGTCGGGTT-3′

R 5′-ATACTCGAGCTTCATGCGGATT-3′

PPARγ NM 011146 F 5-TTCCACTATGGAGTTCATGCTTGT-3′

R 5′-TCCGGCAGTTAAGATCACACCTA-3′

F: forward sequence; R: reverse sequence.

(+/+) and (+/−) mice only (Figure 1(a)). However, the in-
creases in serum/liver sulfatides were not detected in Ppara
(−/−) mice with fenofibrate treatment. These results demon-
strate that fenofibrate increases serum/liver sulfatide levels in
a PPARα-dependent manner. The treatment did not affect
the composition of sulfatides (Table 2). Fenofibrate also de-
creased serum/liver TG levels in a PPARα-dependent manner
(Figure 1(b)), which was in agreement with previous reports
[25, 26].

3.2. Fenofibrate Upregulated Hepatic CST in a PPARα-Depen-
dent Manner. We assessed several major hepatic sulfatide-
metabolizing enzymes to determine the mechanistic basis of
the changes observed in sulfatide concentrations. CST and
ARSA, respectively, catalyze the forward and reverse reac-
tions from galactosylceramides to sulfatides, and a similar
relationship exists for CGT and GALC in the synthesis of
galactosylceramides from ceramides [8]. Fenofibrate treat-
ment significantly increased levels of mRNA encoding CST
in Ppara (+/+) and (+/−) mice (Figure 2(a)), with the extent
of induction higher in the Ppara (+/+) group. Upregulation
of CST expression by fenofibrate was not observed in Ppara
(−/−) mice. PPARα-dependent increases in CST mRNA cor-
responded to increases in CST protein levels (Figure 2(b)).
Fenofibrate treatment did not affect expression of the other

sulfatide-metabolizing enzymes, ARSA, CGT, and GALC, at
either the mRNA or the protein level (Figure 2). Since hepatic
CST mRNA levels were strongly correlated with sulfatide
levels in the serum (r = 0.886, P = 0.019) and liver (r =
0.943, P = 0.005), the increased serum/liver sulfatide levels
found after treatment were viewed as mainly due to the sig-
nificant induction of hepatic CST.

3.3. Hepatic CST Was Induced by PPARα Activation. As ex-
pected, fenofibrate treatment significantly enhanced hepatic
expression of PPARα and several representative PPARα target
genes, including LACS, MCAD, L-FABP, and MTP (Figures 3
and 4) [27–29]. The DNA binding activity levels of PPARα
were also elevated by fenofibrate (Figure 3(b)). The treat-
ment did not influence the expression and activity of
PPARβ/δ or PPARγ (Figure 3), nor did it affect levels of
CST mRNA or protein in the livers of Ppara (−/−) mice
(Figure 2). The mRNA levels of CST were strongly correlated
with those of PPARα target gene products (r = 0.886, P =
0.019 for LACS; r = 0.928, P = 0.008 for MCAD; r = 0.943,
P = 0.005 for L-FABP; and r = 0.943, P = 0.005 for MTP).
PPARα-dependent induction of CST mRNA levels was also
observed in mice treated with clofibrate, another typical
PPARα activator (Figure 5). These results indicated that
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Figure 1: Changes in serum and hepatic levels of sulfatides (a) and TG (b). Ppara (+/+), (+/−), and (−/−) mice were treated without (open
bars) or with (closed bars) 0.1% fenofibrate for 7 days. Results are expressed as mean ± SD (n = 6/group). ∗P < 0.05; ∗∗P < 0.01.

the induction of hepatic CST was closely associated with
PPARα activation in mice.

4. Discussion

The present study revealed that fenofibrate treatment in-
creased serum/liver sulfatide levels and the expression of hep-
atic CST mRNA and protein through PPARα activation. As
CST mRNA levels were closely correlated with those of four
known PPARα target genes, these findings suggest that CST
may be a novel PPARα target gene candidate.

While CST is a key enzyme in sulfatide metabolism,
little is known about its transcriptional regulation. We
recently reported that an increase in hepatic oxidative
stress downregulated CST expression in mice [8], although
the mechanism remains unclear. A search for putative
PPRE regions in the mouse CST gene [30, 31] revealed
several candidates: −1,434/−1,422 (AGGTCTAAGGGC-
A), −1,202/−1,190 (TGGACTTTGCCCT), and −896/−884
(AGGACAAAGAGCA) from exon 1a; −1,499/−1,487
(AGGCTACAGTTCA) from exon 1e; and −1,569/−1,557
(AGGTCAGAGCACA) and −302/−290 (AGGACAGAG-
CCCA) from exon 1f. These regions may be useful for
analysis in future in vitro experiments.
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Figure 2: Changes in hepatic expression of sulfatide-metabolizing enzymes by fenofibrate treatment. Open and closed bars indicate mice
treated without or with 0.1% fenofibrate, respectively. Data are expressed as mean ± SD (n = 6/group). ∗P < 0.05; ∗∗P < 0.01. (a) The
mRNA levels of CST, ARSA, CGT, and GALC. Hepatic mRNA levels were normalized to those of GAPDH and then expressed as fold changes
relative to those of Ppara (+/+) mice treated with a control diet. (b) Immunoblot analysis. Actin was used as the loading control. Band inten-
sities were measured densitometrically, normalized to those of actin, and then expressed as fold changes relative to those of Ppara (+/+) mice
treated with a control diet.
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Figure 3: Changes in hepatic expression of PPARs by fenofibrate treatment. Open and closed bars indicate mice treated without or with 0.1%
fenofibrate, respectively. Data are expressed as mean ± SD (n = 6/group). ∗P < 0.05; ∗∗P < 0.01. (a) The mRNA levels of PPARs. Hepatic
mRNA levels were normalized to those of GAPDH and then expressed as fold changes relative to those of Ppara (+/+) mice treated with
a control diet. (b) PPAR-binding activity based on an enzyme-linked immunosorbent assay. Detailed protocols are described in Section 2.
Results are expressed as fold changes relative to those of Ppara (+/+) mice treated with a control diet. (c) Immunoblot analysis. TBP was used
as the loading control. Band intensities were measured densitometrically, normalized to those of TBP, and then expressed as fold changes
relative to those of Ppara (+/+) mice treated with a control diet.
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Table 2: Composition of serum and liver sulfatides.

Serum Liver

(+/+) (+/−) (−/−) (+/+) (+/−) (−/−)

(−) (+) (−) (+) (−) (+) (−) (+) (−) (+) (−) (+)

d18 : 2 7 9 8 7 8 7 12 11 12 13 11 12

d18 : 1 34 31 33 36 33 35 29 30 30 28 30 31

d18 : 0 11 11 12 10 11 10 11 10 12 11 10 12

t18 : 0 7 9 8 7 8 7 6 6 6 5 7 6

d20 : 1 8 11 9 8 9 8 12 11 10 12 10 10

d20 : 0 5 7 6 6 6 6 10 9 9 10 9 8

t20 : 0 28 22 24 26 25 27 20 23 21 21 23 21

(−): mice treated with a control diet; (+): mice treated with fenofibrate; d18 : 2: sphingadienine; d18 : 1: (4E)-sphingenine; d18 : 0: sphinganine; t18 : 0: 4D-
hydroxysphinganine; d20 : 1: (4E)-icosasphingenine; d20 : 0: icosasphinganine; t20 : 0: 4D-hydroxyicosasphinganine.
Data are expressed as percentages.



PPAR Research 9

The degree of increases in serum sulfatides was lower
than that in hepatic sulfatides by fenofibrate treatment (1.27-
fold in the serum versus 2.20-fold in liver in Ppara (+/+) mice
and 1.22-fold in the serum versus 1.95-fold in the liver of
Ppara (+/−) mice). Sulfatides synthesized in the liver are
secreted into the blood together with TG as a component of
very-low-density lipoprotein (VLDL) [32]. Thus, hepatic TG
content was reduced by fenofibrate treatment probably due
to the enhanced of mitochondrial β-oxidation ability result-
ing in a reduction of hepatic VLDL synthesis as seen in other
experiments using cultured hepatocytes [33]. Further studies
are required to determine sulfatide metabolism in the serum
and liver since they are significantly influenced by numerous
pathophysiological events and treatments, including acute
kidney injury [8, 34], clofibrate pretreatment [35], chronic
kidney disease [6], and kidney transplantation [7].

The role of PPARα has been clarified in several liver dis-
eases. For instance, PPARα is downregulated in alcoholic liver
disease [11, 36] as well as after liver transplantation[37]. Per-
sistent activation of PPARα ameliorates hepatic steatosis and
inflammation in mice but may also induce hepatocarcino-
genesis [10]. The association between liver disease and sulfa-
tide metabolism may be of interest for further research.

Lastly, several animal studies have uncovered a protective
role for serum sulfatides against arteriosclerosis and hyperco-
agulation [5]. We also reported a close relationship between
lower serum sulfatide concentrations and higher incidences
of cardiovascular disease in patients with end-stage renal fail-
ure [6], in whom sulfatide levels returned to normal follow-
ing kidney transplantation [7]. Accordingly, increasing or
maintaining serum sulfatide levels using fibrates may be use-
ful in reducing the risk of cardiovascular events, which is
consistent with the known beneficial effect of fibrates seen in
randomized controlled studies [38]. Furthermore, these
findings show a need to examine sulfatide metabolism in car-
diomyocytes, endothelial cells, and vascular smooth cells to
disclose any novel protective roles of PPARα in cardiovascu-
lar inflammation and atherosclerosis, particularly in relation
to CST upregulation.
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