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The development of new strategies to turn achiral artificial hosts into highly desirable

chiral receptors is a crucial challenge in order to advance the fields of asymmetric

transformations and enantioselective sensing. Over the past few years, C3 symmetrical

cages have emerged as interesting class of supramolecular hosts that have been

reported as efficient scaffolds for chirality dynamics (such as generation, control, and

transfer). On this basis, this mini review, which summarizes the existing examples of

chirality control and propagation in tripodal supramolecular cages, aims at discussing

the benefits and perspectives of this approach.
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INTRODUCTION

Stereoselective bindings are essential events for biochemical functions such as enzymatic catalysis
and recognition of natural metabolites. In order to reproduce the efficiency of the stereoselective
receptors found in the biological world, the synthesis of chiral artificial hosts has attracted
considerable attentions over the past few decades. In this context, the supramolecular approach
appears as particularly promising as it allows for the construction of tridimensional hosts that
could, for example, mimic enzyme cavities (Liu et al., 2015). Among supramolecular hosts, organic
or self-assembled cages built from chiral building blocks are of particular interest due to their ability
to bind guests within their interior. A variety of chiral organic (Brotin et al., 2013), or metallo-
cages (Hardie, 2016; Chen et al., 2017) have been constructed over the past years, via covalent bond
or coordination driven assembly processes, respectively. Such supramolecular cages have found a
wide range of applications from selective recognition and separation of hydrocarbon derivatives
(Zhang et al., 2018, 2019), chiral molecules (Brotin and Dutasta, 2009) and noble gases (Mastalerz,
2018), to drug delivery (Sepehrpour et al., 2019; Samanta and Isaacs, 2020), photophysical and
CPL properties (Saha et al., 2016; Feng et al., 2018; Jing et al., 2019; Zhou et al., 2019), functional
molecular machines (Oldknow et al., 2018; Elemans and Nolte, 2019), stabilization of reactive
species (Mal et al., 2009) and catalysis in confined spaces (Hong et al., 2018; Mouarrawis et al.,
2018; Roland et al., 2018).

However, being able to induce chirality dynamics (generation and propagation) within
supramolecular cages and their related host-guest complexes remains a highly challenging task.
In this line, C3 symmetrical cages present a structural advantage due to their propensity to form
triple-stranded helix or propeller-like structures (Yamakado et al., 2013; Míguez-Lago et al., 2015;
Malik et al., 2018; Sato et al., 2018). Aiming at providing a general view about recent progress in the
preparation of chiral tripodal cages displaying chirality dynamics, this mini-review summarizes
current knowledge on how the chiral information can propagate along such tridimensional
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architectures. Control of the chirality within tripodal cages
upon chiral sorting (Henkelis et al., 2014; Schaly et al., 2016;
Jedrzejewska and Szumna, 2017; Schulte et al., 2019; Séjourné
et al., 2020), or guest binding (You et al., 2012; Bravin et al., 2019;
Pavlovic et al., 2019) are beyond the scope of this work.

The first part of the mini-review will be devoted to examples
of propagation of the stereochemical information from one
chiral unit to linkers of C3 symmetrical cages. Its second part
will describe how the chiral unit can control and induce a
chiral arrangement of another tripodal unit included in the
cage structure.

CONTROL OF THE CHIRAL
ARRANGEMENT OF THE LINKERS IN
TRIPODAL CAGES

A straightforward strategy to generate chiral hosts consists in
the covalent substitution of a chiral precursor, to create an
inner cavity. In particular, chiral C3 symmetrical cages have been
obtained by connecting one chiral moiety with another tripodal
unit, by three linkers. The presence of three identical linkers
connected to one chiral component can interestingly lead to the
formation of triple-stranded helical structures with a controlled
orientation. It has been indeed observed that the stereochemical
information of the chiral unit could propagate along the structure
to (i) induce a controlled propeller-like arrangement of the
linkers or (ii) turn the other opposite moiety into a chiral
structure with a controlled orientation.

Chirality transfer events within tripodal hosts were firstly
evidenced between the chiral unit and its nearest linkers,
resulting in a remote control of their helical arrangement
(Figure 1). For example, Badjic et al. reported the preparation
and characterization of the gated stereoisomeric basket (1)
(Hu et al., 2015). Such C3 symmetrical cavitand was built
from a basket unit owning a P- or M- twisted structure,
decorated by three aminopyridine gates at its rim. The authors
demonstrated, through a combination of 1H/13C-NMR analysis
and computational results, that the aminopyridine substituents
display a right- or left-handed propeller like arrangement
maintained by an intramolecular N-H...N hydrogen-bond
network. Interestingly, the unidirectional orientation of the gate
folding is dictated by the chirality (P- or M-) of the southern
twisted chiral basket. Computational studies further suggest that
the P- basket framework imposes an anti-clockwise orientation
while the M- basket results in a clockwise arrangement. By
replacing aminopyridines by quinolone gates, the same team
reported, 1 year later, the enantiopure basket (2), which
displays a solvent dependent transfer of the stereochemical
information from the basket to the rim (Pratumyot et al., 2016).
By comparison with 1, 2 exhibits π-stacked gates instead of
hydrogen-bonded ones. 2D 1H-NMR characterizations, exciton-
coupled circular dichroism (ECD) analysis, and computational
modeling, reveal that the clockwise and/or anticlockwise
orientations of the quinolone gates exist in acetonitrile while the
three substituents remain randomly oriented in the non-polar
dichloromethane solvent.

In the same vein, hemicryptophanes are organic cages
built from a northern bowl-shaped, C3 symmetrical
cyclotriveratrylene (CTV) unit, connected to another tripodal
moiety by three spacers (Zhang et al., 2017). Due to the inherent
chirality of the CTV unit, hemicryptophanes are chiral cages
with M or P configuration. Enantiopure versions of this kind
of host are commonly obtained following two main strategies:
(i) the chiral HPLC resolution of a racemic mixture of P and
M structures and (ii) the addition of another chiral moiety
and separation of the resulting diastereoisomers (Colomban
et al., 2019). Hemicryptophane (3), which connects a CTV
unit and a phosphotrihydrazone moiety through three butylene
(-C4H8-) linkers, was reported in 2016 as ligand for GaIII and
FeIII metal ions (Gosse et al., 2016). The authors observed,
through XRD analysis, that the butylene linkers of 3 displayed
a clockwise/anticlockwise helical orientation (α or β helicity).
Interestingly, for both 3 and its corresponding GaIII and FeIII

complexes, such solid-state helical arrangement of the linkers
(α or β) was imposed by the configuration of the CTV unit.
Indeed only (M-)CTV-(β-)helix and (P-)CTV-(α-) helix pairs
of enantiomers were observed. In 2018, the group of Martinez
reported a new example of hemicryptophane cages displaying a
remote control of the linkers’ helical arrangement, dictated by
the CTV unit (Long et al., 2018a). The hemicryptophane 4, which
displays linkers constituted of both amine and amide groups,
was prepared. Analysis of its X-ray molecular structure reveals
H-bond interactions between the amide and the amine function
of each arm resulting in a triple-stranded helical arrangement of
the linkers (Figure 1D). Interestingly, the chirality of such triple
helices was dictated by the chirality of the CTV unit (P- or M-).
Hemicryptophane (P)-4 indeed displayed a 1 propeller-like
arrangement of the linkers while (M)-4 revealed a 3 orientation.
Moreover, careful 1H-NMR analyses allow the authors to suggest
that the controlled arrangement observed in the solid state may
be retained in solution. This example highlights the remarkable
flexibility of the whole organic structure that is strongly twisted
and displays a propagation of the CTV chirality over nine bonds.

CONTROL OF THE CHIRAL
ARRANGEMENT OF AN OTHER C3 UNIT IN
TRIPODAL CAGES

Based on these interesting examples of chirality transfer between
chiral unit and linkers, the supramolecular chemists asked
themselves: could this phenomenon be extended in order to
induce and control the helical arrangement of another C3

symmetrical unit? The remote control of the helical arrangement
of some tripodal units is indeed of particular interest, as it might
allow turning achiral artificial ligands into enantiomerically-
pure binding sites. For example, the control of the helicity of
the C3 symmetrical tris(2-pyridylmehyl)amine (TPA) ligand as
attracted considerable attention due to its versatile applications
ranging from bio-inspired models (Borrell et al., 2019), catalysts
(Peterson et al., 2011), to chiral sensors (You et al., 2011).
This ligand could display a propeller-like arrangement of its
pyridine units that rapidly interconvert between clockwise
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FIGURE 1 | (A) Schematic representation of the structural characteristics of the chiral cages depicted in this review. Examples of tripodal cages displaying a transfer

of chirality between a chiral unit and its side arms: schematic representation and computed structures of open cages 1 (B) and 2 (C) together with the schematic

representation and XRD structures of hemicryptophanes 3 (D), 4 (E) and 5 (F) (the XRD structure of 3 and 5 displays an entrapped molecule of toluene and CH2Cl2
respectively). Purple arrows depict the observed chirality transfers.
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FIGURE 2 | Examples of C3 symmetrical cages showing a propagation of the stereogenic information from a chiral unit to another tripodal moiety. Schematic

representation and XRD structures of hemicryptophane 6 and its corresponding CuCl complex (A) and hemicryptophane 7 (B), along with the chemical structures of

the nesting complex ZnII(9)(Cl) and its precursors 8 and ZnII(TPANH3)Cl (C). Purple arrows depict the observed chirality transfers.

and anticlockwise enantiomeric conformations. Therefore, by
controlling the sense of the pyridines twist, the achiral TPA could
be switched into highly desirable chiral coordinating structures.
In 2019, the X-ray structure of the TPA-based hemicryptophane
5 was reported during the study of this cage-ligand for selective
metal-based methane oxidation (Ikbal et al., 2019). This solid-
state structure reveals a CTV-dictated triple-stranded helical
arrangement of the phenyl linkers of 5, but no orientation
of the southern TPA part was observed (Figure 1E). On this
basis, Colomban, Martinez and co-workers have designed the
structurally contracted cage 6 (Qiu et al., 2019) where the phenyl
linkers are replaced by single methylene –CH2- (Figure 2A). The
authors resonated that a closer proximity between the chiral
northern CTV cap and the southern TPA ligand would result
on the propagation of the chirality to the ligand, allowing for
a predictable control of its helicity. These expectations turn out
to be accurate since, remarkably, the organic cage 6 displays
a controlled clockwise/anticlockwise propeller arrangement of

the TPA unit, dictated by the chirality of the CTV unit.
The covalent capping with a M-CTV unit indeed results in
a left-handed propeller arrangement of the TPA (while the
P-CTV leads to a right-handed propeller arrangement). It
should be noted that enantiopure versions of (M)-6 and (P)-
6 were obtained in a highly efficient purification step based
on the chiral-HPLC resolution of the racemic mixture (±)6

(ee values >99.5%). Importantly, this strong chirality transfer
is maintained upon metallation of the TPA moiety with the
Cu(I) metal ion. The resulting complex CuI(6)(Cl), (Figure 2A)
displays a rare T-shaped coordination geometry along with a
controlled helicity of the TPA unit that both occur in solution
and solid state (XRD, 1H-NMR, ECD analysis). The design of
the cage-ligand 6 therefore allowed the authors to report an
unprecedented Cu(I) complex with a controlled helicity of the
TPA-Cu(I) core, highlighting the promises of the approach for
the preparation of novel optically pure metal-based catalysts
and receptors.
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This strategy combining a chiral CTV cap and short spacers
to control the chirality of another C3 symmetrical unit, has
been further exemplified by Martinez and his team through the
preparation of the hemicryptophane 7 (Long et al., 2019). Due to
its ability to engage strong hydrogen bonds, the benzene-1,3,5-
tricarboxamide (BTA) unit has been widely reported as useful
building block for the preparation of supramolecular assemblies
(Kulkarni and Palmans, 2017; Zimbron et al., 2017). Therefore,
methods able to tune and control its structural properties are
of particular interest. With such considerations in mind, 7 was
built aiming at controlling the sense of rotation of the three
amides of the BTA unit. This cage consists in a southern BTA
covalently linked to a chiral CTV cap by three ethylene –C2H4-
linkers (Figure 2B). Interestingly, the close proximity between
CTV and BTA unit in 7, results in a remote control of the
3/1 orientation of the three amides of the south part dictated
by the chirality of the CTV cap. It was indeed demonstrated,
though XRD analysis of the racemic mixture of (±)7, that the
BTA unit capped with a M-CTV displays a 3 orientation of
their amides, while its P analog displays a 1 arrangement. It was
shown that the enantiopure cages (M-3)-7 and (P-1)-7 could
be easily obtained, with excellent ee values (ee >97.5 %) through
straightforward chiral-HPLC resolution of the racemic mixture.
Finally, the authors proposed, based on 1H-NMR observations,
that the transfer of chirality observed in the solid states might
be retained in solution. Interestingly, this cage 7, was used as the
chain capper of BTA based supramolecular polymers allowing to
control their length: whereas the external face of the BTA unit of
7 interacts with the polymer, the CTV unit crowds the other face,
preventing further polymerization (ter Huurne et al., 2020).

Another remarkable strategy to generate and control chirality
on an achiral tripodal ligand consists in its non-covalent
wrapping with a chiral concave open-cage structure, through
intermolecular ionic contacts. This so-called “Russian nesting
doll” approach have been reported in 2016 by Badjic et al.
which used the chiral molecular baskets developed in their
team to create and control a propeller-like arrangement of
a TPA-based Zinc complex (Zhiquan et al., 2016). The self-
assembled architecture ZnII(9)(Cl) is based on supramolecular
ionic interactions between a zinc complex substituted with three
positively charged ammonium groups ZnII(TPANH3)Cl, and the
chiral molecular nest 8 (displaying three negatively charged
carboxylates at its rim) (Figure 2C). Formation of the entrapped
Zn complex ZnII(9)(Cl) in its nesting form, was confirmed
by 1H-NMR titration, ESI-MS analysis, and computational
simulations. The preferential formation of the Russian nesting
dolls conformation of ZnII(9)(Cl) was explained by both
hydrophobic effect and non-polar interactions between the two
hydrophobic shell of 8 and ZnII(TPANH3). It was observed that
the chirality of the anionic basket 8, which displays (S)-alanine
amino acids groups at its rim, is efficiently transfer to the cationic
ZnII(TPANH3)Cl moiety, resulting in a controlled propeller-like
arrangement of the TPA’s pyridines. Careful analysis of computed
structures and the circular dichroism (CD) spectrum, indeed
demonstrated that the supramolecular interactions between the
three carboxylates of 8 and the ammoniums of ZnII(TPANH3)Cl

were responsible for the exclusive formation of a left-handed

(M) Zn-TPA core. Interestingly, this study allowed the authors to
demonstrate that a predictable control of the helical arrangement
of TPA-based complexes, could be achieved by an ionic contract-
based transfer of chirality. In 2017, the same group further
exemplified the approach by studying the capture of several
metallated and non-metallated TPA derivatives by both anionic
and cationic molecular baskets (Zhiquan et al., 2017).

CONCLUSION, DISCUSSION, AND
FUTURE DIRECTIONS

To summarize, this mini-review highlights recent advances
related to chirality dynamics within tripodal supramolecular
cages in terms of induction, transfer and control of the chiral
information. Various hosts of C3 symmetrical type, displaying
a predictable and robust control of the chirality, have been
recently prepared. The tendency of tripodal structures to form
triple-stranded helix or propeller-like arrangements has been
exploited to prepare architectures displaying an internal transfer
of the stereogenic information from one chiral unit to (i)
its nearest linkers or (ii) another C3 symmetrical unit. This
predictable way to generate and control chirality on another
linked unit was found to arise from non-covalent interactions of
different nature, such as hydrogen-bonding or steric repulsion.
Interestingly, this approach has been used to turn achiral ligand
into highly valuable coordinating structures, leading to metal
complexes with controlled chiral environments. These strategies
open new ways in four main research topics. The propagation
of the chirality along linkers and even to the opposite face of
the cage could lead to highly efficient enantioselective sensors,
due to the presence of a strongly controlled chiral environment
around the guest-binding site. Indeed, although examples
of C3-symmetrical cages displaying enantioselectivity in the
recognition of chiral guests remain rare (Sambasivan et al., 2010;
De Rycke et al., 2018), it has been recently shown that remarkable
enantioselective recognition of chiral neurotransmitters or
carbohydrates can be reached by hemicryptophane cages
presenting a C3 symmetrical axis (Long et al., 2018b; Yang et al.,
2020). Secondly, by controlling the chirality at both first and
second coordination sphere levels of metal complexes, promising
chiral confined catalysts for enantioselective transformations
could be obtained. This represents a highly challenging goal
since, to the best of our knowledge, there is no example of
chiral C3 symmetrical cages able to induce enantiomeric excess
when used as asymmetric catalyst. This approach could also
provide new tools for controlling the chirality and the length
of helical supramolecular polymers by acting as enantiopure
cappers. Finally, the combination of chiral C3 units with achiral
fluorescence units, or lanthanide complexes, could lead to the
construction of new fluorescent hosts with a chiral environment
around the fluorophore that is fully imposed by the enantiopure
tripodal unit (chirality transfer), giving new structures for
CPL applications.

Altogether, these examples of preparation of enantiopure
chiral C3 symmetrical supramolecular cages have led to the
discovery and understanding of the mechanisms that result in
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chirality dynamics. It is therefore reasonable to expect that
such way of generating, controlling, and propagate chirality
will be further applied to other class of supramolecular
architectures, and will result in the preparation of new kinds
of stereoselective and adaptive hosts. In particular, aiming at
mimicking the allosteric properties of biological receptors, the
chirality dynamics in well-defined cages is the key to develop
challenging on-demand control of the hosts chirality, dictated by
the nature of the encapsulated guest (Bravin et al., 2019; Pavlovic
et al., 2019).
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