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bioelectrical impedance analysis (BIA) technique.

with NS being associated with expansion of ECW.

Nephrotic syndrome, Children

Background: Oedema, characterized by accumulation of extracellular water (ECW), is one of the major clinical
manifestations in children suffering from nephrotic syndrome (NS).
The lack of a simple, inexpensive and harmless method for assessing ECW may be solved by the use of the

The aims of this study were to examine whether phase angle (PA), bioelectrical impedance vector analysis (BIVA)
and the impedance ratio (IR) reflect change in disease status in children with NS.

Methods: Eight children (age range: 2-10 years) with active NS (ANS group) were enrolled. In five of these (ANS*
subgroup), impedance was also measured at remission (NSR group). Thirty-eight healthy children (age range: 2-10
years) were included as healthy controls (HC group). Whole-body impedance was measured with a bioimpedance
spectroscopy device (Xitron 4200) with surface electrodes placed on the wrist and ankle.

Results: Values of PA, BIVA and IR were found to be significantly lower (p-value range < 0.001 to < 0.01) in the ANS
patients compared to the HC and NSR groups. No significant differences were observed between the NSR and HC groups.

Conclusion: The studied parameters can be used to assess change in disease status in NS patients. Data were consistent

Keywords: Electrical impedance, Phase angle, Bioelectrical impedance vector analysis, Impedance ratio, Total body water,

Background
Nephrotic syndrome (NS) is a condition in which the kid-
neys leak large amounts of proteins into the urine, with
consequent hypoalbuminemia and oedema formation [1]
and thus causes increased risk of complications and pro-
longed hospitalization [2].

Normally, body weight measurement is used by clini-
cians as a measure of oedema, i.e., accumulation of extra-
cellular water (ECW), in NS patients. However, the
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challenge with this approach is that it is only reliable for
short periods of time during which the change in weight
due to causes other than water are non-significant [3].
Dilution techniques using the tracers deuterated water
(D0, “heavy water”) and sodium bromide (NaBr) are
the criterion techniques for determining total body water
(TBW) and ECW volumes respectively. These are, how-
ever, potentially invasive, expensive, time consuming,
not possible to repeat at short intervals and require
highly trained personnel to make the measurements [4],
making them unsuitable for routine use in the clinic [5].
For these reasons, there is need for a simple, inexpen-
sive and harmless method for routine assessment of dis-
ease status that can provide new and clinically useful
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information to clinicians in the treatment of pediatric
NS patients. A possible approach that may prove to be
of use is the bioelectrical impedance analysis (BIA) tech-
nique, which is characterized by being non-invasive,
harmless, quick, simple, inexpensive, and portable and
thus suitable for routine use [6].

BIA, which is a collective term for bioimpedance devices
used to determine body composition [7], is based on the
principle that the flow of alternating electrical current
through the body varies from tissue to tissue; tissues con-
taining large amounts of water and electrolytes have high
conductivity, ie., low impedance, whereas fat and bone
have low conductivity and correspondingly high impedance.
The impedance of the body is therefore quantitatively (in-
versely) related to the volume of water in the body.

However, a challenge with BIA in paediatric populations
is that calculation of body water volumes are based on
population specific [8, 9] prediction equations that may be
inaccurate [10, 11]. Therefore, there is a growing interest
in the use of raw impedance data, especially in patients
with altered body water distribution [12]. Raw impedance
data are not directly linked to body water volumes, but
can be considered as indices of such volumes that can vary
with sodium and water retention.

Of the BIA parameters using raw impedance data, phase
angle (PA) is the most commonly used [13]. PA has been
linked with body water distribution between the intracel-
lular water (ICW) and ECW spaces (tissue hydration) and
cell membrane integrity (amount and quality) in a number
of studies [14—16], but the exact biological meaning of the
parameter is still not fully understood [13].

Another approach is bioelectrical impedance vector
analysis (BIVA), which is based on pattern analysis of
the raw impedance data standardized by the subject’s
height, plotted as a bivariate vector in a nomogram [17].
This one has gained increased attention in the clinical
setting [13], for example with studies conducted in
healthy [18] and diseased [19, 20] pediatric populations.

A third approach is the impedance ratio (IR), which has
been proposed as a potential indicator of oedema or over-
all health [12] and as a predictor of mortality in
hemodialysis patients [21]. Moreover, IR has been sug-
gested to reflect the fluid distribution between the TBW
and the ECW [12]. Until now, few studies using raw im-
pedance data have been performed in adults and none in
pediatric populations [12, 22].

The main aim of the present study was to investi-
gate whether PA, BIVA, and/or IR reflect change in
disease status in pediatric patients with NS either ac-
tive or in remission, and compare to results from
healthy children. The BIA parameters are used as in-
dices, while no attempt is made to quantify the fluid
volumes. A secondary aim was to determine if there
was advantage in using BIA parameters determined at
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the characteristic frequency, which is considered the
optimal frequency for TBW measurement, rather than
the conventionally-used 50 kHz.

Methods
The study groups and parameters considered are sum-
marized in Table 1 and described in the following.

Subjects enrolled
Eight children (boys =7, girl =1, 2—-10 years of age) with
active NS (ANS patient group) were included from the
Department of Pediatrics and Adolescent Medicine, Aar-
hus University Hospital, Denmark. Inclusion criteria
were the presence of NS defined by proteinuria > 40 mg/
m?/day, plasma albumin < 25 g/L, oedema, and hyperlip-
idemia. Exclusion criteria were low plasma levels of C3-
complement, post-infectious glomerulonephritis, vascu-
litis such as Henoch-Schonlein nephritis or specific
glomerulonephritis, e.g., dense deposit disease. Five of
the ANS patients (ANS* subgroup) were also restudied
on remission (NSR group). Remission was defined as
urinary dipstick negative for protein on three consecu-
tive days. Before treatment with prednisolone and di-
uretics were initiated, blood samples, blood pressures
and impedance measurements were collected in the
ANS patient group.

To be able to compare collected data, impedance
measurements were also available for 38 healthy age-
matched control children (HC group) (boys=23,

Table 1 Groups and impedance parameters studied in this

paper

Abbreviation Description

ANS Children with active NS (n=8)

NSR Children from ANS group re-studied
at time of NS remission (n=5)

ANS* Subgroup of ANS, same children as
NSR group (n=5)

HC Healthy controls, age-matched to
ANS group (n=38)

H Patient height (m)

fe The characteristic frequency (kHz)

R Resistance (Ohm, Q)

Xc Capacitive reactance (Q)

PAso Phase angle (in degrees) calculated
at a frequency of 50 kHz

PA« PA calculated at f,

BIVARxc Bioelectrical impedance vector analysis
plot based on R/H and Xc/H (unit Q/m)

BIVA,, BIVA plots based on Z scores (no unit)

IR>00/5 Impedance ratio (no unit) calculated at
the frequencies 200 and 5 kHz

IRee/s IR calculated at the frequencies f. and 5 kHz.




Brantlov et al. BMIC Nephrology (2019) 20:331

girls = 15, 2—10years of age), taken from a previously
published dataset [23].

Anthropometry, biochemistry and blood pressure

Prior to the impedance measurements, weight and height
were measured, in duplicate, by trained personnel. Weight
was measured on digital scales, with light clothes to within
0.1kg, and height was measured without shoes, to the
nearest 0.5 cm using a stadiometer.

For all calculations, mean values were applied.

Resting venous blood samples and blood pressures
(Carescape V100 Monitor, GE Healthcare, USA) were
collected in the ANS patient group as part of their rou-
tine medical care with analyses undertaken by accredited
hospital biomedical scientists.

BIA parameters

Frequencies

Accepted practice is to use PA calculated at a frequency
of 50kHz [12, 13]. Similarly, BIVA is performed using
resistance (R, in Ohm, Q) and reactance (Xc, in Q) also
measured at 50 kHz [13], while the IR in most common
use is calculated from measurements of impedance at 5
and 200 kHz [12]. The use of a bioimpedance spectros-
copy device, as used in this study, allows determination
of the so-called characteristic frequency (f., kHz),
defined as the frequency at which Xc reaches its
maximum [7]. This frequency (f.) varies from person to
person, but can be considered the optimal frequency
for measurement of TBW [24]. Consequently, it was
decided to explore whether there was advantage in
using measurements at f. in PA, BIVA and IR analyses,
as an alternative to the accepted practice described
above.

Phase angle (PA)

PA (in degrees), was calculated from R and Xc (Add-
itional file 1: Figure S1) at both 50kHz (PAs) and f.
(PAg) by use of the following formula:

Xc\ 180
PA = tan_l (%) T (1)

In this formula, tan™' transforms the ratio Xc/R into
an angle measured in radians, while the factor 180°/m (=
57.296) converts radians to degrees (2m in radians is a
full circle, i.e., 360°). A larger ratio of Xc/R corresponds
to a larger PA.

BIVA

The BIVA approach [17, 25] plots the loci of R and
Xc, standardized by the height (H), i.e., R/H and Xc/
H (in Q/m), as a bivariate vector in a nomogram.
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Data for specific populations, notably normative con-
trol data, are summarized as tolerance ellipses (see
Fig. 1) against which patient data may be compared.
Where replicate measurements are available as in the
present study, for the NS patients before and after
treatment, the different vectors (loci) can be shown in
the same plot to visualize any change, such as change
in position relative to the tolerance ellipses.

To better focus on deviation from normative refer-
ence values, Z scores were calculated. For a normal
material with a mean value (p) and a standard devi-
ation (o), the Z score of an observed value X is:

|
-z

Z score =

(2)

In the present paper, Z scores are denoted Zg (no unit)
to avoid confusion with the accepted symbol for imped-
ance (Z, in Q). By definition Zs(u) =0, while a deviation
by, for example 2 standard deviations from the mean
value, corresponds to Zg = 2.

The BIVA plots were transformed from raw plots
to Zs plots by plotting the Zs values instead of the R
and Xc values. In a BIVA plot transformed to Zs, the
tolerance ellipses have center at (0,0), but will still be
non-circular because R and X are not independent
variables.

In this study, BIVA plots were prepared from R and
Xc (raw impedance data), measured at either 50 kHz or
f.. These BIVA plots will be referred to as BIVARx,, with
the corresponding parameters: Rso/H and Xcso/H, or
Ri/H and Xcr/H. Correspondingly, BIVA plots trans-
formed to Z scores will be referred to as BIVAy,,, with
the corresponding parameters: Zs(R50/H) and Zs(Xcso/
H), or Zs(Re/H) and Zg(Xcz/H).

Impedance ratio (IR)

The theory behind the use of IR’s is that at a suffi-
ciently high frequency electrical current can penetrate
the cell membrane, and provide information about
the TBW, whereas at a low frequency the membrane
is essentially impermeable to the electrical current,
and only ECW can be measured [26]. While the ideal
high and low frequencies are infinite and zero re-
spectively, finite frequencies must be used in practice.
The frequency pair 200 kHz and 5kHz is commonly
used [5, 12]. Impedance will be lower at 200 kHz than
at 5kHz, and IRyyy,5 will thus be a number below
1.00. An IRyq0;5 approaching 1.00 is deemed to indi-
cate fluid overload and poor cellular health [12]. A
high ratio is thus an expression that the resistance to
electrical current in the body is reduced as a
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More soft tissue

X /H (Q/m)

Overhydration

Dehydration

Less soft tissue

R/H (Q/m)

Fig. 1 Interpretation of the BIVA nomogram. Reference values are plotted as so-called tolerance ellipses in the coordinate system with the 50th
(), 75th (=) and 95th (—) vector percentile of the healthy reference population. Values outside of the 95th percentile are considered abnormal.
The position and length of the vector provides information about disease status and cell membrane function. The length of the vector is related to
high or low R values, i.e. dehydration (quadrant 1) and overhydration (quadrant 3), respectively. A migration sideways of the vector due to high or low
Xc indicates increase (quadrant 2) or decrease (quadrant 4) of dielectric mass (membranes and tissue interfaces) of soft tissues. The same interpretation
applies when BIVA plots are prepared based on Z scores. The division into quadrants is meant as an indication only, not as sharp distinctions

consequence of expansion of the ECW and/or a detri-
ment of the normal function of the cell membrane.

The IR (no unit) was calculated from the impedance Z
(in Q) as follows:

Z at high kHz
Z at low kHz.

(3)

IRhigh Jlow =

The ratios considered were IRyqo/5 and IRgs, i.e., both
the common choice and investigation of f. as the high
frequency.

BIA measurements
BIA measurements were undertaken as far as possible fol-
lowing previously reported standardized testing and report-
ing procedures [7, 27]. Briefly, the protocol was as follows.
Participants were not fasting with no restrictions on
voiding but had been requested to refrain from intense
physical exercise four hours prior to study.
Measurements were performed in an electrically
neutral environment with participants lying supine on
a non-conductive surface (hospital bed/examination

table). Participants were rested in the supine position
for 5min before and during measurement. Partici-
pants remained clothed with only hands and feet un-
covered with the body positioned with the arms and
legs abducted at a 30-45 degree angle from the
trunk. Skin surface ECG-style gel electrodes with an
area >4 cm? (single-Tab. 292-STE, ImpediMed, Bris-
bane QLD, Australia) were used: voltage (sensor) elec-
trodes were applied at midline (electrode centre-to-
centre) between the prominent bone prominences on
the dorsal surface of the wrist (ulna and radius), and
ankle (medial and lateral malleoli). The current
(source) electrodes were placed with the midline 5cm
distal to these positions using a purpose-designed
spacer. Where the hands or feet were too small to
obtain this separation, the current electrodes were
placed as distally as possible on the hand (but not on
the fingers or toes), and the voltage electrodes were
placed with the midline 5cm proximal to this pos-
ition [28]. To secure proper electrode-to-skin adher-
ence and to minimize skin contact impedance, the
skin was cleaned with alcohol (ethanol 75%) prior to
the placement of electrodes.
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Whole body (wrist to ankle) impedance was measured
using a Xitron 4200, HYDRA BIS device, tested with an
electronic verification module (TS4201) weekly accord-
ing to manufacturer’s instruction, (Xitron Technologies,
San Diego, CA, USA). This device measures the elec-
trical parameters R and X¢ at 50 discrete frequencies in
the range from 5 to 1000 kHz.

It was ensured that the device cables were not touch-
ing the subject, the subjects’ parents, the ground, metal
objects, routed near high voltage equipment, strong elec-
trical or magnetic fields, and that the cables were not
intertwined. All measurements were made by the same
trained operator. Furthermore, the measurements were
made in triplicate with electrodes remaining in place be-
tween measurements, made at room temperature (21° to
25° C) and performed between 08:30 and 15:30. The
total measurement time was 7 min, covering patient
preparation and impedance measurements.

Data were analysed and screened for data quality using
the ImpediMed SFB7 Multi-Frequency Analysis software
(Bioimp Version 5.4.0.3, Brisbane QLD, Australia) as
described previously [29]. Precision of measurement was
assessed by the percentage coefficient of variation (CV% =
SD/mean - 100%) and deemed acceptable for all groups:
CV(Rsp and Rg) <0.5% and CV(Xcs0 and Xcpe) < 3.1%.

Statistical data analysis

Results are presented as mean + standard deviation (SD),
after test for normality, using Q-Q plots and the Sha-
piro-Wilk test.

To determine differences in impedance data between
patients with active NS and the same patients at remis-
sion (ANS* group vs. NSR group), a paired two-tailed
Student’s t-test was used. To compare impedance data
between patients with active NS and at remission with
controls (ANS group vs. HC group and NSR group vs.
HC group), an unpaired two-tailed t-test was used.

The statistical software MedCalc® (MedCalc Software,
Ostend, Belgium) was used to prepare all statistical tests
and graphical illustrations.

Results

Participant characteristics

Comparison between all the participants enrolled in the
study (Additional file 1: Table S1) showed no significant
differences in any parameters between the NS and con-
trol participants and between the NS sub-groups.

All ANS patients (Additional file 1: Table S2) had normal
or near normal renal function and four of eight patients
were hypertensive at admission.

Repeat impedance measurements at remission were only
possible in five of the patients: two of the ANS patients did
not recover due to repeated relapses, and one was trans-
ferred to another hospital.
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Bioimpedance parameters
Impedance data and statistics are presented in Table 2.
The main findings are summarized in the following.

Phase Angle

The absolute and relative (in brackets) mean differences
of the PA values for the ANS patients compared to the
HC were — 2.3 degrees (- 43.4%) for PAsy and - 2.7 de-
grees (- 44.3%) for PAg. For the HC group, PAs, values
showed to be comparable with earlier reported reference
values (range: 5-7 degrees) for healthy children, adoles-
cents and adults [13, 30], confirming their use as control
group in this study.

For both PAjs, and PAg, significant differences were
found between the NS children and the same children at
remission (ANS* vs. NSR, both p-values <0.01) as well
as between the NS children and healthy children (ANS
vs. HC, both p-values <0.001). Children in remission
had similar results to the healthy children (NSR vs. HC,
both p-values > 0.05). The relationship between PAj, in
relation to age and weight showed (Additional file 1: Fig.
S2) that values for the ANS patients were located out-
side the confidence intervals of the HC at baseline, but
for those participants for whom data at remission was
available (i.e. the NSR group), data were now located
within or very close to the range of control data.

BIVA

The absolute and relative (in brackets) mean differences of
the BIVAgx. parameters for the ANS patients compared to
the HC were - 222.5 Q/m (- 38.4%) for Rgo/H, — 35.0 Q/m
(- 65.5%) for Xcs0/H, - 215.5 Q/m (- 38.4%) for Re/H and
- 383 Q/m (- 65.1%) for Xc/H. For the HC group,

The absolute mean differences of the BIVA,, parame-
ters for the ANS patients compared to the HC were -
2.3 for ZS(R50/H), - 4.5 for Zs(Xc5o/H), - 2.6 for Zs(Rfc/
H) and - 4.0 for Zg(Xcr/H).

For both BIVARx. and BIVAy, significant differences
were found between the NS children and the same chil-
dren at remission (ANS* vs. NSR, all p-values <0.01) as
well as between the NS children and healthy children
(ANS vs. HC, all p-values < 0.001). Children in remission
had similar results to the healthy children (NSR vs. HC,
all p-values > 0.05).

Figure 2 shows the BIVA graphs measured at 50 kHz
for all the groups (ANS/ANS* and NSR as points, HC as
reference ellipses). Graphs measured at the characteristic
frequency f, were very similar and are not shown. From
the graphs it appears that the ANS patients were found
outside the reference ellipse and in the quadrant that
represents overhydration. At remission, vectors had
moved along a trajectory that had returned the ANS
participants to within the reference ellipse except for
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Table 2 Measured impedance data and statistics for the included groups

Parameter ANS ANS* NSR HC ANS* vs. NSR ANS vs. HC NSR vs. HC
(paired) (unpaired) (unpaired)
Raw impedance data
fe (H2) 1445 + 431 155.8 + 445 96.8 £ 439 932 £ 292 p <0.01 p<0.05 p>0.05
Rso (QQ) 4215+ 447 3993 £ 410 663.1 £ 615 7219 £ 653 p < 0.001 p < 0.001 p>0.05
Ree (O 4034 + 409 3821 +374 639.8 + 582 694.7 + 62.7 p <0.001 p <0.001 p>0.05
Xcso () 221 £54 186 £ 34 630+ 119 66.9 £ 8.1 p <0.01 p < 0.001 p>0.05
Xere (Q) 242 £57 212 +52 724 £112 738 £10.1 p < 0.001 p < 0.001 p>0.05
Z5 (Q) 4421 + 479 4162 +428 7339 £ 65.1 7949 £ 716 p <0.001 p <0.001 p>005
Zo00 () 396.8 £41.2 3780 + 394 603.7 + 59.6 656.8 + 59.9 p <0.001 p <0001 p>0.05
Zie () 4043 £ 41.1 3828 £ 375 643.1 + 584 698.6 = 63.0 p < 0.001 p < 0.001 p>0.05
PA (degrees)
PAso 30+ 06 27 +04 55+ 1.1 53+05 p <001 p <0001 p>0.05
PA« 34 +£06 31 £05 65+10 6.1 £06 p <0.01 p < 0.001 p>0.05
BIVAgxe (/m)
Rso/H 356.9 + 87.6 3372+918 5558 + 166.9 5794 + 949 p <001 p <0001 p>005
Re/H 3411 £810 3224 + 856 5306 £ 1423 5565 + 834 p <0.01 p < 0.001 p>0.05
Xcso/H 184 + 49 154 £ 34 506+ 76 588 +95 p <0.001 p <0001 p>005
Xere/H 205 £ 6.6 179 £ 69 58.7 £ 108 587 £108 p <0.001 p < 0.001 p>0.05
BIVAz (no unit)
Z5(Rso/H) -23+09 -26+10 -03=£17 00£10 p <001 p <0.001 p>0.05
Zs(Ree/H) -26+10 -28+10 -03+17 00+£10 p <0.01 p < 0.001 p>0.05
Zs(Xcso/H) -45+06 -49 + 04 -04+10 00£10 p < 0.001 p < 0.001 p>0.05
Zs(Xcre/H) -40+ 07 -43+07 00+ 1.1 00£10 p <0.001 p<0.001 p>005
IR (no unit)
IR00/5 090 + 0.02 091 £ 001 082 +0.03 0.83 £ 0.02 p <0.01 p < 0.0001 p>0.05
Reess 0.92 £ 001 092 + 001 0.88 £ 0.01 0.88 £ 0.01 p <0.001 p <0.001 p>005

Data are means = SD. For group and impedance descriptions, see Table 1. H: height, Z: impedance (Z2=R? + Xc?), Zs = Z score
For group and impedance descriptions, see Table 1; Zs=Z score; A Student’s t-test was used to determine differences between the groups with statistical

significance set at a p-value < 0.05

one ANS patient that was now located in the quadrant
indicative of dehydration.

Impedance ratios

The absolute and relative (in brackets) mean differences
for the ANS patients compared to the HC were 0.07
(8.4%) for IR200/5 and 0.04 (45%) for IRfC/s.

For both ratios studied, NS children were significantly
different from the same children at remission (ANS* vs.
NSR, both p-values < 0.01), and NS children were differ-
ent from healthy children (ANS vs. HC, both p-values <
0.01), while no significant differences were found
between children in remission and healthy children
(NSR vs. HC, both p-values > 0.05).

The relationship between the IR,q0/5 and age and weight
for all three groups are presented in Fig. 3. The ratios for
the ANS patients were located outside the confidence inter-
vals of the HC at baseline, but moved to be located within

or very close to the normal range at remission. One ANS
patient was notable for being an apparent outlier for weight
(Fig. 3); this patient’s weight was at the 100th percentile
from the “‘WHO child growth standards’ [31]).

Discussion

This study has demonstrated that BIA is capable of
distinguishing NS patients from healthy controls and is
capable of tracking recovery of patients at remission. In
contrast to earlier BIA studies in children with NS,
where prediction equations have been used [32, 33], the
current study, and a recently published bioimpedance
study in the same group of children [34], used raw BIA
data free of the assumptions that underlie prediction
equations for body water volumes. These assumptions,
for example, constant hydration, are questionable in
many clinical situations, and provide results open to
misinterpretation [12, 35].
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Fig. 2 BIVA plots. BIVAgx. and BIVA,¢ graphs calculated on the basis of 50 kHz. Reference ranges of the HC are indicated as 50th (--), 75th (—-)
and 95th (—) tolerance ellipses. A: ANS, A: NSR. To identify impedance changes, the plots are connected with dotted lines for the five ANS
patients measured in the period of remission. For group and impedance descriptions, see Table 1
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Three approaches to the use of raw impedance data were
considered: PA, impedance ratios and BIVA plots. It is ap-
propriate to consider the relative advantages and disadvan-
tages of each.

Low PA values have been previously associated with ill
health. PA values below 3.0 degrees were found to be an in-
dependent predictor of poor survival in haemodialysis pa-
tients [36]. This value showed to be in agreement with the
mean value of 3.0 degrees observed in the ANS patients.
Similarly, low PA values (male: 4.21 degrees; female: 4.38

degrees) have been observed in children suffering from sickle
cell disease (SCD) [37] and malnutrition (2.4 degrees) [38].
In contrast to PA, BIVA plots make it possible to dif-
ferentiate between two identical PA values that may rep-
resent two different physiological conditions (cf.
Figure 1) as well as the relation between X and R which
is subsumed into the single PA value. A disadvantage of
BIVA plots is, however, the time required to prepare
such plots for pediatric patients. Although some com-
mercially available BIA devices provide BIVA plots in
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Fig. 3 Relationship between impedance ratios and participants’ age and weight. A: ANS, A: NSR, o: HC; For group and impedance descriptions,
see Table 1; Regression lines are based on the HC data. Dashed lines are 95% confidence intervals for regression lines
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their software, unfortunately they do not include refer-
ence ranges for pediatric populations.

Compared to PA and BIVA (both calculated at 50
kHz), impedance ratios provide information related to
body water distribution, i.e. ECW relative to TBW. In
previous studies, IR has proven to be a more sensitive
indicator of malnutrition than PA [39]. To be clinically
useful, interpretation of IRs requires normative data
(cut-points) obtained in comparable populations; unfor-
tunately, at present, no normative data are available for
the pediatric population. In healthy adults, mean IR,qg/5
cut-points of between <0.78 and <0.82, respectively,
have been reported as limits for normal IRyg0/5 [39], and
reference cut-points based on ethnicity for healthy adults
have been prepared by NHANES [30]. For comparison,
the mean IRyq9,5 was 0.83 in our pediatric HC group, i.e.
slightly above the adult cut-point.

Studies in adults have demonstrated that ratios pro-
gressively closer to 1.00 are linked to fluid overload,
poor cellular health and poor clinical outcomes [12]; by
comparison a mean ratio of 0.90 was observed in the
ANS patients. The rationale for calculating IR at fre-
quencies 5 and 200 kHz, is that 5 kHz is sufficiently low
to provide an accurate measure of ECW while 200 kHz
is sufficiently high that a large proportion of the elec-
trical current penetrates the cell membrane and thus will
provide a more accurate measure of TBW [12, 40].

The secondary aim of the present study was to explore
whether there was advantage in using PA, BIVA and IR
measurements obtained at f, as alternative to the widely
used 50 kHz. Even though f. has been suggested as the op-
timal frequency for impedance measurements in humans
[5], our data, however, do not support this contention,
since the patient and control groups were equally well
separated by measurements at either frequency. This ob-
servation is consistent with the finding that measurements
of impedance at f; are no better predictors of body com-
position than at 50 kHz [40]. It should be emphasized that
using a wrist to ankle measurement protocol, as used in
this study, f; is the average value of the individual f; values
for all tissues within the conductive route. All tissues dis-
play different and unique f_’s that depend upon their phys-
ical structure. Whole body impedance measurements are
predominantly determined by the impedance of skeletal
muscle tissue [41]. Thus it is possible that the increased f.
observed in the ANS patients is indicative of changes in
skeletal muscle; a hypothesis consistent with NS being a
systemic condition.

Limitations of the present study were the low number
of patients enrolled, which is a consequence of the low
incidence of the disease with only around 2 new cases
per 100,000 [42]. Despite the risk that the small number
of patients is not representative of NS patients in gen-
eral, we do not consider this to be a serious problem as
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they exhibited the same clinical characteristics as previ-
ous patients in the clinic.

BIVA plots for the reference population are normally
adjusted for age, BMI and gender. This was not possible
in this study due to the limited number of controls
enrolled.

An adjusted BIVA plot is likely to exhibit narrower
normal ranges, ie. smaller tolerance ellipses. Figure 2
demonstrates that the BIVA data of the ANS children
were clearly outside the normal tolerance ellipses, tighter
normal ranges would amplify these differences.

Generally, no attempt was made to adjust for sex dif-
ferences, again due to small sample size, even though
significant differences between the sexes regarding rela-
tive fat mass and lean body mass (LBM) even when ad-
justed by height have been found in studies in healthy
children [43].

Conclusion

This study demonstrated that PA, BIVA and IR may be
clinically useful to monitor changes in disease status in
pediatric NS patients. NS is characterized by leakage of
large amounts of proteins from the kidneys into the
urine, with consequent hypoalbuminemia and oedema
formation. Sodium retention is the major clinical feature
of NS and the primary cause of the oedema formation.
PA and BIVA measurements can be obtained using sim-
ple inexpensive single frequency bioimpedance devices.
Multi-frequency devices are required if IR is applied for
additional information on the relative sizes of body
water compartments, i.e. ECW and TBW. In order to in-
crease the clinical utility of the approaches considered
here, standardized population-specific reference data
from childhood to puberty are required.

The present results are promising, in that they demon-
strate the potential of BIA as an alternative clinical tool
to repeated daily weighing as a measure of fluid over-
load. Weight change is a poor prognostic indicator since
premorbid weight is often influenced by recall bias from
the carers of the child and the weight of a child will
change over time, especially in NS patients treated with
prednisolone which enhances appetite markedly.

Finally, although the present data do not provide a
physiological mechanism for changes in disease status in
NS, changes in tissue reactance imply changes in cell
membrane function with consequent impacts upon
tissue water distribution. Further studies are required to
confirm this suggestion.

Additional file

Additional file 1: Figure S1. Raw impedance data in the impedance
plane. Figure S2. Relationship between phase angle and participants’
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age and weight. Table S1. Characteristics of the study subjects. Table
S2. Clinical data for the ANS patients. (PDF 201 kb)
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