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Breeding Brown pelicans improve 
foraging performance as energetic 
needs Rise
Brock Geary  1,2*, Paul L. Leberg2, Kevin M. purcell3,4, Scott T. Walter1,5 & Jordan Karubian1

Optimal foraging theory states that animals should maximize resource acquisition rates with respect 
to energy expenditure, which may involve alteration of strategies in response to changes in resource 
availability and energetic need. However, field-based studies of changes in foraging behavior at fine 
spatial and temporal scales are rare, particularly among species that feed on highly mobile prey across 
broad landscapes. To derive information on changes in foraging behavior of breeding brown pelicans 
(Pelecanus occidentalis) over time, we used GPS telemetry and distribution models of their dominant 
prey species to relate bird movements to changes in foraging habitat quality in the northern Gulf of 
Mexico. Over the course of each breeding season, pelican cohorts began by foraging in suboptimal 
habitats relative to the availability of high-quality patches, but exhibited a marked increase in foraging 
habitat quality over time that outpaced overall habitat improvement trends across the study site. These 
findings, which are consistent with adjustment of foraging patch use in response to increased energetic 
need, highlight the degree to which animal populations can optimize their foraging behaviors in the 
context of uncertain and dynamic resource availability, and provide an improved understanding of how 
landscape-level features can impact behavior.

The efficiency with which animals acquire resources has fundamental implications for their survival and repro-
ductive success. In turn, the demographic and evolutionary trajectories of populations are, among other factors, 
shaped by individual foraging outcomes, as those who maximize their energy acquisition relative to expenditure 
are likely to raise more offspring over their lifespans1. Foraging efficiency is predicated on the successful location 
of resources, and often varies when the distribution of those resources is subject to rapid change2–4. Moreover, 
animals’ energetic needs vary over time, which may favor those that adjust their behaviors appropriately5,6. The 
degree to which animals forage optimally has received considerable theoretical and empirical attention7–10. 
However, accurately characterizing the relationship between resource distribution and foraging performance 
in the context of shifting energetic requirements has proven difficult in natural systems because of challenges 
associated with accurately characterizing each relevant process in appropriate detail. This is particularly true for 
animals foraging at larger (e.g., several km2) spatial scales, which cannot be easily approximated in experimental 
settings11,12.

Abiotic conditions are important determinants of habitat quality, as they affect the availability of resources and 
are susceptible to rapid and unpredictable change in certain ecosystems13,14. Prey resources can be highly mobile, 
producing resource landscapes that are dynamic over both space and time15,16. These patterns are common in 
marine systems, where many top predator species feed upon small fishes that are locally abundant but have patchy 
spatiotemporal distributions due to currents and schooling behaviors, which move several tons of prey biomass in 
discrete units17. Central place foragers that must return to a home location between foraging bouts face particu-
lar challenges due to a combination of competition around the central place and limited knowledge of regional 
conditions due to constraints on their movements18. In such situations, it is thought that these populations must 
rely on some degree of initial environmental sampling and continually refine their understanding of resource 
distribution and consistency in relation to the central place over time19,20. In doing so, it is possible for individuals 
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to meet their energetic needs if they are able to exploit patches where prey are more consistently available, even in 
landscapes that may be otherwise unpredictable21.

When making foraging decisions, energetic demands must be considered in tandem with uncertainty sur-
rounding resource distributions6,22,23. Indeed, the magnitude of change in foragers’ energetic requirements over 
different life stages may inform strategies in a profound way24. Individuals often utilize prior knowledge and spa-
tial memory to inform foraging strategies25, and may also employ specific tactics in anticipation of energetically 
demanding periods (e.g. molt26, migration27, hibernation28, breeding29,30) to maintain efficiency in the future31,32. 
However, while theoretical and experimental investigations of changing foraging behaviors33–36 and field-based 
assessments of predator habitat selection32,37–39 are common, studies examining how energetic demands impact 
the foraging behaviors of wide-ranging natural populations at fine temporal and spatial scales are rare40,41. 
Because these populations are likely to encounter complex patterns of environmental heterogeneity, obtaining 
this information will improve our understanding of the degree to which optimal foraging theory can describe 
animal behavior in dynamic environments.

The growing capacity to directly link habitat selection of prey with precise measures of predator behavior has 
the potential to improve our understanding of population-level foraging outcomes via individual-level behavioral 
processes. High-resolution data on environmental conditions and animal behavior are increasingly attainable12,42, 
presenting opportunities to directly infer changing foraging behaviors of predators in natural systems. If prey are 
sufficiently abundant, predators may randomly traverse landscapes without requiring any behavioral adjustments 
to meet their energetic needs43,44. Alternatively, if prey are more limited, predators may be driven to locate and 
establish fidelity to specific high-quality foraging areas unless they are excluded or resources are depleted45,46. 
Intermediate scenarios also exist in which predators may rely on knowledge of higher-quality regions, but search 
more randomly at fine scales within them36,47. Consistent with this last scenario, nesting birds have previously 
been found to prospect the environment in advance of32 or during the chick provisioning period48 to meet ener-
getic demands at each developmental stage. Regardless of scenario, assuming that animals are foraging optimally 
in their environment, it would be expected that individuals’ behaviors should maintain, if not improve, the quality 
of the foraging patches they occupy over time as energetic demands increase, relative to background levels of 
resource availability.

In this study, we characterize dynamic relationships between predators and their environment to investi-
gate the degree to which brown pelicans (Pelecanus occidentalis) track their primary prey, the Gulf menhaden 
(Brevoortia patronus), during a period of changing prey availability and energetic needs. This resource is region-
ally abundant and makes up over 95% of the brown pelican’s diet in the region49 but is distributed patchily in time 
and space50, and our data collection period corresponds to a period of increasing energetic demand for pelicans 
that is associated with the provisioning of growing chicks49. As environmental conditions that improve habitat 
quality for a prey species are likely to create foraging habitat for an associated predator in open water, we use 
a menhaden species distribution model to derive landscape-level insights into pelican foraging behavior over 
time. Because pelicans return annually to breeding areas, sometimes from hundreds of kilometers away49,51,52, 
many individuals likely begin nesting with only a very general knowledge of local marine conditions. Like many 
seabirds, these individuals must determine how to identify regions of high foraging patch quality and forage 
efficiently within them47,53. Our study colony supports large numbers of breeding brown pelicans, which suggests 
that prey is sufficiently accessible for many nests to be successfully fledged. For these reasons, we hypothesized 
that increased energetic requirements associated with provisioning of young would drive breeding pelicans to 
occupy higher-quality foraging patches over time. Specifically, we predicted a relative increase in foraging habitat 
quality over time that exceeds changes in background landscape levels.

Results
The final averaged species distribution model linking environmental conditions to menhaden presence possessed 
an AUC value of 0.877 ± 0.004, indicating good predictive ability. Sea surface temperature and chlorophyll-a were 
the most important contributors to foraging habitat quality (Table 1). More specifically, we observed a sharp rise 
in suitability between 30–32 °C and a plateau of suitability at chlorophyll-a values ≥ 10 mg/m3 (Fig. 1). While the 
model specified slight optima for the other variables, contributions from both bathymetry and salinity were low 
(Table 1).

We found no significant relationships between foraging habitat quality and individual pelican characteristics 
(all p > 0.05). All predictors of foraging habitat quality in the additive model were highly significant (p < 0.001; 
Table 2), with 51.1% deviance explained by the model, and over 99% of which was explained by the model’s fixed 
effects. We observed significant overall annual variation in average habitat quality, and all years were significantly 

Variable (units) Data Product Source Percent Contribution Permutation Importance

Sea surface temperature (°C) NASA MODIS Ocean Aqua 
OceanColor Movebank Env-DATA 47.1 54.5

Chlorophyll-a (mg/m3) NASA MODIS Ocean Aqua 
OceanColor Movebank Env-DATA 47.0 30.2

Sea surface salinity (PSU) NOAA National Centers for 
Environmental Information

World Ocean Database 
and World Ocean Atlas 
Series

5.5 14.6

Bathymetry (m) NOAA National Centers for 
Environmental Information

ETOPO1 Global Relief 
Model 0.3 0.8

Table 1. Environmental variables (with sources) used in Maxent models, and variable importance for each layer.
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different from one another except for 2014 and 2017 (Wald test; all X2 > 16, df = 1, p < 0.001). Habitat qual-
ity within years generally increased over time in an S-shaped pattern: pelicans occupied significantly poorer 
foraging habitat than random simulated points early in the season, but improved more quickly than did simu-
lated locations, to the point that they occupied significantly better habitat for approximately 25% of the tracking 
period (Fig. 2). This corresponded to a more restricted spatial distribution of foraging locations over time (Fig. 3, 
Supplementary Material), which in addition to the use of consistently high-quality areas, also included visitation 
to areas of more variable habitat quality, but only when quality was high (Supplementary Material).

Discussion
While many studies of predator foraging ecology take habitat preferences into account, few have investigated how 
well these preferences match prey distributions in natural contexts. Consequently, uncertainty persists about the 
degree to which individuals may be over- or under-performing relative to prey availability at the landscape level. 
This study refines our existing understanding of seabird foraging ecology by characterizing daily foraging habitat 
quality of individual wild animals at high spatial and temporal resolutions. By using the environmental associa-
tions of a major prey item to describe foraging performance, we found that breeding brown pelicans dynamically 
adjusted their foraging locations over time to improve occupied patches at a rate that exceeded background rates 
of change, presumably allowing them to forage in areas of increased prey availability. We also found that these 
adjustments do not result in the convergence of foragers on one optimal location, as birds continually visited mul-
tiple locations along the Louisiana coast, utilizing areas of consistent high quality near the Isle Dernières barrier 
island chain (which includes the breeding colony), as well as those of more variable quality to the east and west, 
but only at times when that quality was high. This indicates a scenario in which prey are somewhat limited, but 

Figure 1. Maxent response curves for each environmental variable used to determine menhaden presence. Blue 
shading represents ±1 standard deviation from the mean.

Variable Estimate Standard Error t value p-value

Group (Pelicans) 0.883 0.054 16.378 <0.001

Year (2015) 0.282 0.030 9.360 <0.001

Year (2016) 0.098 0.031 3.127 0.002

Year (2017) −0.046 0.030 −1.491 0.136

Smooth Terms EDF, RDF F value p-value

Day (GPS pelican points) 7.070, 8.091 4790.245 <0.001

Day (Simulated pelican points) 4.553, 5.577 430.868 <0.001

Table 2. Generalized additive model output for comparisons of GPS and simulated pelican foraging locations 
over time. Estimates for parametric terms represent increases in log-odds while holding all others constant. 
EDF = estimated degrees of freedom and RDF = residual degrees of freedom for additive model terms.
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Figure 2. Pointwise difference estimates, with 95% confidence interval, between smooths of observed vs 
simulated foraging pelican efficiency based on generalized additive model output. Pelican foraging efficiency 
was lower than that of random simulated points at the beginning of the tracking period, but improved to the 
point that it was significantly higher for ~25% of the study.

Figure 3. Generalized additive model curves demonstrating trends in foraging habitat quality, comparing 
regional changes over time (a) with brown pelican foraging locations (b). Representative maps of habitat quality 
(gradient of purple/low to green/high) change in the regional (c,e) and pelican (d,f) data sets show three-day 
windows surrounding Julian days 150 (c,d) and 170 (e,f) to capture a period of pronounced change marked in 
(a,b) by vertical lines. The star in each map denotes the position of the colony on Raccoon Island.
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suggests that pelicans are able to forage in a hierarchical fashion in order to exploit specific ephemeral patches in 
more regionally reliable areas.

Several non-mutually exclusive mechanisms might be responsible for the increasingly optimized foraging 
we observed. First, we consider improvement of individual-level landscape knowledge and subsequent special-
ization of foraging behaviors by individuals. For animals that seek resources in a spatially hierarchical fashion, 
specific cues associated with the presence of resources are assessed once individuals arrive in broader regions 
that they consider to be of sufficient quality53. Individuals may also encounter these cues at variable rates or 
times, which can produce strategies of similar efficiency that utilize different tactics, possibly explaining the lack 
of observed differences in foraging habitat quality among individual birds. In keeping with this scenario, we 
previously reported differences in foraging site fidelity associated with varying degrees of exploration among 
individual birds, which may be associated with diverse foraging tactics54. Utilization of different bay regions could 
expose individuals to potential site-specific cues of equivalent value that they might use to the exclusion of others, 
including landscape features, the presence of other predators of menhaden such as marine mammals (which 
may more directly assess the environmental conditions used in our analyses), or commercial fishing vessels. We 
also observed differences in average regional habitat quality among most years, suggesting additional variation 
due to broader ecological processes that may shape menhaden distributions and the strategies needed to locate 
them. Further exploration of differential success in actual prey capture, in relation to variation in both cues and 
environmental conditions, will provide further understanding of the specific behaviors employed by successful 
foragers in this species.

Availability of conspecific social information is another potential mechanism that could explain our findings 
that behavioral ecologists have long invoked as a benefit of colonial living55. Information may be gained at the 
colony, where individuals are able to assess the departure directions, nesting status, and nestling provisioning of 
neighbors, or on foraging grounds, where both followers and leaders may benefit from local enhancement56. In 
the absence of previously acquired information, the proliferation of information through members of a colony 
should lead to improved foraging performance over time. This tactic may help to meet the energetic needs expe-
rienced by nesting pelicans, many of which migrate into the region to breed51 and lack recent information on 
prey distributions, and the rate at which correct information is obtained could be an important determinant of 
reproductive success, as nests that fledge multiple chicks are relatively infrequent in this population57.

One unexpected finding of this study is that brown pelicans began the tracking period by foraging in areas 
of significantly lower quality than would be expected by random chance, as represented by our contrasting sim-
ulated foraging locations. The results of our species distribution modeling agree with known information about 
menhaden habitat selection with regard to thermal tolerance and preference for higher plankton densities58,59, 
so it is sensible to infer that the foraging landscape is of lower overall quality for pelicans at the beginning of 
our tracking period as menhaden begin moving from estuaries to the near shore after spawning50. In line with 
predictions, poor habitats may be used when individuals do not expect increased returns from relocating, result-
ing in some period where occupied patches do not improve. Pelicans also spend more time near the nest when 
defending small chicks49, which may limit their ability to assess neighbors or search for novel foraging areas. 
Alternatively, if energetic needs are lower early in the nesting period, individuals may be able to take advantage of 
this period of less demand to prospect the region and determine which areas are likely to improve with time. We 
have not observed changes in foraging trip distance and duration within a breeding season54, so nest attendance 
does not appear to seriously constrain adult movements, but the ability to spend more time elsewhere (e.g. loafing 
on beaches with other birds) as chicks develop may present opportunities to gather additional public information 
that impacts foraging decisions. As the sources of this information are common throughout the landscape, with 
Louisiana’s coast containing tens of thousands of breeding pelicans in addition to fishing vessels and other species, 
it is not surprising that performance over time would substantially improve for successful breeders.

This study highlights the importance of linking foraging behaviors directly with underlying estimates of 
resource distributions, rather than assuming optimality based on habitat selection, in order to more precisely 
characterize foraging performance in natural systems. In addition to providing broader insights into the pro-
cesses influencing foraging ecology in wild populations, this methodology also has potential to identify more 
causal relationships between climatic or structural changes and population trends over time if habitat quality 
is impacted for species of concern. Continued advances in remotely-sensed environmental data collection and 
tracking technology, as well as application of these methods across other landscapes and taxa, will continue to 
increase the detail with which these ecological processes may be questioned and examined, further refining our 
understanding of animal movements and optimal foraging theory in nature.

Methods
Menhaden species distribution modeling. We obtained data on Gulf menhaden distributions from 
2012 Captain’s Daily Fishing Reports submitted by commercial fishing vessels to the National Marine Fisheries 
Service’s Beaufort Laboratory. In this database, which is believed to comprise nearly 100% of commercial har-
vest60, GPS locations and time stamps of landings (i.e. precise presence records of large menhaden schools) are 
recorded. We annotated all points that coincided in time (by Julian days) with our yearly pelican tracking periods 
with interpolated (inverse-distance weighted61) environmental data (sea surface temperature and chlorophyll-a; 
Table 1) using the Env-DATA service provided by the Movebank database, which performs interpolations over 
space as well as time using multiple layers of each variable42. We also annotated sea surface salinity and bathym-
etry data from interpolated rasters (Table 1) using ArcMap version 10.1 (ESRI, Redlands, California, USA). We 
chose these data based on their previous recognition as important variables to menhaden habitat suitability58,59. 
Using these annotated points, we used species distribution models generated by maximum entropy methods in 
Maxent version 3.4.1 (www.cs.princeton.edu/~schapire/Maxent/)62,63; to quantify the probability of menhaden 
presence for real and simulated pelican foraging points. Using the previously described environmental data, we 
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generated a Maxent model using 10,000 annotated background points, 10-fold cross-validation and a regulariza-
tion multiplier of 2 to avoid overfitting64, and 1,000,000 maximum iterations to ensure model convergence.

We evaluated model performance using the area under the curve (AUC) value, which represents the proba-
bility of a random presence value being assigned a higher suitability value than a randomly selected background 
point. AUC values can range from 0–1, where a value of 0.5 indicates that model predictions are no better than 
random, a value of 1.0 indicates perfect model fit, and values > 0.7 are considered to be indicative of good predic-
tive ability65,66. We also assessed the importance of each environmental variable using two values: their percent 
contribution (based on amount of gain increase attributed to the variable during model fitting) and permutation 
importance (based on decrease in AUC when background data values for that variable are randomly permuted)62. 
We obtained an average AUC value across the 10 model runs (following the cross-validation procedure) and used 
the averaged model output to derive final suitability values, which roughly correspond to the probability of men-
haden presence (complementary log-log or “cloglog” output, 0–1).

Pelican data collection. We captured all brown pelicans during their nesting seasons on Raccoon Island, 
one of four barrier islands comprising the Isles Dernières chain located in Terrebonne Bay, Louisiana in the 
northern Gulf of Mexico (29.0519°N, −90.9336°W). Raccoon Island is the largest seabird colony in the region, 
with 3000–5000 brown pelican nests initiated each year67. GPS tracking work began as nest incubation was largely 
completed throughout the colony, typically in late April or early May of each year, for four consecutive years from 
2014–2017. We tracked adults with nests constructed in black mangrove (Avicennia germinans) 1–1.5 m in height 
to control for potential differences in behaviors related to nest site selection57. We captured individuals either by 
hand or using leg snares and attached e-Obs© tracking units (e-Obs Digital Telemetry, Gruenwald, Germany) 
using a backpack-style harness made of Teflon ribbon (Bally Ribbon Mills, Bally, Pennsylvania, USA) and copper 
clasps. The full tracking apparatus weighed approximately 110 g, less than 5% of any bird’s body mass (range: 
2600–4330 g). We took blood samples to sex individuals using lab-based methods68 and used morphological 
measurements to calculate indices of body condition for each sex (standardized residuals from linear regressions 
of log-transformed body mass on 3 * log(tarsus length)69. Tracking units recorded and stored GPS locations every 
15 minutes during daylight hours. We revisited the island every 7–10 days following deployment, remotely down-
loaded tracking data to a handheld base station, and checked nests of tracked individuals to ensure that collected 
data represented behavior of birds that were continuing to provision young and therefore experiencing increased 
energetic demand. We continued tracking until chicks for each nest could no longer be located, at which point we 
assumed that they had either died or fledged. Across all years, raw data collection yielded 55,316 GPS points from 
30 birds (mean = 1843.87 ± 884.20 (SD) pts/bird). We received usable round-trip data from 13 birds in 2014, 4 
birds in 2015, 7 birds in 2016, and 6 birds in 2017 (n = 30 total birds), with an average of 41.77 (±17.80) tracking 
days per bird. All field protocols are in accordance with the relevant guidelines and regulations. We sampled all 
individuals under permit #06669 issued by the United States Geological Survey’s Bird Banding Laboratory, and 
handling protocols were reviewed and approved by the Tulane University Institutional Animal Care and Use 
Committee (#0395R2). All work was performed in accordance with relevant institutional guidelines and regu-
lations. Pelican location data presented in this study were also previously published as part of a separate study: 
https://doi.org/10.1093/beheco/ary17354.

Pelican data processing and analysis. We used Microsoft Excel and custom scripts in R version 3.5.170 
to remove duplicate locations and prepare data for analysis. We isolated ‘complete’ foraging trips that began and 
ended on the colony within the same day using the ‘adehabitatLT’ package in R71, removed locations on the nest 
or beach of the colony, and re-discretized each track to recover the entire trajectory of the foraging trip and to 
space locations to regular 200 m intervals.

To identify locations where tracked pelicans were most likely foraging, we utilized first-passage time (FPT) 
analysis to determine the scale at which pelicans were engaged in area-restricted search behavior72. This analysis 
is based on the assumption that animals transition to slower, less linear movements when foraging, relative to 
movements when transiting between sites16. We calculated FPT, or the time taken by an individual to traverse 
a circle of a given radius, along each foraging trajectory for a series of radius values (100–5000 m, at a 100 m 
interval), centered on each point to determine an optimum scale, defined as the radius at which the variance of 
log(FPT) is maximized. As the optimal FPT may vary slightly across individuals, we determined the overall opti-
mum by averaging the maximum variance value of each radius for each individual, and used the largest of these 
values as a common spatial scale going forward73. This analysis revealed 1400 m as the optimum radius at which 
to detect area-restricted search behavior (Fig. 4). To identify the points within each foraging trip that represented 
area-restricted search behavior, we isolated the portions of each trip trajectory in the 90th percentile of FPT values74,  
and extracted the corresponding points with their identifying date and time. We identified foraging points in 
453 foraging trips from the 30 birds, yielding 4,915 locations for subsequent foraging habitat quality analysis 
(mean: 163.83 ± 112.27 locations/bird). To compare these locations to the overall landscape, we also generated 
10,000 simulated foraging locations by randomly sampling (with replacement) time stamps, as well as angles and 
distances from the colony, from our foraging point data set. Using the final averaged output from the menhaden 
distribution model and interpolated environmental raster data from 2014–2017, we projected suitability values 
onto both the pelican and simulated data points, averaging values within pelican foraging trips to address likely 
autocorrelation. As areas that are most likely to contain menhaden can be interpreted as the highest-quality peli-
can foraging areas in the absence of confounding ecological factors, we hereafter refer to menhaden suitability val-
ues in our results as “foraging habitat quality” values, which serve as the response variable in subsequent analyses.

We performed all remaining statistical analyses in R. To examine among-individual variation in foraging 
habitat quality, we used a linear mixed-effect model in the package ‘nlme’75 that included sex, condition, and 
year as predictor variables, with individual bird identity as a random effect. We then used generalized additive 
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modeling in the package ‘mgcv’76 to determine relationships between pelican foraging behavior and habitat qual-
ity over time. This model uses smooth functions of at least one covariate to model non-linear relationships with 
response variables of interest. For this analysis, we used foraging habitat quality for each trip as the response in a 
beta regression model (due to response values ranging 0–1), with year and real/simulated grouping as parametric 
model terms, Julian day as a smooth term using cubic regression splines, and bird identity as a random effect. We 
also specified an interaction between Julian day and grouping to fit separate curves to the presence and simulated 
data and examine differential change in habitat quality over time. We used a post-hoc Wald test to compare pair-
wise intercepts between years. As a final post-hoc test, in addition to assessing the significance of each resulting 
smooth term, we used a prediction matrix to compare fitted values of the two smooth functions across all Julian 
days in the model using the methods of Rose et al.77. To do so, we generated an approximate pointwise 95% con-
fidence interval to identify and plot time points at which the two fitted smooths differed significantly from one 
another. As a post-hoc exploration of spatial and temporal trends of habitat quality, we plotted each data point 
from both real and simulated data sets using the package ‘plotly’78 to examine changes in foraging habitat quality 
simultaneously over space and time.

Data accessibility
We will archive all raw telemetry data sets in the Movebank database, and make all data sets and associated statis-
tical code necessary to replicate results available in FigShare at the time of this manuscript’s acceptance.
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