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Stomach adenocarcinoma (STAD) ranks as the fourth prevalent cause of mortality

worldwide due to cancer. The prognosis for those suffering from STAD was bleak.

Immunogenic cell death (ICD), a form of induced cellular death that causes an

adaptive immune response and has increasing in anticancer treatment. However, it

has not been ascertained how ICD-related lncRNAs affect STAD. Using univariate

Cox regression and the TCGA database, lncRNAs with prognostic value were

identified. Thereafter, we created a prognostic lncRNA-based model using

LASSO. Kaplan-Meier assessment, time-dependent receiver operating

characteristic (ROC) analyzation, independent prognostic investigation, and

nomogram were used to assess model correctness. Additional research included

evaluations of the immunological microenvironment, gene set enrichment analyses

(GSEA), tumor mutation burdens (TMBs), tumor immune dysfunctions and

exclusions (TIDEs), and antitumor compounds IC50 predictions. We found

24 ICD-related lncRNAs with prognostic value via univariate Cox analysis (p <
0.05). Subsequently, a risk model was proposed using five lncRNAs relevant to ICD.

The risk signature, correlated with immune cell infiltration, had strong predictive

performance. Individuals at low-risk group outlived those at high risk (p < 0.001). An

evaluation of the 5-lncRNA risk mode including ROC curves, nomograms, and

correction curves confirmed its predictive capability. The findings of functional tests

revealed a substantial alteration in immunological conditions and the IC50 sensitivity

for the two groups. Using five ICD-related lncRNAs, the authors developed a new

risk model for STAD patients that could predict their cumulative overall survival rate

and guide their individual treatment.

OPEN ACCESS

EDITED BY

Muhammad Farrukh Nisar,
Cholistan University of Veterinary and
Animal Sciences, Pakistan

REVIEWED BY

Shiva Gholizadeh-Ghaleh Aziz,
Urmia University of Medical
Sciences, Iran
Syed Zahid Ali Shah,
Case Western Reserve University,
United States

*CORRESPONDENCE

Lin Chen,
jluchenlin@jlu.edu.cn

SPECIALTY SECTION

This article was submitted to
Pharmacology of Anti-Cancer Drugs,
a section of the journal
Frontiers in Pharmacology

RECEIVED 18 August 2022
ACCEPTED 22 September 2022
PUBLISHED 14 October 2022

CITATION

Ding D, Zhao Y, Su Y, Yang H, Wang X
and Chen L (2022), Prognostic value of
antitumor drug targets prediction using
integrated bioinformatic analysis for
immunogenic cell death-related
lncRNA model based on stomach
adenocarcinoma characteristics and
tumor immune microenvironment.
Front. Pharmacol. 13:1022294.
doi: 10.3389/fphar.2022.1022294

COPYRIGHT

© 2022 Ding, Zhao, Su, Yang, Wang and
Chen. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 14 October 2022
DOI 10.3389/fphar.2022.1022294

https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.1022294/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.1022294&domain=pdf&date_stamp=2022-10-14
mailto:jluchenlin@jlu.edu.cn
https://doi.org/10.3389/fphar.2022.1022294
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.1022294


KEYWORDS

stomach adenocarcinoma, ICD, lncRNA, prognostic, TCGA, tumor-infiltrating immune
cells

Introduction

Stomach cancer is fifth in terms of prevalence and fourth in

regards of fatality leading to over one million new cases in 2020

(Sung et al., 2021). Stomach adenocarcinoma (STAD) was the

most common and malignant subtype. Surgical treatment is the

primary method of treating STAD. Patients are typically

identified at an advanced phase, with a dismal prognosis.

Patients with advanced STAD typically have a 5-year survival

rate fewer than 5% (Meng et al., 2021). Molecular mechanisms

underlying STAD still have not been fully clarified.

Consequently, further research into new indicators that affect

STAD prognosis is required, by categorizing patients with

different prognoses, and improving prognosis prediction,

which is significant to improve early diagnosis and treatment

of STAD.

Immunogenic cell death (ICD) is a type of cancer cell death

that can boost the activation of the immune system against tumor

in immunocompetent hosts. ICD comprises the release of

damage-associated molecular patterns (DAMPs), such as the

cell surface exposure of calreticulin (CRT), heat-shock

proteins (HSP70 and HSP90), extracellular ATP, high-

mobility group box-1 (HMGB1), and type I IFNs etc., from

dying tumor cells that result in the activation of tumor-specific

immune responses (Zhou et al., 2019; Wang et al., 2021a). ICD

can be triggered by certain chemotherapeutic drugs, oncolytic

viruses, photodynamic therapy, and radiotherapy. Crizotinib, an

ICD-inducing tyrosine kinase inhibitor, exhibits exceptional

antineoplastic effect when coupled of non-ICD-inducing

chemotherapy drugs like cisplatin. Chemotherapy causes the

overexpression of immunosuppressive molecule in gastric

cancer: programmed death-ligand 1 (PD-L1) (Petersen et al.,

2021). Immune responses to cancer are stimulated by ICD when

dying cancer cells are converted into therapeutic vaccines.

Tumors with a high propensity for ICD may elicit a more

vigorous immune response, aiding in the fight against and

slowing down tumor growth. Therefore, further clinical

studies are required to determine the possibilities of ICD-

related immunotherapy.

Long noncoding RNAs (lncRNAs) have more than

200 nucleotides and regulate various biological processes in

cancers (Wang et al., 2021b). NcRNAs affect gastric cancer

chemo- and immunotherapy resistance. EIF3J-DT induces

STAD chemoresistance by stimulating autophagy (Luo et al.,

2021); MEG3 inhibits STAD proliferation and metastasis by

blocking p53 signaling (Wei and Wang, 2017). Oncogenic

lncRNAs such as plasmacytoma variant translocation 1

(PVT1) have been linked to chemoresistance (Wei et al.,

2020). Meanwhile, several lncRNAs, including ferroptosis-

related lncRNAs (Wei et al., 2021; Wang et al., 2022),

immune-related lncRNAs (Zhi et al., 2022), and m5C-related

lncRNAs (He et al., 2022), have recently been linked to STAD

prognosis. The impact of ICD-associated lncRNAs on STAD,

however, remains unclear.

Herein, we established a risk model based on five ICD-

associated lncRNAs to predict STAD patients’ prognosis,

immunological microenvironment, and chemosensitivity. In

line with our expectations, our model showed a good

prediction of survival ability in STAD patients and depicted

the characteristics of immune cell invasion, immunological

checkpoints, and drug sensitivity, providing individualized

treatment for STAD patients.

Materials and methods

Data preprocessing

375 cancer samples and 32 non-cancerous samples of TPM

RNA-seq data were obtained from the TCGA database (https://

tcga-data.nci.nih.gov/tcga/). The clinical information, such as

age, gender, and survival information, were retrieved. Perl

programming language was used to combine these data into a

matrix file. Patients that clinical information cannot access were

deleted from subsequent analyses. Next, 34 ICD-related genes

were retrieved from published research (Garg et al., 2015).

Examination of differentially expressed
ICD-related lncRNAs

Using the R package “limma” in combination with the

specifications: Pearson |coefficient correlation| > 0.40 and p <
0.001, 572 ICD-associated lncRNAs were identified as ICD-

associated lncRNAs. Based on these lncRNAs, adjust p <
0.05 thresholds for lncRNAs with |log2 (fold change, FC)| >
1 between STAD samples and non-carcinoma samples were

screened out as differentially expressed ICD-related lncRNAs.

Construction of prognostic model for
ICD-related lncRNAs

Survival-related lncRNAs from differentially expressed ICD-

related lncRNAs were conducted using univariate Cox regression

analysis with STAD patients’ clinical data. The prognostic

lncRNAs were then subjected to reduce overfitting with Lasso-

Cox regression method. Then, a risk model with a p-value less
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than 0.05 and one thousand cycles was constructed. The risk

scores were calculated according to this formula:

risk score � ∑
n

i�1
(coefip exp ri) (1)

The coefi represents each lncRNA’s coefficient index, and

exp ri represents each lncRNA’s expression level.

Verification of the risk model

The Kaplan–Meier (KM) analysis of survival validated our ICD-

related lncRNA riskmodel. First, entire TCGA cohort was discretized

into training and validation groups at a 1:1 ratio. Observations were

randomly assigned into low-risk or high-risk groups based on

median risk scores. Chi-square test was utilized to evaluate the

risk model’s predictive efficacy. Using the packages “survival” and

“survminer”, survival curves were obtained based on the number of

events in each group. Using the validation set, the dependability of

risk scores was evaluated. With STAD patients’ clinical data, we

established univariate and multivariate Cox regressions. Data on age,

gender, grade, and stage were collected to determine the

independence of the risk score as a predictor of overall survival

(OS). The prognostic effectiveness was evaluated using Harrell’s

concordance index (C-index) and time-dependent ROC curve

using R packages “survcomp” and “survivalROC”.

Nomogram establishment

To determine the consistency of the prediction outcome, The

nomogram was established utilizing risk score, age, gender, and

tumor stage. The “rms” R package software was used to generate line

graphs for the 1-, 2-, and 3-year OS with Hosmer-Lemeshow

correction curves.

Immune cell infiltration and checkpoints
analysis

CIBERSORT is used for deconvoluting immune cell expression

matrices using linear support vector regression, it counts the

percentage of immune cells in infiltrate tissues with the detection

of marker gene expression. In this study, we used the CIBERSORT

method with the leukocyte gene signature matrix (LM22) as a

reference and 1,000 permutations to measure immune cells ratio

in tumor microenvironment (TME). The “ESTIMATE” R program

was used to determine the stromal cell and immune cell scores, which

are subsequently used to assess the tumor purity. In addition,

immune cell invasion, functional pathways, immune cell

correlations with risk scores, and immunological checkpoints were

examined in comparisons between the risk groups with “ggpubr” R

package. The correlation between the risk score and infiltrating

immunocytes was examined using Spearman’s test. A p-value of

less than 0.05 was deemed significant.

Gene set enrichment analyses enrichment
analysis

We examined the alteration in gene expression between

different risk cohorts with the MSigDB enrichment dataset

(c2.cp.kegg.v7.4.symbols.gmt) using the R package “GSEA”.

Tumor immune dysfunctions and
exclusions analysis

The Tumor Immune Dysfunction and Exclusion (TIDE)

approach can assess T cells malfunction, exclusion, and

checkpoint inhibitors response (http://tide.dfci.harvard.edu/)

(Jiang et al., 2018). TIDE scores that are higher indicate a

greater likelihood of antitumor immune escape.

Tumor mutation burden analysis

The somatic mutation profile was obtained and R package

“maftools” was used to examine Mutation Annotation Format

(MAF) data on somatic mutations. For each STAD instance, a

tumor mutation burden (TMB) score was calculated using the

methodology below:

TMB � totalmutation

total covered bases
× 106 (2)

Gene ontology and kyoto encyclopedia of
genes and genomes enrichment

We identified signal pathways and biological effects using the

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) analysis. The p-value and q-value criteria of

0.05 thresholds were employed with the “clusterProfiler” package,

FDR and p < 0.05 were regarded as significantly enriched.

Analysis of clinical chemotherapy risk
model performance

With the “pRRophetic” package, the half-maximal inhibitory

concentrations (IC50) of anti-cancer medicines were

administered to a variety of subgroups of patients to assess

how effectively a substance inhibits a biological process, p

values <0.001 were considered statistically significant.
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Statistical analysis

All statistical analyses were conducted using R, version 4.1.3.

Using Pearson Correlation examination, the relationships between

ICD-related genes and lncRNAswere examined. Immune infiltrating

cells were analyzed usingWilcoxon signed-rank test. A p-value below

0.05 indicated statistical significance.

Results

Identification of differentially expressed
ICD-related lncRNAs

Figure 1 displays the study’s flow diagram. 572 ICD-related

lncRNAs were determined from STAD samples. Of these,

358 lncRNAs were differentially expressed ICD-related

lncRNAs (Figures 2A,B). Co-expression networks of 34 ICD-

related genes and differently expressed lncRNAs are shown in

Figure 2C.

Establishing a 5 ICD-related lncRNA risk
model for STAD patients

We discovered 24 prognostic ICD-related lncRNAs using

univariate Cox regression (p < 0.05) (Figure 3A), based on

which a heatmap was drafted (Figure 3B). Further, these

lncRNAs are positively regulated by their associated genes

(Figure 3C). The Lasso regression was performed, and five

lncRNAs were sorted out (Figures 3D,E). Besides, the

correlation between the five lncRNAs and ICD genes were

shown in Figure 3F. The risk score for each sample was

computed using the approach given below: Risk Score =

AC131391.1 × (0.6469) + PVT1 × (-0.8239) +

LINC00592 × (1.0268) + AL139147.1 × (0.8928) + VCAN-

AS1 × (0.9535). Using the algorithm above, a median score

was determined, and the TCGA-STAD cohort, training, and

validation entities were partitioned into low- and high-risk

cohorts. As shown in Figure 4, a five ICD-related lncRNA

prognostic model was established to predict patients’ OS. The

risk score distribution is shown in Figures 4A–C. In the high-

FIGURE 1
Workflow of the study.
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risk category, there were more deceased observations (Figures

4D–F). The expression of the five risk lncRNAs in each group

was shown in Figures 4G–I. Observations in low-risk group

outlived those from the high-risk group, according to KM

plots (Figures 4J-L). The detailed clinical parameters for

training and test set were shown in Table 1.

FIGURE 2
Identification of differentially expressed ICD-related lncRNAs in STAD patients (A) Volcano plot illustrating the differential expression lncRNAs in
STAD samples compared to those in non-carcinoma tissues (B) Heatmap of ICD-related differentially expressed lncRNAs (C) The Sankey diagram
illustrates the correlation between ICD genes and ICD-related lncRNAs.

FIGURE 3
Construction of prognostic model for ICD-related lncRNAs in STAD patients (A) Analysis of 24 lncRNAs associated with prognosis using
univariate Cox regression (p < 0.05) (B) 24 lncRNAs associated to prognosis were expressed differentially in adenocarcinomas and healthy stomach
tissues. (C) The correlations between prognosis-related lncRNAs and corresponding ICD genes (D) Distribution of LASSO coefficients for 5 ICD
lncRNAs. (E) A cross-validation procedure for optimizing LASSO regression parameters (F) The correlations between the five prognosis-related
lncRNAs and ICD-related genes.
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Independent prognostic analysis

Both risk score and stage demonstrated substantial

connections with the patients’ prognosis, as shown by a

univariate Cox regression analysis (Figure 5A). Utilizing

multivariate analysis, the risk score and stage independently

predicted STAD patients’ OS (Figure 5B). The risk signature

was more predictive than other clinical indications, according to

ROC curves (Figure 5C). At 1, 3, and 5 years, the area under the

curve (AUC) reaches 0.696, 0.640, and 0.649, respectively (Figure

5D). The risk signature also scored highest from C-index curves

(Figure 5E). According to our findings, the ICD-related lncRNAs

risk model exhibited stronger prognostic prediction for STAD

than classical clinical and pathological features.

Construction of prognostic nomogram

The nomogram was developed (Figure 5G) to enhance the

survival prediction for STAD patients. The 1-, 3-, and 5-year OS

calibration curves demonstrated high agreement between

predictions and observations (Figure 5F).

Relationship between immunological
traits and risk model

We contrasted the variations in the tumor

microenvironment between the groups with high- or low-risk.

22 immune cells that infiltrated tumors were examined

(Figure 6A), and a significant correlation between immune

cells was observed (Figure 6B). The bubble diagram showed

the correlations between immune cells and risk scores

(Figure 6C). Most immune cells showed a positive correlation

with risk scores, especially hematopoietic stem cells of XCELL,

resting memory CD4+ T cells, activated mast cells,

M2 macrophages of CIBERSORT-ABS, B cells of

QUANTISEQ, and cancer-associated fibroblasts of

MCPCOUNTER. Additionally, memory B cells, resting

dendritic cells, plasma cells, monocytes, and resting mast cells

FIGURE 4
Prognosis value of the five ICD-related lncRNAs model (A–C) Illustration of an ICD-related lncRNA model depending on risk scores for train,
validation, and entire sets, respectively. (D–F) Low- and high-risk groups’ train, validation, and whole-set survival times and statuses are compared
(G–I)Heat maps depict 5 lncRNAs in train, validation, and entire datasets (J–L)OS curves for low- and high-risk groups in train, validation, and entire
sets.
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were more abundant in the low-risk group in comparison to the

high-risk group (p < 0.05), whereas the high-risk group had

greater levels of expression of activated CD4+ memory T cells,

resting NK cells, andM0macrophages (Figure 6D). Furthermore,

the tumor microenvironment score was determined by

“ESTIMATE” to quantify stromal-immune cell proportions.

High-risk STAD individuals had higher stromal,

immunological, and overall ESTIMATE scores (Figure 6E),

demonstrating a greater immunological fraction in the high-

risk group. Then, those in high-risk category exhibited higher

TIDE scores (Figure 6F), suggesting that patients with high-risk

ratings might be more susceptible to immune evasion. We

evaluated the score of immune cells and immune function by

ssGSEA. The results revealed that the enrichment scores of

multiple immune cells (B cells, DCs, iDCs, macrophages, mast

cells, neutrophils, pDCs, T helper cells, TIL, and Treg cells) were

elevated in the high-risk group (Figure 7A). Furthermore,

immune function scores such as APC co-stimulation, CCR,

check-point, MHC class 1, parainflammation, T cell co-

stimulation, type I IFN response, and type II IFN response

were also significantly elevated in the high-risk group

(Figure 7B). These results demonstrate that ICD-related

lncRNAs are involved in the regulation of immune cell

function. Besides, immune cell proportion and function

differed from risk groups, checkpoints and HLA genes were

elevated with risk scores (Figures 7C,D). Above all, high-risk

individuals exhibited immune-hot phenotypes, and low-risk

individuals exhibited immune-cold characteristics. In this

sense, immune checkpoint inhibitor (ICI) treatment may be

more advantageous for high-risk individuals than low-risk ones.

Comprehensive analyses of enriched
pathways

Principal Components Analysis (PCA) analysis suggested

that STAD cases could be classified into two distinct clusters

according to their risk scores (Figure 8A). 978 differentially

expressed genes (DEGs) were then sorted out (adjusted

p-value < 0.05, |log2FC| > 1) (Supplementary Figure S1). GO

enrichment was shown in Figure 8B and Supplementary Table

S1. DEGs were enriched in PI3K-Akt signaling pathway, MAPK

signaling pathway, and Wnt signaling pathway (Figure 8C). The

aberrantWnt/β-catenin signaling pathway facilitates cancer stem
cell renewal and differentiation, thus exerting crucial roles in

tumorigenesis and therapy response (Zhang and Wang, 2020).

Wnt pathway can also affect Treg cells, T-helper cells, dendritic

cells, and other cytokine-expressing immunocytes. Activation of

Wnt signaling results in increased resistance to immunotherapies

(Li et al., 2019). In addition, pathways including calcium

signaling, dilated cardiomyopathy, and ECM receptor

interaction were selectively enriched in the high-risk group

(Figure 8D). Low-risk group had cell cycle, DNA replication,

and pyrimidine metabolism enrichments (Figure 8E).

Somatic mutation

We identified differential mutations using Fisher’s exact test

with a p value of 0.01 threshold, and diverse somatic mutation

profiles were discovered in the two risk groups. TTN, TP53,

MUC16, LRP1B, and ARID1A had most gene mutations, with

TTN ranking first (Figures 9A,B). Low-risk group had greater

tumor mutational burden (TMB) than high-risk group

(Figure 9C). Besides, patients with higher TMB scores showed

better OS in STAD cohorts (Figure 9D), and in the high-risk

TABLE 1 Clinicopathologic characteristics of STAD patients.

Features Total Test Train p-value

Age 0.5879

<=65 153(45.67%) 79(47.31%) 74(44.05%)

>65 179(53.43%) 86(51.5%) 93(55.36%)

unknown 3(0.9%) 2(1.2%) 1(0.6%)

Gender 0.2233

FEMALE 118(35.22%) 53(31.74%) 65(38.69%)

MALE 217(64.78%) 114(68.26%) 103(61.31%)

Grade 0.2657

G1 9(2.69%) 6(3.59%) 3(1.79%)

G2 120(35.82%) 53(31.74%) 67(39.88%)

G3 197(58.81%) 101(60.48%) 96(57.14%)

unknown 9(2.69%) 7(4.19%) 2(1.19%)

Stage 0.8702

Stage I 44(13.13%) 19(11.38%) 25(14.88%)

Stage II 107(31.94%) 54(32.34%) 53(31.55%)

Stage III 137(40.9%) 68(40.72%) 69(41.07%)

Stage IV 33(9.85%) 16(9.58%) 17(10.12%)

unknown 14(4.18%) 10(5.99%) 4(2.38%)

T 0.1643

T1 15(4.48%) 5(2.99%) 10(5.95%)

T2 73(21.79%) 38(22.75%) 35(20.83%)

T3 155(46.27%) 71(42.51%) 84(50%)

T4 88(26.27%) 51(30.54%) 37(22.02%)

unknown 4(1.19%) 2(1.2%) 2(1.19%)

M 1

M0 302(90.15%) 149(89.22%) 153(91.07%)

M1 21(6.27%) 10(5.99%) 11(6.55%)

unknown 12(3.58%) 8(4.79%) 4(2.38%)

N 0.222

N0 98(29.25%) 42(25.15%) 56(33.33%)

N1 91(27.16%) 52(31.14%) 39(23.21%)

N2 67(20%) 30(17.96%) 37(22.02%)

N3 68(20.3%) 34(20.36%) 34(20.24%)

unknown 11(3.28%) 9(5.39%) 2(1.19%)
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FIGURE 5
Prognostic analysis of ICD-related lncRNAs. Univariate (A) and multivariate (B) Cox regression for clinical features and risk model prognosis (C)
Predictive accuracy of clinical characteristics and the risk model (D) ROC curve with a time dependence indicating the OS rates at 1, 3, and 5 years (E)
C-index scores of clinical features and the risk model (F) Calibration curves for 1-, 3-, and 5-year survival predictions (G) The nomogram integrated
the risk score, age, grade, T, M, N, and tumor stage to predict OS.
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category, observations with low TMB scores had the poorest OS

(Figure 9E). These findings showed that somatic mutations were

connected with risk scores and survival probabilities; individuals

in low-risk group with higher TMB scores may have a greater

chance of surviving.

Correlation analysis between the risk
group and chemotherapeutics

For clinical application probability, we examined the drug

sensitivity of the two risk groups. According to the results,

gemcitabine, cisplatin, etoposide, and embelin were effective on

the low-risk patients (Figures 10A–D). High-risk patients were

more susceptible to pazopanib (Figure 10E), BEZ235 (Figure 10F),

TGX221 (Figure 10G), and Saracatinib (Figure 10H). Besides, we

found that all the sensitive drugs correlated with risk scores (Figures

10I–P). Gemcitabine, cisplatin, etoposide, and pazopanib are first-

line treatment antitumor drugs. Currently, embelin is used for

purely scientific purposes and is not available for general use. The

three additional sensitive medications in the high-risk category

have not undergone medical trials. They may be promising in the

future.

Discussion

The absence of potent antitumor initiators and precise

tumor-targeting therapeutic agents presently hampers STAD

precision treatment. Studies have indicated that

FIGURE 6
Tumor-infiltrating lymphocytes in the riskmodel (A) The violet plot showed the distribution of 22 tumor-infiltrating lymph cells of STAD patients
in high- and low-risk groups (B) The correlation of the immune cells (C) Immune cell and risk score correlation (D) Comparing immune cells from
high- and low-risk individuals (E) Comparison of ESTIMATE scores between groups with high and low risk (F) Comparison of TIDE scores between
groups with high and low risk. *p < 0.05, **p < 0.01, ***p < 0.001 vs. low-risk group.
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immunogenic cell death (ICD) may be effectively regulated in

order to enhance the therapeutic effects of STAD (Xu et al.,

2013; Petersen et al., 2021; Xiao et al., 2022). For the

treatment of STAD, it offers great promise to combine

immunogenic therapeutics with novel immunotherapeutic

regimens (Zeng et al., 2021). Immunotherapy, which

includes immune checkpoint activity blocking, anti-cancer

T cell response activation, and adoptive cellular therapy to

prime the patient’s own lymphocytes to attack cancer cells,

has become a potent clinical technique for treating cancer

(Farkona et al., 2016). However, certain cancer treatments

generate apoptotic cell death that is immunologically silent

and can also damage the immune system, allowing cancer to

recur (Guo et al., 2013). Eliciting ICD could potentially turn

these dying cancer cells into “vaccines” that promote

anticancer immunity by maturing DCs, activating CTLs,

and increasing the cytotoxic activity of NK cells (Krysko

et al., 2012; Kroemer et al., 2013; Ahmed and Tait, 2020).

When effectively induced, ICD could stimulate the body’s

cytotoxic lymphocytes to eliminate tumor cells and

eventually achieve long-term anticancer immunity against

cancer recurrence and spread. When combined with ICD

induction, patients with weakly immunogenic malignancies

may be made sensitive to checkpoint inhibitors (Showalter

et al., 2017). As a consequence, biomarkers related to ICD

could assist in the differentiation of STAD sufferers who

might benefit from immunotherapy.

STAD pathology involves the regulation of various cellular

processes by lncRNAs. However, lncRNAs associated with ICD

may affect STAD pathology and survival. According to our study,

we found that lncRNAs that are associated with ICD can affect

the prognosis of STAD patients. We developed and verified a

predictive risk signature utilizing five chosen lncRNAs associated

with the ICD. The STAD cohorts were classified depending on

risk scores. This risk signature predicted OS accurately. It was

correlated to immune cell infiltration, immunological

checkpoints, TMB and TIDE scores, as well as

pharmacological responsiveness. The usage of this risk model

may be advantageous for STAD sufferers.

The current investigation identified five prognosis-related

lncRNAs (AC131391.1, PVT1, LINC00592, AL139147.1, and

VCAN-AS1), all of which were upregulated in STAD samples

FIGURE 7
Immune signature of the risk model. ssGSEA enrichment of immune cells (A). Immune function (B). Box plots illustrated different expressions of
immune checkpoints (C) and HLA genes (D) in groups with high and low risk. *p < 0.05, **p < 0.01, ***p < 0.001 vs. low-risk group.
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(Figure 2A). Afterward, an independent prognosis model was

established, which might be applied for STAD prognostic

prediction. Our suggested model’s AUCs for 1-, 3-, and 5-

year OS were 0.696, 0.640, and 0.649, demonstrating that the

risk signature had outstanding predictive potential in STAD.

Furthermore, the nomogram combining risk scores and

clinical characteristics enhances the ability to predict the

prognosis of STAD.

Increasing numbers of non-coding RNAs have been

identified in gastric cancer that is implicated in drug

resistance development (Wei et al., 2020). LncRNA

PVT1 activates Wnt/-catenin and autophagy to enhance

gemcitabine resistance in pancreatic cancer (Zhou et al.,

2020). Zhao et al. demonstrated that PVT1 promotes

gastric cancer angiogenesis through STAT3/VEGFA

activation (Zhao et al., 2018); PCVT1’s impacts on cell

proliferation, migration, invasion, and apoptosis raise

cancer risk (Pan et al., 2018; Ghafouri-Fard et al., 2019;

Wang et al., 2020), suggesting that it could be targeted in

cancer therapy. LINC00592 was involved in a prognostic

model of gastric cancer (Cheng et al., 2019), and Yuan et al.

found that LINC00592 might activate the cervical cancer

progression (Yuan et al., 2019). VCAN-AS1 interacts with

eIF4A3 to downregulate TP53 expression and might be a

potential cancer therapy target (Feng et al., 2020);

AC131391.1 and AL139147.1 were firstly discovered.

Whereas AL139147.1 showed a novel positive correlation

with ENTPD1 (CD39) and IL1R1 (Figure 3F), which are

involved in tumor immune cells infiltration and tumor

microenvironment alteration (Krishna et al., 2020; Zhang

et al., 2020); AC131391.1 correlated with LY96, which plays a

vital role in tumorigenesis by modulating host immunity

(Nie et al., 2022). The newly discovered lncRNA knowledge

about ICD might help us bring a breakthrough into clinical

practice by improving our mechanistic understanding

of STAD.

According to the tumor immune editing hypothesis, immune

responses can be evaded by targeting fewer immunogenic cancer cells

in immunocompetent hosts (Dunn et al., 2002). In line with

expectations, the two risk groups have dissimilar immunological

microenvironments. High-risk patients showed greater

immunological infiltrates and higher immune scores. Tregs are

immunoregulatory cells that suppress cytokine growth and

production. Inappropriate or dysfunctional Treg production may

impair the immune system (Hou et al., 2014). In recent decades,

tumor-infiltrating Treg cells have been linked to immune evasion

(Kindlund et al., 2017). Moreover, Tregs are associated with poor

outcomes in gastric cancer (Yuan et al., 2010). Besides, High-risk

patients had more Tregs (Figure 7A), which may promote tumor

development and immunity escape by secreting immunosuppressive

FIGURE 8
Comprehensive analyses of enriched pathways (A) Principal components analysis (PCA) analysis of risk groups based on the 5 ICD-associated
lncRNAs. GO (B) and KEGG (C) enrichment of DEGs in groups with high and low risk. GSEA enrichment in the high-risk (D) and low-risk group (E).
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cytokines, stimulating antiapoptotic molecules, and promoting

tumor cell survival (Mao et al., 2017; Gao et al., 2019). Most

immune cells correlate positively with risk ratings, and high-risk

groups have higher TME scores. So, immunotherapy may be a good

option for high-risk patients. We evaluated immunological

checkpoint and HLA gene expression. The findings validated our

hypothesis and gave some context for immune checkpoint inhibitor

(ICI) therapy in STAD patients.

To assess the model’s effectiveness in immunotherapy,

we used TIDE scores to predict immune escape. Our findings

suggested that low-risk individuals, had lower TIDE scores,

might benefit better from ICI therapy in our risk model.

Aside from immunotherapy, we discovered an association

between the patients’ signatures and chemotherapy. Low-

risk patients were sensitive to first-line anticancer medicines

(including etoposide, cisplatin, and gemcitabine)

(Macdonald and Havlin, 1992; Qian et al., 2019; Sugisawa

et al., 2020). Low-risk patients react better to chemotherapy

and targeted medicines, which is crucial for tailored tumor

treatments. Furthermore, the low-risk TCGA-STAD cohort

exhibited pathway enrichment in the cell cycle. Sensitive

drugs’ antitumor actions are also aimed mainly towards the

cell cycle and DNA replication (Macdonald and Havlin,

1992; Qian et al., 2019). Embelin, which targets PI3-

kinase/AKT (Prabhu et al., 2018), demonstrated sensitivity

in low-risk group. Pazopanib, targeting VEGFR2 and

PDGFR, showed sensitivity to the high-risk group (Kim

et al., 2014). Among the newly developed inhibitors of

PI3K and mTOR, BEZ235 has shown promising results

against gastric cancer chemotherapy (Li et al., 2018).

Saracatinib inhibits stomach cancer cell proliferation,

migration, and invasion (HJ Nam et al., 2013). TGX221 is

a new, highly selective inhibitor for clear cell renal cell cancer

(Feng et al., 2015). These drugs may contribute to effective

chemotherapy in the high-risk group. Our findings may offer

prospective treatment alternatives for patients

suffering from STAD and affect individualized tumor

therapy.

This study’s major findings and implications can be

summarized as follows. For starters, this is the first in-

depth study of a 5 ICD-related lncRNA signature for

predicting STAD patient prognosis. Second, according to

our model, TIDE scores and immune infiltration were

connected to the risk score, as well as TMB alteration,

suggesting a tumor status and immune response, which

could represent potential targets for therapeutic

intervention. Third, predicting sensitive drugs may

contribute to the improvement of STAD immunotherapy

and provide personalized treatment options for individuals

with STAD. Despite our multiple verification efforts, there

FIGURE 9
Somatic mutations in different risk groups (A,B)Oncoprint of genes with themost mutations (C) TMB of STAD cases in groups with high and low
risk (D,E) The correlation between TMB and survival probability.
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are still some limitations. The model was only verified by TCGA

for the lack of lncRNA data from other sources. A larger sample

size is necessary for definitive conclusions, and the prediction

model should be validated externally and practically before it is

applied to clinical patients.

Conclusion

Developing an exploitable treatment approach based on

ICD-related lncRNAs and a unique risk model might assist

STAD patients. This would improve individual therapy and

patients’ prognoses. By targeting at lncRNAs associated with

ICD, it may be possible to overcome systemic treatment

failures and expand immunotherapy. These findings may

have implications for immunotherapy and chemotherapy

for STAD patients.
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