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Skeletal muscle differentiation is regulated by a network of transcription factors, epigenetic regulators and non-
coding RNAs. We have recently performed ChIP-seq experiments to explore the genome-wide binding of tran-
scription factor YY1 in skeletal muscle cells. Our results identified thousands of YY1 binding peaks,
underscoring its multifaceted functions in muscle cells. In particular, we identified a very high proportion of
YY1 binding peaks residing in the intergenic regions, which led to the discovery of some novel lincRNAs under
YY1 regulation. Herewe describe the details of the ChIP-seq experiments and data analysis procedures associated
with the study published by Lu et al. in the EMBO Journal in 2013 [1].

© 2014 The Authors Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Experimental Design, Materials and Methods

Cell culture

Mouse C2C12myoblast cell linewas purchased fromAmerican Type
Culture Collection (ATCC). The myoblasts were maintained in a growth
thology, The Chinese University
alth Sciences, Prince of Wales
ew Territories, Hong Kong SAR,

. This is an open access article under
medium (DMEM, 10%FBS and 1% penicillin/streptomycin), and induced
tomyotubes by culturing in a differentiationmedium (DMEM, 2% horse
serum and 1% penicillin/streptomycin).

ChIP assays and sequencing experiments

ChIP assays were performed as previously described [2,3]. About
2 × 107 C2C12 cells and 5 μg of antibodies were used in one immuno-
precipitation. The antibodies include YY1 #1 (Santa Cruz Biotechnol-
ogy, Cat# SC-1703, rabbit polyclonal), YY1 #2 (Abcam, Cat#
AB58066, mouse monoclonal), Ezh2 (Cell Signaling, MA, USA, Cat#
AC22), trimethyl-histone H3-K27 (Millipore, Cat# 07-449),
trimethyl-histone H3-K4 (Millipore, Cat# 07-473), or normal
mouse IgG (Santa Cruz Biotechnology, Cat# SC-2025) as a negative
control.

For library construction, we used a protocol as described before
[4]. Briefly, the immunoprecipitated DNA (~10 ng) were end-
repaired, and A-nucleotide overhangs were then added, followed
by adapter ligation, PCR enrichment, size selection and purification.
The purified DNA library products were evaluated using Bioanalyzer
(Agilent) and SYBR qPCR and diluted to 10 nM for sequencing on
Illumina Hi-seq 2000 sequencer (YY1) (pair-end with 50 bp) or
Illumina Genome Analyzer II sequencer (Ezh2, H3K27me3 and
H3K4me3) (pair-end with 36 bp). Technical replicates were pre-
pared by sequencing the same library twice. A data analysis pipeline
CASAVA 1.8 (Illumina) was employed to perform the initial bioinfor-
matic analysis (base calling). Table 1 lists all the experiments that we
had performed. For MB YY1, we performed two biological replicates
with the antibody SC-1703 and a third biological replicate with a sec-
ond antibody AB58066. We also performed two technical replicates
for each antibody (run 1 and run 2).
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Reads alignment, peak defining and motif analysis

The sequenced reads were mapped to the mouse reference genome
(UCSC mm9, non-repeat-masked) using SOAP2 [5] (version 2.20, with
the following parameters: “-v 2 -r 0 -m 0 -p 20”) allowing a maximum
of two mismatches and only the uniquely aligned reads were kept.
The protein–DNA binding peaks were identified using Model-based
Analysis for ChIP-seq (MACS [6], version 2.0.9; for YY1 ChIP-seq
(MB rep1); the parameters are “-g mm -m 8,30 -p 0.001” and then
the peaks were filtered by q-values; for others, the parameters
were “-g mm -m 8,30 -q 0.01”) with the IgG control sample as back-
ground. During the peak calling, a q-value (adjusted P-value calculated
using the Benjamini–Hochberg procedure)was set under 10−5 for YY1;
it corresponds to an empirical FDR (False Discovery Rate) of 3.4%; 10−2

was used for Ezh2 and H3K27me3, where the FDRs were estimated
to be around 1%. This difference in data processing for ChIP-seq experi-
ments was because the performance of MACS on a large dataset
(e. g., YY1 ChIP-seq (MB rep1) sequenced on Hi-seq 2000) is not as
good as on a small dataset (e.g., others on GA IIx). The mapping infor-
mation and number of peaks from each dataset were shown in Table 1.

The raw ChIP-seq sequencing reads for transcription factor MyoD
were downloaded from NCBI's Sequence Read Archive (SRA; http://
www.ncbi.nlm.nih.gov/sra) with accession number SRX016191 and
SRX016040 for MBs and MTs, respectively. The reads were aligned
using the above method and the MyoD-binding peaks were identified
using a q-value cutoff of 10−2. The processed ChIP-seq data (binding
sites) for Pol II and H3K4me3 were obtained from NCBI's GEO under
accession number GSE25308. When comparing peaks from different
experiments, two peaks were considered as “overlapped peaks” if the
distance between them was less than 1 kb.

In order to search for highly occurring motifs in the DNA sequences
underlying the putative binding peaks, Discriminative Regular Expres-
sion Motif Elicitation (DREME [7], version 4.8.0) was applied on the
100 bp (±50 bp) sequences flanking the peak summit. The analysis
was run on both strands to search for motifs that are no more than
8 bp in length with E-values b0.01.
Quality control

In peak defining, we used the IgG as a negative control and also care-
fully selected the q-values for a reasonable FDR. According to the
ENCODE ChIP-seq guidelines [8], we calculated the Fragments in Peaks
(FRiP) value using in-house programs (See Supplementary Material).
Moreover, for the YY1 biological replicates, we performed Irreproduc-
ible Discovery Rate (IDR) analysis using the package developed by
Li et al. [9].
Table 1
List of ChIP-seq experiments.

IP Read length Total readsd Mapped readse No. of peaks

YY1 (MB, rep1)a 50 bp 106.4 80 1820
YY1 (MB, rep2run1)b 36 bp 34.0 25.6 996
YY1 (MB, rep2run2)b 36 bp 34.5 26.0 1061
YY1 (MB, rep3run1)c 36 bp 28.9 22.4 1504
YY1 (MB, rep3run2)c 36 bp 30.9 23.9 1655
YY1 (MT)d 50 bp 86.8 62.5 626
Ezh2 50 bp 37.0 25.7 1801
H3K4me3 36 bp 10.2 6.9 21,051
H3K27me3 36 bp 26.5 20.8 10,674

a,c,d Using SC1703 antibody.
b Using AB58066 antibody.
e Total reads and mapped reads are reported as millions of reads. The number of

uniquely mapped reads, the number of reads aligning and the number of pairs concor-
dantly are all the same as the number of the mapped reads in this experiment based on
the alignment protocol used.
Functional annotation

To identify putative YY1 target gene, each identified peak was asso-
ciated with the closest RefSeq gene when it falls into the 4 kb (±2 kb)
flanking region of the gene's TSS, and these genes were considered as
potentially regulated by YY1. For analysis of differentially expressed
genes, we used Cufflinks [10] (version 1.3) to evaluate the expression
profile (using Fragments Per Kilobase of exon model per Million
mapped reads, FPKM) of all the RefSeq transcripts using the publically
available RNA-Seq data obtained from −24 h (myoblasts, MBs) and
60 h (myotubes, MTs) C2C12 [11]. Differentially expressed genes were
defined as those up- or down-regulated in MTs as compared to MB. If
a gene is differentially expressed and bound by YY1, we reason that it
could be potentially regulated by YY1 since the YY1 level decreases dur-
ing C2C12 differentiation. Up-regulated YY1 bound genes were defined
if their expression in MTs is N1.2 fold higher compared with MBs and
these genes are possibly repressed by YY1 in MBs. Down-regulated
YY1 bound genes were defined if their expression in MTs is less than
0.8 fold compared with MBs and they are likely activated by YY1 in
MBs. Then Gene Ontology (GO) analysis was performed on both up-
and down-regulated genes using Database for Annotation, Visualization
and IntegratedDiscovery (DAVID, http://david.abcc.ncifcrf.gov/) [12,13]
for functional annotations.

Identification of YY1 bound novel lincRNAs

Since we observed that more than 1/4 of the YY1 peaks were in the
intergenic regions, we suspected that YY1 may regulate unannotated
lincRNAs. To validate this hypothesis, we used the list of novel lincRNA
identified by Guttmanet et al. from four mouse cell types [14]. YY1-
binding sites were searched in the flanking regions (±100 kb on both
sides) of these lincRNAs. The resultant list of lincRNAs was considered
as YY1-associated muscle lincRNAs or Yams.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2014.05.008.
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